©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA

ENGLISH)

II PUC MARCH - 2017

Part A

1. Let * be a binary operation on N defined by $a * b=L C M$ of a and b. Find $20 * 16$.

- Watch Video Solution

2. Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$.

D Watch Video Solution

3. Construct a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{i}{j}$

D Watch Video Solution

4. If a square matrix with $|A|=8$ then find the value of $\left|\mathrm{A}^{\prime}\right|^{\prime}$.

- Watch Video Solution

5. If $\mathrm{y}=\cos \sqrt{x}$, find $\frac{d y}{d x}$
6. Find : $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$.

D Watch Video Solution

7. Define collinear vectors.

- Watch Video Solution

8. Find the direction cosines of a line which makes equal angles with the coordinate axes.

D Watch Video Solution

9. Define feasible region in a linear programming Problem.

- Watch Video Solution

10. If A and B are independent events, $P(A) \frac{3}{5}$ and $P(B)=\frac{1}{5}$ then find $P(A \cap B)$.

D Watch Video Solution

Part B

1. If $f: R \rightarrow R$, defined by $F(x)=1+x^{2}$, then show that f is neither 1-1 nor onto.

- Watch Video Solution

2. Prove the following:

$$
\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}
$$

- Watch Video Solution

3. If $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x, x>0$ find x

- Watch Video Solution

4. Find the value of k,if area of triangle is 4 sq. units and vertices
arw (k,0),(4,0) and(0,2) using determinant.

- Watch Video Solution

5. If $a x+b y^{2}=\cos y$ find $\frac{d y}{d x}$.

- Watch Video Solution

6. Verify Rolle's theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$.

D Watch Video Solution

7. Find the approximate change in the valume of a cube of side x metres caused side by 3%.

- Watch Video Solution

8. Intergrate $\frac{\tan ^{4} \sqrt{x} \sec ^{2} \sqrt{x}}{\sqrt{x}}$ with respect to x .

- Watch Video Solution

9. Evaulate $\int_{0}^{2 / 3} \frac{d x}{4+9 x^{2}}$

D Watch Video Solution

10. Find the order and degree of the differential equation $\left(\frac{d y}{d x}\right)^{2}+\frac{d y}{d x}-\sin ^{2} y=0$.

D Watch Video Solution

11. Find the position vectors of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}-$ and $-\hat{i}+\hat{j}-\hat{k}$ respectively, in the ration 2:1.
(i) Internally, (ii) Externally.
12. Find the area of the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

13. Find the vector and the Cartesian equation of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

D Watch Video Solution

14. Find the probability distribution of number of heads in two tosses of a coin .

- Watch Video Solution

1. Show that the relation R in R (set of real numbers) is defined as $\mathrm{R}=\{(a, b), a \leq b\}$ is reflexive and transitive but not symmetric.

- Watch Video Solution

2. Write $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right), x \neq 0$ in the simplest form.

- Watch Video Solution

3. If A and B are symmetric matrices of the same order.then show that $A B$ is symmetric if and only if $A B=B A$.
4. Differentiate $\left(\log _{e} x\right) \cos x$ with respect to x .

D Watch Video Solution

5. Differentiate $\sin ^{2} x$ with respect to $e^{\cos x}$.

- Watch Video Solution

6. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

7. Evaluate: $\int \frac{2 x}{x^{2}+3 x+2} d x$.
8. Evaluate : $\int e^{x} \sin x d x$.

D Watch Video Solution

9. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$.

- Watch Video Solution

10. Form the differential equation of the family of circles having
centre on y-axis and radius 3 units.

- Watch Video Solution

11. Find x such that the four point $A(3,2,2), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar.

- Watch Video Solution

12. Three vectors \bar{a}, \bar{b} and \bar{c} satisfy the condition
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
evaluate
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$

- Watch Video Solution

13. Find the shortest distance betweenn the lines.

$$
\begin{aligned}
\vec{r} & =\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k})
\end{aligned}
$$

14. Given that the two numbers appearing on throwing two dice are different. Find the probability of the events 'the sum of numbers on the dice is 4 ' .

D Watch Video Solution

Part D

1. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$, show that $f: N \rightarrow S$, where S is the range of f , is invertible. Also find the inverse.

- Watch Video Solution

2. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$, prove that $A^{3}-6 A^{2}+7 A+2 I=0$.

Watch Video Solution

3. Solve the following system of linear equation by matrix method.
$x-y+2 z=1$
$2 y-3 z=1$
and $3 x-2 y+4 z=2$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 4. If } y=\left(\tan ^{-1} x\right)^{2} \quad \text { then show that } \\
& \left(x^{2}+1\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(x^{2}+1\right) \frac{d y}{d x}=2
\end{aligned}
$$

5. The length x of rectangle is decreasing at the rate of 5 cm /minute and width y is increasing at the rate of 4 $\mathrm{cm} /$ minute. When $\mathrm{x}=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rate of change of
(i) the perimeter and (ii) the Area of the rectangle.

- Watch Video Solution

6. Find the integral of $\sqrt{x^{2}-a^{2}}$ with respect to x and hence evaluate $\int \sqrt{x^{2}-8 x+7 d x}$.

- Watch Video Solution

7. Using integration find the area of the triangular region whose sides have the equations $Y=2 x+1, y=3 x+1$ and $x=4$.

- Watch Video Solution

8.

solve
the
differential
equation
$\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$.

- Watch Video Solution

9. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and

Cartesian form.

D Watch Video Solution

Part E

1. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5 such bulbs.
(i) none
(ii) not more than one
(iii) more than fuse after 150 days of use.

- Watch Video Solution

2. Prove that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ and hence evaluate $\int_{0}^{\pi / 2}(2 \log \sin x-\log \sin 2 x) d x$.

- Watch Video Solution

3. Minimize and Maximize $z=600 x+400 y$

Subject to the constraints :
$x+2 y \leq 12$
$2 x+y \leq 12$
$4 x+5 y \geq 21$ and $x \geq 0, y \geq 0$ graphical method.

- Watch Video Solution

