©"doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA
 ENGLISH)

THREE DIMENSIONAL GEOMETRY

Topic 1 Very Short Answer Type Questions

1. Write the direction consines of y-axis.

- Watch Video Solution

2. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with the positive direction of x, y and z-aixs respectively, find its direction cosines.
3. Write the distance of a point $P(a, b, c)$ from x -axis.

- Watch Video Solution

4. If a line makes angles $900,1350,450$ with the x, y and z -axes respectively, find its direction cosines.

- Watch Video Solution

5. Find the angle between x-axis and the vector $\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

6. If a line has direction ratios $2,-1,-2$ then determine its direction cosines.

- Watch Video Solution

7. Write the direction-cosines of the line joining the points $(1,0,0)$ and (0 , 1, 1).

- Watch Video Solution

8. Find the direction cosines of a line, passing through origin and lying in the first octant, making equal angles with the three coordinate axes.

- Watch Video Solution

Topic 1 Short Answer Answer Type Questions I

1. Find the angle between the pair of lines

$$
\vec{r}=3 \hat{i}+5 \hat{j}-\hat{k}+\lambda(\hat{i}+\hat{j}+\hat{k}) \text { and } \vec{r}=7 \hat{i}+4 \hat{k}+\mu(2 \hat{i}+2 \hat{j}+2 \hat{k})
$$

- Watch Video Solution

2. Find the direction cosines of the line passing through the points $P(2,3,5)$ and $Q(-1,2,4)$

- Watch Video Solution

Topic 2 Short Answer Type Questions I

1. Find the angle between the following pairs of lines:

$$
\vec{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k}) \& \vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k}
$$

Note: Angle between two lines is the angle between $\overrightarrow{b_{1}}$ and $\overrightarrow{b_{2}}$

- Watch Video Solution

2. The Cartesian equations of a line are $\frac{3-x}{5}=\frac{y+4}{7}=\frac{2 z-6}{4}$. Write the vector equations of the line.

- Watch Video Solution

3. Find the direction cosines of the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$

Watch Video Solution

4. Write the vector equation of a line passing through the point $(1,-2,2)$
and parallel to the line whose equations are $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z+1}{-2}$

- Watch Video Solution

5. If a equations of a line are $\fallingdotseq(3-x) /(-3)=(y+2) /(-2)=(z+2) /(6)$, Find the direction cosines of a line parallel to the given line.

- Watch Video Solution

6. The equation of a line given by $\frac{4-x}{3}=\frac{y+3}{3}=\frac{z+2}{6}$. Write the direction cosines of a line parallel to this line.
7. the line passing through the points $(3,-2--5)$, and ($3,-2,6$)

- Watch Video Solution

2. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

3. Find the distance between the parallel lines
$\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+m(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+n(2 \hat{i}+$

- Watch Video Solution

4. Find the shortest distance between the lines L_{1} and L_{2} given by

$$
\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \text { and } \vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(4 \hat{i}-2 \hat{j}+2 \hat{k})
$$

- Watch Video Solution

5. Find the coordinates of the foot of perpendicular drawn from th point $A(1,8,4)$ to the line joining the points $B(0,-1,3) \operatorname{and} C(2-3,-1)$.

- Watch Video Solution

6. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \hat{i}-\hat{j}+\hat{k}=5$.

- Watch Video Solution

7. Find the direction cosines of the line $\frac{x+2}{2}=\frac{2 y-7}{6}=\frac{5-z}{6}$. Also, find the vector equation of the line through the point $A(-1,2,3)$ and parallel to the given line.
8. Find the shortest distance between two lines whose vector equations are
$\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}$

- Watch Video Solution

$\begin{aligned} & \text { 9. } \begin{array}{c}\text { Show } \\ \frac{x+1}{3}\end{array}=\frac{y+3}{5}=\frac{z+5}{7} \text { that }\end{aligned} \begin{gathered}\text { the } \\ \text { and }\end{gathered} \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$
intersect. Also find their point of intersection.

- Watch Video Solution

10. Show that the lines

$$
\frac{5-x}{-4}=\frac{y-7}{4}=\frac{z+3}{-5} \quad \text { and }
$$ $\frac{x-8}{7}=\frac{2 y-8}{2}=\frac{z-5}{3}$ are coplanar. Also find the lines $\frac{5-x}{-4}=\frac{y-7}{4}=\frac{z+3}{-5} \quad$ and $\quad \frac{x-8}{7}=\frac{2 y-8}{2}=\frac{z-5}{3} \quad$ are coplanar. Find the equation of the plane containing these lines.

11. $\begin{gathered}\text { Show that } \\ \vec{r}\end{gathered}=\vec{i}+\vec{j}-\vec{k}+\lambda(3 \vec{i}-\vec{j})$ and $\vec{r}=4 \vec{i}-\vec{k}+\mu(2 \vec{i}+3 \vec{k})$ intersect. Also find their point of intersection.

- Watch Video Solution

12. The equation of line passing through $(3,-1,2)$ and perpendicular to the lines

$$
\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k}) \text { and } \vec{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2
$$

is

- Watch Video Solution

13. Find the equation of the line passing through the point $(2,1,3)$ and perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} a n \frac{d x}{-3}=\frac{y}{2}=\frac{z}{5}$
14. Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

Watch Video Solution

15. Find the shortest distance between the lines whose vector equations are
$\vec{r}=(\hat{i}+\hat{j})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and $\vec{r}=(2 \hat{i}+\hat{j}-\hat{k})+\mu(3 \hat{i}-5 \hat{j}+2$

- Watch Video Solution

16. Find the equation of the perpendicular drawn from the point ($2,4,-1)$ to the line $x+5=\frac{1}{4}(y+3)=-\frac{1}{9}(z-6)$ and obtain the co-ordinates of the foot of this perpendicular
17. Using vectors show that the points
$A(-2,3,5), B(7,0,-1) C(-3,-2,-5)$ and $D(3,4,7)$ are such that $A B$ and $C D$ intersect at the point $P(1,2,3)$.

- Watch Video Solution

18. Show that the lines
$\vec{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{k})$ and $\vec{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{j}-\hat{k})$
do not intersect .

- Watch Video Solution

19. Find the Vector and Cartesian equations of the line passing through the point $(1,2,4)$ and perpendicular to the two lines $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
20. Find the shortest distance between the following pair of lines: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}, \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

21. 2 / Find the perpendicular distance of the point $(1,0,0)$ from the line $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ Also, and the coordinates of the foot of the perpendicular and the equation of the perpendicular.

- Watch Video Solution

22. Find the shortest distance between the following lines whose vector equations \quad are: $\quad \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \quad$ and $\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$.

- Watch Video Solution

23. Find the angle between the following pair of lines:
$\frac{-x+2}{-2}=\frac{y-1}{7}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{2 y-8}{4}=\frac{z-5}{4}$ and check whether the lines are parallel or perpendicular.

- Watch Video Solution

Topic 2 Long Answer Type Questions li

1. Derive the equation of a line in space passing through a given pont and parallel to a given vector in both vector and Cartesian form.

- Watch Video Solution

2. Derive the condition for the coplanarity of two lines in space both in vector and cartesian form.

- Watch Video Solution

3. Find the coordinates of the foot of the \perp and the length of the \perp drawn from the point $P(5,4,2)$ to the line. $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(2 \hat{i}+3 \hat{j}-\hat{k})$. Also find the image of P in this line.

- Watch Video Solution

4. Find the equation of line passing through points $A(0,6,-9)$ and $B(-3,-6,3)$. If D is the foot of perpendicular drawn from the point $C(7,4,-1)$ on the line $A B$, then find the coordinates of point D and equation of line $C D$.

- Watch Video Solution

5. Find the image of the point $(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$. Also, write the equation of the line joining the given point and its image and find length of the segment joining the given point and its image.
6. The points $A(4,5,10), B(2,3,4)$ and $C(1,2,-1)$ are three vertices of a parallelogram $A B C D$. Find the vector equations of the sides $A B$ and $B C$ and also find the coordinates of point D.

- Watch Video Solution

7. Write the vector equations of the following lines and hence determine the distance between them

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6} \text { and } \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}
$$

- Watch Video Solution

Topic 3 Very Short Answer Type Questions

1. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.
2. Find the equation of the plane which makes intercepts $1,-1$ and 2 on the x, y and z axes respectively.

- Watch Video Solution

3. Find the distance of the plane $2 x-2 y+4 z=6$ from the origin.

- Watch Video Solution

4. Find the equation of plane with intercept 4 on z axis and parallel to $X Y$ plane.

- Watch Video Solution

5. Write the distance of a point $P(a, b, c)$ from x -axis.
6. Write the vector equation of the plane, passing through the point (a,b,c) and parallel to the plane $\vec{r} \hat{i}+\hat{j}+\hat{k}=2$.

- Watch Video Solution

7. Find the length of the perpendicular drawn from the origin to the plane $2 \mathrm{x} 3 y+6 z+21=0$.

- Watch Video Solution

8. Write the distance between the parallel planes $2 x-y+3 x=4$ and $2 x-y$ $+3 z=18$.

- Watch Video Solution

9. Find the distance of the plane $3 x 4 y+12 z=3$ from the origin.

- Watch Video Solution

10. Write the intercept cut off by the plane $2 x+y-z=5$ on $x-a \xi s$.

- Watch Video Solution

11. Find the value of λ, such that the line $\frac{x-2}{6}=\frac{y-1}{\lambda}=\frac{z+5}{-4}$ is perpendicular to the plane $3 x-y-2 z=7$.

- Watch Video Solution

12. Find the distance of the point $(2,3,4)$ from the x-axis.

(Watch Video Solution

13. Write the distance of the following plane from the origin:
$2 x-y+2 z+1=0$

Topic 3 Short Answer Type Questions I

1. Find the distance of the point $(2,3,-5)$ from the plane $r .(i+2 j-2 k)=9$.

- Watch Video Solution

2. The equation of the plane passing through the line of intersection of the planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and perpendicular to the plane $4 x+5 y-3 z=8$ is

- Watch Video Solution

3. Find the equation of the plane through the intersection of the planes
$3 x y=2 z 4 \quad$ and
$x+y+z \quad 2=0$ and the point $(2,2,1)$.

(D) Watch Video Solution

Topic 3 Short Answer Type Questions li

1. Find the distance of a point $(2,5,-3)$ from the plane . $\vec{r}(6 \hat{i}-3 \hat{j}+2 \hat{k})$ $=4$

- Watch Video Solution

2. Find the equation of the plane passing through the intersection of the planes $3 x+2 y-z+1=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

- Watch Video Solution

3. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the
plane $\vec{r} \hat{i}-\hat{j}+\hat{k}=5$.

- Watch Video Solution

4. Find the image of the point having position vector $\hat{i}+2 \hat{j}+4 \hat{k}$ in the plane $\vec{r} 2 \hat{i}-\hat{j}+\hat{k}+3=0$.

- Watch Video Solution

5. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z-5=0$. Also find the angle between the line and the plane.

- Watch Video Solution

6. Find the equation of the plane which contains the line of intersection of the planes $\rightarrow r \hat{i}+2 \hat{j}+3 \hat{k}-4=0, \rightarrow r 2 \hat{i}+\hat{j}-\hat{k}+5=0$ and which is perpendicular to the plane
7. Find the equation of plane(s) passing through the intersection of planes $x+3 y+6=0$ and $3 x-y-4 z=0$ and whose perpendicular distance from origin is unity.

- Watch Video Solution

8. Find the equation of the plane through the pont $A(1,2,1)$ and perpendicular to the line joining the points $P(1,4,2)$ and $Q(2,3,5)$. Also find the distance of this plane from the line $\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-7}{-1}$

- Watch Video Solution

9. Find the distance of the point $P(6,5,9)$ from the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$.

- Watch Video Solution

Topic 3 Long Answer Type Questions Ii

1. Derive the equation of a plane in normal form both in the vector and Cartesian form .

- Watch Video Solution

2. Derive the condition for the coplanarity two lines in space both in the vector form and Cartesian form.

- Watch Video Solution

3. Find the vector and Cartesian forms of the equation of the plane passing through the point $(1,2,-4)$ and parallel to the lines

$$
\rightarrow r=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \text { and } \rightarrow r=(\hat{i}-3 \hat{j}+5 \hat{k})+
$$

Also find the distance of the point $(9,-8,-10)$ from the plane thus obtained.

- Watch Video Solution

4. Find the equation of the plane passing through the line of intersection of the planes $\rightarrow r \hat{i}+\hat{j}+\hat{k}=1$ and $\rightarrow r 2 \hat{i}+3 \hat{j}-\hat{k}+4=0$ and parallel to x-axis.

- Watch Video Solution

5. Find the distance between the point $(7,2,4)$ and the plane determined by the points $a(2,5,-3), B(-2,-3,5)$ and $C(5,3,-3)$.

- Watch Video Solution

6. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \hat{i}-\dot{\hat{j}}+\hat{k}=5$.
7. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

- Watch Video Solution

8. Find the distance of the point $(2,12,5)$ from the point of intersection of the lines $\vec{r}=(2 \hat{i}-4 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $r \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$

- Watch Video Solution

9. Find the equation of the plane that contains the point $A(1,-1,2)$ and is perpendicular to both the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$. Hence, find the distance of the point $P(-2,5,5)$ from the plane obtained above
10.

Show that
the
lines
$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5} \quad$ and \quad are coplanar. Also, find the equation of the plane containing these lines.

- Watch Video Solution

11. Find the coordinates of the point where the line through ($3,-4,-5$) and ($2-3,1$) crosses the plane passing through the points (2,2,1),(3,0,1) and (4,-1,0).

- Watch Video Solution

12. Find the equation of the plane through the line of intersection of the planes $\rightarrow r \hat{i}+3 \hat{j}+6=0$ and $\rightarrow r 3 \hat{i}-\hat{j}-4 \hat{k}=0$, which is at a unit distance from the origin.
13. Find the vector equation of the plane passing through three points with position vectors $\hat{i}+\hat{j}-2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$. Also find the coordinates of the point of intersection of this plane and the line $\vec{r}=3 \hat{i}-\hat{j}-\hat{k}+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})$.

- Watch Video Solution

14. Find the equation of the plane determined by the points $(A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$. Also find the distance of the point $P(6,5,9)$ from the plane.

- Watch Video Solution

15. Find the vector equation of the line passing through the point $(1,2,3)$ and parallel to the planes $\vec{r} \hat{i}-\hat{j}+2 \hat{k}=5$ and $\vec{r} 3 \hat{i}+\hat{j}+\hat{k}=6$.

- Watch Video Solution

16. Equation of the plane that contains the lines $r=(\hat{i}+\hat{j})+\lambda(\hat{i}+2 \hat{j}-\hat{k})$ and,$r=(\hat{i}+\hat{j})+\mu(-\hat{i}+\hat{j}-2 \hat{k})$ is

- Watch Video Solution

17. If the lines $\frac{x-1}{-3}=\frac{y-2}{-2 y}=\frac{z-3}{2}$ and $\frac{x-1}{k}=\frac{y-2}{1}-\frac{z-3}{5}$ are perpendicular, find the value of k and hence find the equation of plane containing these lines.

- Watch Video Solution

18. Find the vector and cartesian equations of a plane containing the two lines
$\vec{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\lambda(\hat{i}+2 \hat{j}+5 \hat{k})$ and $\vec{r}=(3 \hat{i}+3 \hat{j}+2 \hat{k})+\lambda(3 \hat{i}$
. Also show that the line $\vec{r}=(2 \hat{i}+5 \hat{j}+2 \hat{k})+p(3 \hat{i}-2 \hat{j}+5 \hat{k})$ lies in the plane.
19. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \hat{i}-\dot{\hat{j}}+\hat{k}=5$.

- Watch Video Solution

20. Find the equation of the plane passing through the line of intersection of the planes $2 x+y-Z=3,5 x-3 y+4 z+9=0$ and parallel to the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{5}$

- Watch Video Solution

21. Find the vector equation of the plane which contains the line of intersection of the plane $\vec{r} \hat{i}+2 \dot{\hat{j}}+3 \hat{k}-4=0 \quad$ and $\vec{r} 2 \hat{i}+\hat{j}-\hat{k}+5=0$ and which is perpendicular to the plane $\vec{r} 5 \hat{i}+3 \hat{j}-6 \hat{k}+8=0$.
22. Find the coordinates of the foot of the perpendicular and the perpendicular distance from the point $P(3,2,1)$ to the plane $2 x-y+z+1=0$.

- Watch Video Solution

23. Find the equation of the plane passing through the point $P(1,1,1)$ and containing the line $\vec{r}=(-3 \hat{i}+\hat{j}+5 \hat{k})+\lambda(3 \hat{i}-\hat{j}-5 \hat{k})$. Also, show that the plane contains the line $\vec{r}=(-\hat{i}+2 \hat{j}+5 \hat{k})+\mu(\hat{i}-2 \hat{j}-5 \hat{k})$.

- Watch Video Solution

