© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA

ENGLISH)

II PUC APRIL 2020 CLASS - XII

Part A

1. Let $*$ be the binary opertion on N given by $a * b=L . C . M$. of a and b. Find
(i) $5 * 7,20 * 16$
(ii) Is $*$ commutative ?
(iii) Is * associative ?
(iv) Find the identity of $*$?
(v) Which elements of N are invertible for the opertion * ?
2. Write the range of the function $y=\sec ^{-1} x$.

D Watch Video Solution

3. If a matrix has 5 elements what are the possilbe orders it can have?

- Watch Video Solution

4. If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then x is equal to

D Watch Video Solution

5. If $y=\tan (\sqrt{x})$, find $\frac{d y}{d x}$.
6. Find $\int\left(2 x^{2}+e^{x}\right) d x$.

D Watch Video Solution

7. Co-initial vectors; coterminous vector and co-planar vectors; negative of a vector; reciprocal vectors

D Watch Video Solution

8. If a line makes angles $90^{\circ}, 135^{\circ}$ and 45° with the X, Y and Z -axis respectively, find its direction cosines.

D Watch Video Solution

9. Define optimal solution in linear programming problem.

(b) Watch Video Solution

10. If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$ find $P(A \cap B)$.

If A and B are independent events

D Watch Video Solution

Part B

1. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by by $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ and $g(x)=3 x^{2}$, then shown that gof $\neq f o g$.

D Watch Video Solution

2. Prove that $\cot ^{-1}(-x)=\pi-\cot ^{-1} x, \forall \mathrm{x} \quad \in \mathrm{R}$.

D Watch Video Solution

3. Find the value of $\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$.

D Watch Video Solution

4. Find the area of the triangle whose vertices are $(-2,-3),(3,2)$ and
$(-1,-8)$ by using determinant method.

(Watch Video Solution

5. Find $\frac{d y}{d x}$, if $\sin ^{2} x+\cos ^{2} \mathrm{y}=1$

D Watch Video Solution

6. If $y=x^{x}$, find $\frac{d y}{d x}$
7. Find the intervals in which the function f given by $f(x)=x^{2}-4 x+6$ is (a) strictly increasing (b) strictly decreasing.

Watch Video Solution

8. $\int \cot \times x \log (\sin x) d x=$?

D Watch Video Solution

9. Find $\int x \sec ^{2} x d x$.

(D) Watch Video Solution

10. Find the order and degree (if defined) of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
11. Find the projection of the vector $\hat{i}+3 \hat{j}-7 \hat{k}$ on the vector $7 \hat{i}+\hat{j}+8 \hat{k}$

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

13. Find the equation of the plane with the intercept 2,3 and 4 on x, y and z axes respectively.
14. A random variable X has the following probability distribution.

$\mathrm{X}=x$	2	4	6	8	$x>8$
$\mathrm{P}(\mathrm{X}=x)$	$2 k$	$4 k$	$6 k$	$6 k$	0

Find the value of K.

D Watch Video Solution

Part C

1. Show that the relation R defined in the set A of all triangles as
$R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to $\left.T_{2}\right\}$, is equivalence relation.
2. Prove that $2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$

- Watch Video Solution

3. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$ show that $\mathrm{F}(\mathrm{x}) \mathrm{F}(\mathrm{y})=\mathrm{F}(\mathrm{x}+\mathrm{y})$.

Watch Video Solution

4. If $x=2 a t^{2}, y=a t^{4}$ then find $\frac{d y}{d x}$.

(D) Watch Video Solution

5. Verify mean value theorem for the function $f(x)=x^{2}+4 x-3$ in the interval [-2,2]
6. Use differential to approximate $\sqrt{36.6}$

D Watch Video Solution

7. Evaluate $\int \frac{(x-3) e^{x}}{(x-1)^{3}} d x$

- Watch Video Solution

8. Evaluate : (i) $\int_{0}^{\pi / 2} \cos ^{3} x d x(i i) \int_{0}^{\pi / 2} \sin ^{4} x d x$

- Watch Video Solution

9. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
10. Find the equation of a curve passing through the point $(2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$.

D Watch Video Solution

11. Find a unit vector perpendicular to each of the vector $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$,
$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

D Watch Video Solution

12. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and D(6,5,-1) are coplanar
13. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0, x+y+z-2=0$ and the point $(2,2,1)$

D Watch Video Solution

14. A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

(D) Watch Video Solution

Part D

1. Prove that the function $f: R \rightarrow R$ defined by $f(x)=4 x+3$ is invertible and find the inverse of ' f '.
2.

if $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{lll}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $c=\left[\begin{array}{lll}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$, then compure $(A+B)$ and $(B-C)$, Also , verify that $A+(B-C)=(A+B)-C$.

(D) Watch Video Solution

3. Solve system of linear equations, using matrix method, $2 x+3 y+3 z=5 x-2 y+z=-43 x-y 2 z=3$

D Watch Video Solution

4. If $y=\left(\tan ^{-1} x\right)^{2}$, show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$

D Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always $1 / 6$ th of the radius of the base. How fast does the height of the sand cone increase when the height in 4 cm ?

D Watch Video Solution

6. Find the integral of $\frac{1}{x^{2}+a^{2}}$ w.r.t.x and hence evaluate $\int \frac{1}{x^{2}+2 x+3} d x$.

- Watch Video Solution

7. Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$.

(D) Watch Video Solution

8. Find the general solution of the differential equations: $x \frac{d x}{d y}+2 y=x^{2} \log x$

D Watch Video Solution

9. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and Cartesian form.

D Watch Video Solution

10. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a prize is $\frac{1}{100}$. What is the probability that he will win a prize(a) at least once (b) exactly once (c) at least twice?

D Watch Video Solution

1. Prove that $\int_{-a}^{a} d x=\left\{\begin{array}{ll}2 \int_{0}^{a} f(x) d x & \text { if } f(x) \text { is even } \\ 0 & \text { if } f(x) \text { is odd }\end{array}\right.$ and hence evaluate
(a) $\int_{-1}^{1} \sin ^{5} x \cos ^{4} x d x$.

- Watch Video Solution

2. (a)Maximise $z=4 x+y$
subject to constraints :
$x+y \leq 50$
$3 x+y \leq 90$
$x \geq 0$
$y \geq 0$
by graphical method.
(b) Find the value of K , if $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}K x+1 & \text { if } x \leq \pi \\ \cos x & \text { if } x>\pi\end{array}\right.$ is continuous at $\mathrm{x}=\pi$.
