©゙ doubtnut

MATHS

BOOKS - OSWAAL PUBLICATION MATHS
 (KANNADA ENGLISH)

II PUC TOPPER'S ANSWERS MARCH (2017)

Part A Answer All The Ten Questions

1. Let * be a binary operation on N given by $a * b=1 \mathrm{~cm}$ of a and b find the value of $20 * 16$
2. What is the principle value of $\operatorname{cosec}^{-1}(-\sqrt{2})$?

- Watch Video Solution

3. Construct a 2×2 matrix, $A=\left[a_{i j}\right]$, whose elements are given by $a_{i j}=\frac{i}{j}$

- Watch Video Solution

4. If a square matrix with $|A|=8$ then find the value of
$\left|A A^{\prime}\right|^{\prime}$.
5. If $\mathrm{y}=\cos \sqrt{x}$, find $\frac{d y}{d x}$

- Watch Video Solution

6. $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$

- Watch Video Solution

7. Define collinear vectors.

- Watch Video Solution

8. Find the direction cosines of a line which makes equal angles with the coordinate axes.

- Watch Video Solution

9. Define feasible region in a linear programming Problem.

- Watch Video Solution

10. If A and B are independent events,
$P(A) \frac{3}{5}$ and $P(B)=\frac{1}{5}$ then find $P(A \cap B)$.

Part B Answer Any Ten Questions

1. If $f: R \rightarrow R$, defined by $F(x)=1+x^{2}$, then show that f is neither 1-1 nor onto.

- Watch Video Solution

2. Prove that
$\sin ^{-1}\left(2 \times \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1$

- Watch Video Solution

3. If $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x, x>0$, then $\mathrm{x}=$?

D Watch Video Solution

4. Find the values of k if area of tringle is 4 sq. units and dvertices are :
(i) $(k, 0),(4,0),(0,2)$
(ii) $(-2,0),(0,4),(0, k)$

(D) Watch Video Solution

5. $a x+b y^{2}=\cos y$
6. Verify Rolles theorem for the function
$f(x)=x^{2}+2 x-8, x \in[-4,2]$.

- Watch Video Solution

7. Find the approximate change in the valume of a cube of side x metres caused side by 3%.

- Watch Video Solution

8. Intergrate $\frac{\tan ^{4} \sqrt{x} \sec ^{2} \sqrt{x}}{\sqrt{x}}$ with respect to x .
9. The value of $\int_{0}^{2 / 3} \frac{d x}{4+9 x^{2}}$ is equal to

- Watch Video Solution

10. what is the order of the differential equation
$\left(\frac{d y}{d x}\right)^{2}+\frac{d y}{d x}-\sin ^{2} y=0$?

- Watch Video Solution

11. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio 2 : 1(i) internally (ii) externally

- Watch Video Solution

12. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio 2 : 1(i) internally (ii) externally

D Watch Video Solution

13. Find the area of the parallelogram whose adjacent
sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.
14. Find the vector and the cartesian equations of the line that passes through the points $(3,2,5),(3,2,6)$.

- Watch Video Solution

15. Find the probability distribution of (i) number of heads in two tosses of a coin. (ii) number of tails in the simultaneous tosses of three corns. (iii) number of heads in four tosses of a com.

D Watch Video Solution

Part C Answer Any Ten Questions

1. Show that the relation R on R defined as
$R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

- Watch Video Solution

2. Write $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right), x \neq 0$ in the simplest form.

- Watch Video Solution

3. If A and B are symmetric matrices of the same order.then show that $A B$ is symmetric if and only if $A B=B A$.

- Watch Video Solution

4. Differentiate $(\log x)^{\cos x}$ with respect to x .

- Watch Video Solution

5. Differentiate $\sin ^{2} x$ with respect to $e^{\cos x}$

- Watch Video Solution

6. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.
7. $\int \frac{2 x}{x^{2}+3 x+2} d x$

- Watch Video Solution

8. $\int e^{x} \sin x d x$

- Watch Video Solution

9. Area (in square units) of the region bounded by the
curve $y^{2}=4 x, y$-axis and the line $y=3$, is
(D) Watch Video Solution
10. Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

D Watch Video Solution

11. Find λ for which the points
$A(3,2,1), B(4, \lambda, 5), C(4,2,-2)$ and $D(6,5,-1)$
are coplanar.

- Watch Video Solution

12. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+$ $\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$

- Watch Video Solution

13. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$ and
$\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$

- Watch Video Solution

14. Given that the two number appearing on throwing two dice are different. Find the probability of the event the sum of numbers on the dice is 4 .

Part D Answer Any Six Questions

1. Let $f: N \rightarrow R$ be a function defined as
$f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$, where, S
is the range of f , is invertible. Find the inverse of f .

D Watch Video Solution

> 2. If $A=[102021203] \quad$, prove that
> $A^{3}-6 A^{2}+7 A+2 I=0$
3. Solve the following system of linear equation by matrix method.
$x-y+2 z=1$
$2 y-3 z=1$
and $3 x-2 y+4 z=2$.

- Watch Video Solution

4. If $y=\left(\tan ^{-1} x\right)^{2}$, show that
$\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$

- Watch Video Solution

5. The length x of a rectangle is decreasing at the rate of
$5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of
$4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter, and (b) the area of the rectangle

(D) Watch Video Solution

6. The length x of a rectangle is decreasing at the rate of
$5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of
$4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter, and (b) the area of the rectangle
7. $\int \sqrt{x^{2}-8 x+7} d x=$

Watch Video Solution

8. Using integration find the area of the triangular region whose sides have the equations $y=2 x+1$, $y=3 x+1$ and $x=4$.

- Watch Video Solution

9. solve the \quad differentia
$\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$.
10. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and Cartesian form.

- Watch Video Solution

11. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5 such bulbs (i) none (ii) not more than one
(iii) more than one (iv) at least one will fuse after 150 days of use.

Part E Answer Any One Question

1. Prove that $\int_{0}^{a} f \backslash(x) \backslash d x=\backslash \int_{0}^{a} f \backslash(a-x) d x$.

D Watch Video Solution

2.

$\left[\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right]=(x-y)(y-z)(z-x)(x y+y z+z x)$

D Watch Video Solution
3. Minimize and Maximize $z=600 x+400 y$

Subject to the constraints :
$x+2 y \leq 12$
$2 x+y \leq 12$
$4 x+5 y \geq 21$ and $x \geq 0, y \geq 0$ graphical method.

- Watch Video Solution

4. For what value of k, function
$f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$?
