

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

RELATIONS & FUNCTIONS

Relation Very Short Answer Type Questions

1. A relation R on A $=\{1,2,3\}$ defined by

 $R = \{(1,1), (1,2), (3,3)\}$ is not symmetric.

 $R=\{(1,\ 1),\ (2,\ 2),\ (3,\ 3),\ (1,\ 3)\}$ Write

the ordered pairs to be added to R to make

the smallest equivalence relation.

5. If $R = \{(x, y): x + 2y = 8\}$ is a relation

on N , then write the range of R .

Watch Video Solution

6. Let $R = ig\{ ig(a, \ a^3ig) : a ext{ is a prime number less}$

than 5} be a relation. Find the range of R .

7. State the reason for the relation R in the set $\{1, 2, 3\}$ given by R= $\{(1, 2), (2, 1)\}$ not to be transitive.

Relation Short Answer Type Questions I

1. Stating the reason if y is divisible by x then it

is not necessary that x is divisible by y.

Stating the reason x is divisible by $x, \, orall x \in A.$

Relation Long Answer Type Questions I

1. Show that the relations R on the set R of all numbers, defined

as

 $R = ig\{(a, b) : a \leq b^2ig\}$ is neither reflexive nor

symmetric nor transitive.

real

3. Show that the relation R on the set Z of integers, given by $R = \{(a, b) : 2 \text{ divides } a - b\}$, is an equivalence relation.

4. Show that the relation R on the set Z of integers, given by $R = \{(a, b) : 2 \text{ divides } a - b\}$, is an equivalence relation.

Watch Video Solution

5. Let R be a relation defined on the set of natural numbers N as follow :

 $R = \{(x, y) : x \in N, y \in N ext{ and } 2x + y = 24\}$ Find the domain and range of the relation R. Also, find R is an equivalence relation or not.

6. Let $A = \{1, 2, 3, , 9\}$ and R be the relation on $A \times A$ defined by (a, b)R(c, d)if a + d = b + c for all $(a, b), (c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class [(2, 5)].

7. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$. Examine whether R is an equivalence relation or not.

divisible by 5}. Prove that R is an equivalence

relation.

1. Show that if $f \colon A o B$ and $g \colon B o C$ are

one-one, then gof: A
ightarrow C is also one-one.

Watch Video Solution

2. Prove that the greatest function, $f: R \to R$, defined by f(x) = [x], where [x] indicates the greatest integer not greater than x, neither one-one nor onto.

3. Show that the function $f\colon N o N$ given by f(1)=f(2)=1 and f(x)=x-1 for every $x\geq 2$, is onto but not one-one.

Watch Video Solution

4. Let $f\!:\!R o R$ be defined by $f(x)=x^2+1$,

find the pre image of 17 and -3, respectively,

are

5. If $f: R \to R$ defined as $f(x) = \frac{2x - 7}{4}$ is an invertible function, write $f^{-1}(x)$.

> Watch Video Solution

6. If $f\!:\!R o R$ defined by f(x)=3x-4 is invertible then write $f^{-1}(x)$.

7. What is the range of the function $f(x) = rac{|x-1|}{(x-1)}?$

Watch Video Solution

8. Show that the function $f\colon R o R$ defined by $f(x)=rac{x}{x^2+1}$ $orall x\in R$ is neither one-one nor onto. Also if $g\colon R o R$ is defined by g(x)=2x-1 find fog(x)

9. Let
$$A = R - (3), B = R - \{1\}$$
. Let $f: A \to B$ be defined by $f(x) = \left(\frac{x-2}{x-3}\right) orall x \in A$. Then show that f is bijective. Hence find $f^{-1}(x)$.

10. Let $f \colon W o W$ be defined as f(n) = n-1

, if is odd and f(n) = n + 1, if n is even. Show

that f is invertible. Find the inverse of f. Here,

W is the set of all whole numbers.

11. Let $f:N\overrightarrow{R}$ be a function defined as $f(x)=4x^2+12x+15$. Show that $f:N\overrightarrow{S}$, where S is the range of f, is invertible. Also find the inverse of f

12. Show that the function
$$f$$
 in $A = |R - \left\{\frac{2}{3}\right\}$ defined as $f(x) = \frac{4x+3}{6x-4}$ is one-one and onto. Hence find f^{-1} .

13. Consider $f: R_+ \overrightarrow{4, \infty}$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse (f^{-1}) of f given by $f^{-1}(y) = \sqrt{y-4}$, where R_+ is the set of all non-negative real numbers.

Watch Video Solution

15. If $f\!:\!R o R$ be the function defined by

 $f(x) = 4x^3 + 7$, show that f is a bijection.

16. Show that the function $f: R^{\longrightarrow}$ given by f(x) = xa + b, where $a, b \in R, a \neq 0$ is a bijection.

17. Consider
$$f: R \to \infty$$
 given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with $f^{-1}(y) = \left(\frac{\sqrt{y+6}-1}{3}\right)$.

1. Let R+ be the set of all non-negative real numbers. Show that the function $f\colon R+ o [4,\infty]$ given by $f(x)=x^2+4$ is invertible and write the inverse of f.

2. Let
$$f \colon N \overrightarrow{Y}$$
 be a function defined as $f(x) = 4x + 3$, where $Y = \{y \in N \colon y = 4x + 3 ext{ for some } x \in N\}$.

Show that f is invertible and its inverse is (1)

$$g(y)=rac{3y+4}{3}$$
 (2) $g(y)=4+rac{y+3}{4}$ (3) $g(y)=rac{y+3}{4}$ (4) $g(y)=rac{y-3}{4}$

Watch Video Solution

3. Prove that the function $f\colon N o Y$ defined by $f(x)=x^2$, where $y=ig\{y\colon y=x^2,x\in Nig\}$

is invertible. Also write the inverse of f(x).

4. Let $S = \{1, 2, 3\}$. Determine whether the functions $f: S \to S$ defined as below have inverses. Find f^{-1} , if it exists.(a) $f = \{(1, 1), (2, 2), (3, 3)\}$ (b) $f = \{(1, 2), (2, 1), (3, 1)\}$ (c) f =

Watch Video Solution

Composite Functions Very Short Answer Type Questions 1. Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.

Watch Video Solution

1. Find gof and fog, if $f \colon R o R$ and $g \colon R o R$

are given by $f(x) = \cos x$ and $g(x) = 3x^2$.

Show that gof
eq fog.

Watch Video Solution

2. Let $f, g: R \overrightarrow{R}$ be two functions defined as f(x) = |x| + x and g(x) = |x| - x , for all xR. Then find fog and gof.

3. If the function
$$f: R\overrightarrow{R}$$
 be given by $f(x) = x^2 + 2andg: R\overrightarrow{R}$ be given by $g(x) = \frac{x}{x-1}$. Find $fogandgof$.

4. If
$$f(x)=rac{4x+3}{6x-4},\ x
eqrac{2}{3},\$$
 show that $fof(x)=x$ for all $x
eqrac{2}{3}.$ What is the inverse of f ?

5. Let
$$f: R^{\rightarrow}$$
 be defined as $f(x) = 10x + 7$.
Find the function $g: RR^{\rightarrow}$ such that
 $gof = fog = I_R$.
Watch Video Solution
Binary Operations

1. Consider the binary operation* on the set {1,

2, 3, 4, 5} defined by a * b=min. {a, b}. Write the

operation table of the operation *.

Watch Video Solution

2. Let * be a binary operation on Q_0 (set of non-zero rational numbers) defined by $a \cdot b = \frac{3ab}{5}$ for all $a, b \in Q_0$. Show that * is commutative as well as associative. Also, find the identity element, if it exists.

1. Let $f:N\overrightarrow{R}$ be a function defined as $f(x)=4x^2+12x+15$. Show that $f:N\overrightarrow{S}$, where S is the range of f, is invertible. Also find the inverse of f