

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

II PUC TOPPER'S ANSWERS MARCH (2017)

Part A Answer All The Ten Questions

1. Let * be a binary operation on N given by a*b =1cm of a

and b find the value of 20*16

2. What is the principle value of $\operatorname{cosec}^{-1} ig(-\sqrt{2} ig)$?

3. Construct a 2 imes 2 matrix, $A=ig[a_{ij}ig]$, whose elements are given by $a_{ij}=rac{i}{j}$

Watch Video Solution

4. If a square matrix with |A|=8 then find the value of

|A A'|`.

5. If y=cos
$$\sqrt{x}$$
, find $\frac{dy}{dx}$

Watch Video Solution

6.
$$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

Watch Video Solution

7. Define collinear vectors.

8. Find the direction cosines of a line which makes equal

angles with the coordinate axes.

9. Define feasible region in a linear programmingProblem.

10. If A and B are independent events,
$$P(A)\frac{3}{5}$$
 and $P(B) = \frac{1}{5}$ then find $P(A \cap B)$.

1. If $f\!:\!R o R,$ defined by $F(x)=1+x^2,$ then show

that f is neither 1 - 1 nor onto.

2. Prove that
$$\sin^{-1}\left(2 \times \sqrt{1-x^2}\right) = 2\cos^{-1}x, \frac{1}{\sqrt{2}} \le x \le 1$$

3. If
$$an^{-1}\left(rac{1-x}{1+x}
ight)=rac{1}{2} an^{-1}x, x>0$$
, then x = ?

Watch Video Solution

4. Find the values of k if area of tringle is 4 sq. units and

dvertices are :

(i) (k,0), (4,0), (0,2)

(ii) (-2,0), (0,4), (0,k)

5.
$$ax + by^2 = \cos y$$

6. Verify Rolles theorem for the function $f(x) = x^2 + 2x - 8, x \in [-4, 2].$

Watch Video Solution

7. Find the approximate change in the valume of a cube

of side x metres caused side by 3%.

11. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2 : 1(i) internally (ii) externally

12. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively, in the ratio 2 : 1(i) internally (ii) externally

Watch Video Solution

13. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{a} = \hat{i} - \hat{j} + 3\hat{k}and\overrightarrow{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

14. Find the vector and the cartesian equations of the

line that passes through the points (3, 2, 5), (3, 2, 6).

15. Find the probability distribution of (i) number of heads in two tosses of a coin. (ii) number of tails in the simultaneous tosses of three corns. (iii) number of heads in four tosses of a com.

Part C Answer Any Ten Questions

1. Show that the relation R on R defined as $R = \{(a, b) : a \leq b\}$, is reflexive and transitive but not symmetric.

3. If A and B are symmetric matrices of the same order.then show that AB is symmetric if and only if AB=BA.

7.
$$\int \frac{2x}{x^2 + 3x + 2} dx$$
Watch Video Solution
8.
$$\int e^x \sin x dx$$
Watch Video Solution

9. Area (in square units) of the region bounded by the curve $y^2=4x,$ y-axis and the line y=3 , is

10. Form the differential equation of the family of circles

having centre on y-axis and radius 3 units.

$$\mu = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$$
,if $\left| \overrightarrow{a} \right| = 1$, $\left| \overrightarrow{b} \right| = 4$ and $\left| \overrightarrow{c} \right| = 2$

Watch Video Solution

13. Find the shortest distance between the lines $\overrightarrow{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$ and $\overrightarrow{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})$

Watch Video Solution

14. Given that the two number appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4.

Part D Answer Any Six Questions

1. Let f:N o R be a function defined as $f(x)=4x^2+12x+15$. Show that f:N o S, where, S is the range of f, is invertible. Find the inverse of f.

Watch Video Solution

2. If
$$A=[102021203]$$
 , prove that $A^3-6A^2+7A+2I=0$

3. Solve the following system of linear equation by matrix method.

x - y + 2z = 1

2y - 3z = 1

and 3x - 2y + 4z = 2.

4. If
$$y = \left(an^{-1} x
ight)^2$$
, show that

$$ig(x^2+1ig)^2 y_2 + 2xig(x^2+1ig)y_1 = 2$$

5. The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8cm and y = 6cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle

Watch Video Solution

6. The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8cm and y = 6cm, find the rates of change of (a) the perimeter, and (b) the area of the rectangle

7.
$$\int \sqrt{x^2-8x+7}dx =$$

8. Using integration find the area of the triangular region whose sides have the equations
$$y = 2x + 1$$
, $y = 3x + 1$ and $x = 4$.

10. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and Cartesian form.

11. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs (i) none (ii) not more than one (iii) more than one (iv) at least one will fuse after 150 days of use.

Part E Answer Any One Question

1. Prove that
$$\int_{o}^{a} f (x) dx = \int_{o}^{a} f (a - x) dx$$

Watch Video Solution

2.

$$egin{bmatrix} x & x^2 & yz \ y & y^2 & zx \ z & z^2 & xy \end{bmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$

3. Minimize and Maximize z = 600x + 400y

Subject to the constraints :

 $x+2y\leq 12$

 $2x+y\leq 12$

 $4x + 5y \geq 21$ and $x \geq 0, y \geq 0$ graphical method.

