©゙doubtnut

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

II PUC ANNUAL EXAMINATION 2019

Part A Answer The Ten Questions

1. Define Binary Operation.

(Watch Video Solution

2. Find the principal value of: $\cos ^{-1}\left(-\frac{1}{2}\right)$

- Watch Video Solution

3. Define a scalar matrix.

- Watch Video Solution

4. Solve the equation: $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$

- Watch Video Solution

5. If $y=\sin \left(x^{2}+5\right)$, then $\frac{d y}{d x}=$
6. $\int(1-x) \sqrt{x} d x$

- Watch Video Solution

7. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector.

- Watch Video Solution

8. If as line has direction ratios $2,-1,-2$, determine its direction cosines.
9. Objective function of a linear programming problem is

- Watch Video Solution

10. Given that E and F are events such that $P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$, find $P(E / F)$ and $P(F / E)$.

D Watch Video Solution

Part B Answer The Ten Questions

1. Show that the function $f: N \rightarrow N$, given by $f(x)=2 x$, is one-one but not onto.
2. Prove that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, x \in[-1,1]$

- Watch Video Solution

3. Write $\cot ^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right),|x|>1$ in the simplest form.

(D) Watch Video Solution

4. Find the area of the triangle with vertices (2, 7), (1, 1) and
$(10,8)$ using determinant method.

D Watch Video Solution
5. Find $\frac{d y}{d x}$, if $y=(\log x)^{\cos x}$.

- Watch Video Solution

6. $a x+b y^{2}=\cos y$

- Watch Video Solution

7. Find the approximate change in the volume V of a cube of side x meters caused by increasing by side by 2%.

D Watch Video Solution

8. $\int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x$

(D) Watch Video Solution

9. Find $\int \sin 2 x \cdot \cos 3 x d x$.

- Watch Video Solution

10. Determine order and degree (if defined) of differential equations given $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

- Watch Video Solution

11. Find '|veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.
12. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$

- Watch Video Solution

13. Find the distance of the point $(3,-2,1)$ from the plane $2 x$ $y+2 z+3=0$.

- Watch Video Solution

14. Probability of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that (i) the
problem is solved (ii) exactly one of them solves the problem.

- Watch Video Solution

Part C Answer The Ten Questions

1. Check whether the relation R in R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.

- Watch Video Solution

2. Prove that $\cos ^{-1} \cdot \frac{4}{5}+\cos ^{-1} \cdot \frac{12}{13}=\cos ^{-1} \cdot \frac{33}{65}$
3. By using the elementary transformation, find the inverse of the matrix, $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.

D Watch Video Solution

4. If $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$ then show that $\frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right)$.

(Watch Video Solution

5. Verify Rolles theorem for the function
$f(x)=x^{2}+2 x-8, x \in[-4,2]$.
6. Find the intervals in which the function f given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
(a) strictly increasing (b) strictly decreasing?

(Watch Video Solution

7. $\int x \log x d x$

D Watch Video Solution
8. $\int_{0}^{\pi / 2} \frac{\sin x}{\left(1+\cos ^{2} x\right)} d x$
9. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

10. Find the differential equation of the family of curves $y=A e^{2 x}+B e^{-2 x}$, where A and B are arbitrary constants.

- Watch Video Solution

11. Find a unity vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where veca=hati+hatj+hatk and vecb=hati+2hatj+3hatk
12. Show that the four points which position vectors. $4 \hat{i}+8 \hat{j}+12 \hat{k}, 2 \hat{i}+4 \hat{j}+6 \hat{k}, 3 \hat{i}+5 \hat{j}+4 \hat{k}$ and $5 \hat{i}+8 \hat{j}+5 \hat{k}$ are coplanar.

- Watch Video Solution

13. Find the vector equation of the plane passing thrugh the points (2,5,-3),(-2,-3,5),(5,3,-3).

(Watch Video Solution

14. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of
an accidents are $0.01,0.03$ and 0.15 respectively. One of the insured persons meets with an accident. What is the probability that he i

- Watch Video Solution

Part D Answer The Questions

1. Let $f: N \vec{Y}$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is invertible and its inverse is (1) $g(y)=\frac{3 y+4}{3}$
$g(y)=4+\frac{y+3}{4}$ (3) $g(y)=\frac{y+3}{4}$ (4) $g(y)=\frac{y-3}{4}$
2. If $A=[1233-21421]$, then show that $A^{3}-23 A-401=0$.

- Watch Video Solution

3. Solve the following system of linear equations by matrix method.
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$

- Watch Video Solution

4. If $y=\sin ^{-1} x$, then show that
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$.

D Watch Video Solution

5. The length x of a rectangle is decreasing at the rate of 3 $\mathrm{cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter and (b) the area of the rectangle.

- Watch Video Solution

6. Evaluate: $\int \frac{1}{x^{2}+16} d x$
7. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and line $x+y=2$ is

- Watch Video Solution

8. Find the general solution of the differential equation
$\frac{d y}{d x}+(\sec x) y=\tan x,\left(0 \leq x \leq \frac{\pi}{2}\right)$.

D Watch Video Solution

9. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and

Cartesian form.

- Watch Video Solution

10. Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. What is the probability that
(i) all the five cards are spades? (ii) only 3 cards are spades?
(iii) none is a spade?

Watch Video Solution
11. Show that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+a\end{array}\right|=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1$.
12. Minimize and Maximize $z=600 x+400 y$

Subject to the constraints :
$x+2 y \leq 12$
$2 x+y \leq 12$
$4 x+5 y \geq 21$ and $x \geq 0, y \geq 0$ graphical method.

- Watch Video Solution

