びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

RELATIONS \& FUNCTIONS

Relation Very Short Answer Type Questions

1. A relation R on $\mathrm{A}=\{1,2,3\}$ defined by
$R=\{(1,1),(1,2),(3,3)\}$ is not symmetric.

Why?

D Watch Video Solution

2. Give an example of a relation which is symmetric only.

D Watch Video Solution

3. For the set $A=\{1,2,3\}$, define a relation
R on the set A as follows:
$R=\{(1,1),(2,2),(3,3),(1,3)\} \quad$ Write
the ordered pairs to be added to R to make the smallest equivalence relation.

D Watch Video Solution

4. Let R be the equivalence relation in the set
$A=\{0,1,2,3,4,5\} \quad$ given by
$R=\{(a, b): 2$ divides $(a-b)\}$. Write the equivalence class [0].

5. If $R=\{(x, y): x+2 y=8\}$ is a relation

 on N, then write the range of R.
- Watch Video Solution

6. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 5$\}$ be a relation. Find the range of R.

- Watch Video Solution

7. State the reason for the relation R in the set
$\{1,2,3\}$ given by $\mathrm{R}=\{(1,2),(2,1)\}$ not to be transitive.

- Watch Video Solution

Relation Short Answer Type Questions I

1. Stating the reason if y is divisible by x then it
is not necessary that x is divisible by y .
Stating the reason x is divisible by $x, \forall x \in A$.

View Text Solution

Relation Long Answer Type Questions I

1. Show that the relations R on the set R of all
real numbers, defined as
$R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor
symmetric nor transitive.

- Watch Video Solution

2. Determine whether Relation R on the set
$A=\{1,2,3,, 13,14\} \quad$ defined as
$R=\{(x, y): 3 x-y=0\}$

- Watch Video Solution

3. Show that the relation R on the set Z of integers, given by $R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.
4. Show that the relation R on the set Z of integers, given by $R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.

(Watch Video Solution

5. Let R be a relation defined on the set of natural numbers N as follow :
$R=\{(x, y): x \in N, y \in N$ and $2 x+y=24\}$
Find the domain and range of the relation R.

Also, find R is an equivalence relation or not.
6. Let $A=\{1,2,3,, 9\}$ and R be the relation on $A \times A$ defined by $(a, b) R(c, d)$ if $\quad a+d=b+c \quad$ for all
$(a, b),(c, d) \in A \times A$. Prove that R is an equivalence relation and also obtain the equivalence class $[(2,5)]$.
7. Let $f: X \rightarrow Y$ be a function. Define a
relation
R
in
X given
$R=\{(a, b): f(a)=f(b)\}$. Examine whether
R is an equivalence relation or not.

- Watch Video Solution

8. Let Z be the set of all integers and R be the
divisible by 5$\}$. Prove that R is an equivalence relation.

D Watch Video Solution

9. Show that the relation S in the set R of real numbers defined
$S=\left\{(a, b): a, b \in R\right.$ and $\left.a \leq b^{3}\right\}$ is neither reflexive, nor symmetric, nor transitive.

D Watch Video Solution

1. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof: $A \rightarrow C$ is also one-one.

- Watch Video Solution

2. Prove that the greatest function, $f: R \rightarrow R$,
defined by $f(x)=[x]$, where $[x]$ indicates the
greatest integer not greater than x , neither one-one nor onto.
3. Show that the function $f: N \rightarrow N$ given by
$f(1)=f(2)=1$ and $f(x)=x-1$ for every
$x \geq 2$, is onto but not one-one.

- Watch Video Solution

4. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$,
find the pre image of 17 and -3 , respectively, are
5. If $f: R \rightarrow R$ defined as $f(x)=\frac{2 x-7}{4}$ is an invertible function, write $f^{-1}(x)$.

- Watch Video Solution

6. If $f: R \rightarrow R$ defined by $f(x)=3 x-4$ is invertible then write $f^{-1}(x)$.
7. What is the range of the function
$f(x)=\frac{|x-1|}{(x-1)}$?

- Watch Video Solution

8. Show that the function $f: R \rightarrow R$ defined by $f(x)=\frac{x}{x^{2}+1} \forall x \in R$ is neither one-one nor onto. Also if $g: R \rightarrow R$ is defined by $g(x)=2 x-1$ find fog (x)

- Watch Video Solution

9. Let $A=R-(3), B=R-\{1\}$. Let
$f: A \rightarrow B$ be defined by
$f(x)=\left(\frac{x-2}{x-3}\right) \forall x \in A$. Then show that f
is bijective. Hence find $f^{-1}(x)$.

- Watch Video Solution

10. Let $f: W \rightarrow W$ be defined as $f(n)=n-1$
, if is odd and $f(n)=n+1$, if n is even. Show
that f is invertible. Find the inverse of f. Here,
W is the set of all whole numbers.
11. Let $f: N \vec{R}$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Also find the inverse of f

- Watch Video Solution

12. Show that the function f in
$A=\left\lvert\, R-\left\{\frac{2}{3}\right\}\right.$ defined as $f(x)=\frac{4 x+3}{6 x-4}$
is one-one and onto. Hence find f^{-1}.

- Watch Video Solution

13. Consider $f: R_{+} \overrightarrow{4, \infty}$ given by
$f(x)=x^{2}+4$. Show that f is invertible with
the inverse $\left(f^{-1}\right)$ of f given by
$f^{-1}(y)=\sqrt{y-4}$, where R_{+}is the set of
all non-negative real numbers.

- Watch Video Solution

14. Let $f: N \rightarrow N$ be defined as
$f(n)=\frac{n+1}{2}$ if n is odd and $f(n)=\frac{n}{2}$ if n
is even for all $\mathrm{n} \in \mathrm{N}$ State whether the function f is bijective. Justify your answer

- Watch Video Solution

15. If $f: R \rightarrow R$ be the function defined by $f(x)=4 x^{3}+7$, show that f is a bijection.

D Watch Video Solution

16. Show that the function $f: R^{\rightarrow}$ given by
$f(x)=x a+b$, where $a, b \in R, a \neq 0$ is a bijection.

D Watch Video Solution

17. Consider $f: R \overrightarrow{-5, \infty}$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$.
18. Let $\mathrm{R}+$ be the set of all non-negative real numbers. Show that the function
$f: R+\rightarrow[4, \infty]$ given by $f(x)=x^{2}+4$ is
invertible and write the inverse of f.

- Watch Video Solution

2. Let $f: N \vec{Y}$ be a function defined as
$f(x)=4 x+3 \quad, \quad$ where
$Y=\{y \in N: y=4 x+3$ for some $x \in N\}$.

Show that f is invertible and its inverse is (1)
$g(y)=\frac{3 y+4}{3} \quad$ (2) $\quad g(y)=4+\frac{y+3}{4}$
$g(y)=\frac{y+3}{4}(4) g(y)=\frac{y-3}{4}$

- Watch Video Solution

3. Prove that the function $f: N \rightarrow Y$ defined by $f(x)=x^{2}$, where $y=\left\{y: y=x^{2}, x \in N\right\}$
is invertible. Also write the inverse of $f(x)$.

D Watch Video Solution

4. Let $S=\{1,2,3\}$. Determine whether the
functions $f: S \rightarrow S$ defined as below have inverses. Find f^{-1}, if it exists.(a)
$f=\{(1,1),(2,2),(3,3)\}(b)$
$f=\{(1,2),(2,1),(3,1)\}(\mathrm{c})^{\prime} \mathrm{f}=$

- Watch Video Solution

Composite Functions Very Short Answer Type Questions

1. Let $f:\{1,3,4\} \rightarrow\{1,2,5\} \quad$ and
$g:\{1,2,5\} \rightarrow\{1,3\}$ be given by
$f=\{(1,2),(3,5),(4,1)\}$
and
$g=\{(1,3),(2,3),(5,1)\}$. Write down $g o f$.

D Watch Video Solution

2. If $f: R \vec{R}$ is defined by $f(x)=3 x+2$, define $f[f(x)]$.
3. If $f: R \div R$ be defined by
$f(x)=\left(3-x^{3}\right)^{1 / 3}$, then find $f o f(x)$

D Watch Video Solution

Composite Functions Short Answer Type Question I

1. Find $g \circ f$ if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

- Watch Video Solution

1. Find gof and fog, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that $g \circ f \neq f o g$.

- Watch Video Solution

2. Let $f, g: R \vec{R}$ be two functions defined as
$f(x)=|x|+x$ and $g(x)=|x|-x$, for all
$x R$. Then find fog and gof.

- Watch Video Solution

3. If the function $f: R \vec{R}$ be given by $f(x)=x^{2}+2 a n d g: R \vec{R}$ be given by $g(x)=\frac{x}{x-1}$. Find fogandgof.

D Watch Video Solution

4. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?
5. Let $f: R^{\rightarrow}$ be defined as $f(x)=10 x+7$.

Find the function $g: R \vec{R}$ such that $g o f=f o g=I_{R}$.

- Watch Video Solution

Binary Operations

1. Consider the binary operation* on the set $\{1$,
$2,3,4,5\}$ defined by a * $b=\min .\{a, b\}$. Write the
operation table of the operation *.

- Watch Video Solution

2. Let * be a binary operation on Q_{0} (set of non-zero rational numbers) defined by $a \cdot b=\frac{3 a b}{5}$ for all $a, b \in Q_{0}$. Show that * is commutative as well as associative. Also, find the identity element, if it exists.

D Watch Video Solution

1. Let $f: N \vec{R}$ be a function defined as $f(x)=4 x^{2}+12 x+15$. Show that $f: N \vec{S}$, where S is the range of f, is invertible. Also find the inverse of f
