©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

ANNUAL EXAM QUESTION PAPER MARCH - 2016

Part A Answer All The Then Questions

1. Find $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$

- Watch Video Solution

2. Find the values of x for which
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
3. If $y=a^{\frac{1}{2} \log _{a} \cos x}$, find $\frac{d y}{d x}$

- Watch Video Solution

4. Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}-1 x\right),|x| \geq 1$.

- Watch Video Solution

5. If vector $\overline{A B}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overline{O B}=3 \hat{i}-4 \hat{j}+4 \hat{k}$, find the position vector $\overline{O A}$

- Watch Video Solution

6. Find the distance of the point $(-6,0,0)$ from the plane $2 x-3 y+6 z=2$.
7. If $\left[\begin{array}{cc}x+2 & y-3 \\ 0 & 4\end{array}\right]$ is a scalar matrix. Find x and y .

- Watch Video Solution

8. If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$ then find $P(A \cap B)$.

- Watch Video Solution

9. An operation $*$ on Z^{*} (the set of all non-negative integers) is defined as $a * b=a-b, \forall a, b \varepsilon Z^{+}$. Is $*$ binary operation on Z^{+}?

- Watch Video Solution

10. Define Feasible region in LPP.

- Watch Video Solution

11. Find $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$

(Watch Video Solution

12. Find the values of x for which
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$

- Watch Video Solution

13. If $y=a^{\frac{1}{2} \log _{a} \cos x}$, find $\frac{d y}{d x}$

- Watch Video Solution

14. Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}{ }^{-1} x\right),|x| \geq 1$.

- Watch Video Solution

15. If vector $\overline{A B}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overline{O B}=3 \hat{i}-4 \hat{j}+4 \hat{k}$, find the position vector $\overline{O A}$

- Watch Video Solution

16. Find the distance of the point $(-6,0,0)$ from the plane $2 x-3 y+6 z=2$.

- Watch Video Solution

17. If $\left[\begin{array}{cc}x+2 & y-3 \\ 0 & 4\end{array}\right]$ is a scalar matrix. Find x and y .

- Watch Video Solution

18. If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$ then find $P(A \cap B)$.
19. An operation * on Z^{*} (the set of all non-negative integers) is defined as $a * b=a-b, \forall a, b \varepsilon Z^{+}$. Is $*$ binary operation on Z^{+}?

- Watch Video Solution

20. Define Feasible region in LPP.

- Watch Video Solution

Part B Answer Any Ten Questions

1. Write the simplest form of $\tan ^{-1}\left[\frac{3 \cos x-4 \sin x}{4 \cos x+3 \sin x}\right]$, if $\frac{3}{4} \tan x>-1$

- Watch Video Solution

2. Using determinants show that points $A(a, b+c), B(b, c+a)$ and $C(c, a+b)$ are collinear.

Watch Video Solution

3. If functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=[x]$, (where $[x]$ is greatest function) find fog $\left(-\frac{1}{2}\right)$ and $\operatorname{gof}\left(-\frac{1}{2}\right)$

Watch Video Solution

4. Show that $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1$.

- Watch Video Solution

5. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$
6. If $x^{y}=a^{x}$, prove that $\frac{d y}{d x}=\frac{x \log _{e} a-y}{x \log _{e} x}$

- Watch Video Solution

7. Find $\int \frac{1}{\sin x \cos ^{3} x} d x$

- Watch Video Solution

8. Using differentials, find the approximate value of $(25)^{\frac{1}{3}}$.

(Watch Video Solution

9. Evaluate : $\int_{0}^{\pi}\left(\sin ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)\right) d x$

- Watch Video Solution

10. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular

- Watch Video Solution

11. Find the order and degree, if defined, of the differential equation.
$\frac{d^{4} y}{d x^{4}}+\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$

- Watch Video Solution

12. Find angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

13. The random variable X has probability distribution $P(X)$ of the following form.
$P(X)= \begin{cases}k & \text { if } X=0 \\ 2 k & \text { if } X=1 \\ 3 k & \text { if } X=2 \\ 0 & \text { otherwise }\end{cases}$
Determine value of K

- Watch Video Solution

14. Find the Cartesian equation of the line parallel to y - axis and passing through the point $(1,1,1)$.

- Watch Video Solution

15. Write the simplest form of $\tan ^{-1}\left[\frac{3 \cos x-4 \sin x}{4 \cos x+3 \sin x}\right]$, if $\frac{3}{4} \tan x>-1$

- Watch Video Solution

16. Using determinants show that points
$A(a, b+c), B(b, c+a)$ and $C(c, a+b)$ are collinear.

- Watch Video Solution

17. If functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=[x]$, (where $[x]$ is greatest function) find fog $\left(-\frac{1}{2}\right)$ and $\operatorname{gof}\left(-\frac{1}{2}\right)$

- Watch Video Solution

18. Show that $\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1$.

Watch Video Solution

19. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

- Watch Video Solution

20. If $x^{y}=a^{x}$, prove that $\frac{d y}{d x}=\frac{x \log _{e} a-y}{x \log _{e} x}$
21. Find $\int \frac{1}{\sin x \cos ^{3} x} d x$

(Watch Video Solution

22. Using differentials find the approximate value of $(25)^{1 / 3}$

- Watch Video Solution

23. Evaluate : $\int_{0}^{\pi}\left(\sin ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)\right) d x$

- Watch Video Solution

24. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular
25. Find the order and degree, if defined, of the differential equation.
$\frac{d^{4} y}{d x^{4}}+\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$

- Watch Video Solution

26. Find angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

27. The random variable X has probability distribution $P(X)$ of the following form.
$P(X)= \begin{cases}k & \text { if } X=0 \\ 2 k & \text { if } X=1 \\ 3 k & \text { if } X=2 \\ 0 & \text { otherwise }\end{cases}$
Determine value of K

- Watch Video Solution

28. Find the Cartesian equation of the line parallel to y - axis and passing through the point $(1,1,1)$.

- Watch Video Solution

Part C Answer Any Ten Questions

1. Show that $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{4}{3}=\frac{\pi}{2}$

- Watch Video Solution

2. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$

- Watch Video Solution

3. Show that the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ is given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

Watch Video Solution

4. Verify Mean Value Theorem if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval [1, 3].

- Watch Video Solution

5. If $x=a \cos ^{3} \theta$ and $\mathrm{y}=\mathrm{a} \sin ^{3} \theta$ then $\frac{d y}{d x}=$

- Watch Video Solution

6. Box-I contains 2 gold coins, while another Box-II contains 1 gold and 1
silver coin. A person chooses a box at random and takes out a coin. If the
coin is of gold, what is the probability that the other coin in the box is also of gold?

- Watch Video Solution

7. Find $\int \frac{x d x}{(x+1)(x+2)}$

(Watch Video Solution

8. Integrate $\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$ with respect to x.

- Watch Video Solution

9. Find two numbers whose product is 100 and whose sum is minimum.

- Watch Video Solution

10. Find the area lying between the curve $y^{2}=4 x$ and the line $y=2 x$
11. For any three vectors \vec{a}, \vec{b} and \vec{c}, prove that vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are coplanar.

- Watch Video Solution

12. Find the distance between the lines $\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{j}) \& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+3 \hat{j}$

- Watch Video Solution

13. Find the sine of the angle between the vectors $\hat{i}+2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

14. Find the equation of the curve passing through the point $(1,1)$, given that the slope of the tangent to the curve at any point is $\frac{2 y}{x}$

- Watch Video Solution

15. Show that $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{4}{3}=\frac{\pi}{2}$

- Watch Video Solution

16. Using elementary transformations, find the inverse of the matrices

$$
\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right]
$$

- Watch Video Solution

17. Show that the relation R in the set $A=\{x \in Z: 0 \leq x \leq 12\}$ is given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.
18. Verify Mean Value Theorem if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval [1, 3].

- Watch Video Solution

19. If $x=a \cos ^{3} \theta$ and $\mathrm{y}=\mathrm{a} \sin ^{3} \theta$ then $\frac{d y}{d x}=$

- Watch Video Solution

20. Box-I contains 2 gold coins, while another Box-II contains 1 gold and 1 silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?

- Watch Video Solution

21. Find $\int \frac{x d x}{(x+1)(x+2)}$

- Watch Video Solution

22. Integrate $\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$ with respect to x.

- Watch Video Solution

23. Find two numbers whose product is 100 and whose sum is minimum.

- Watch Video Solution

24. Find the area lying between the curve $y^{2}=4 x$ and the line $y=2 x$

- Watch Video Solution

25. For any three vectors \vec{a}, \vec{b} and \vec{c}, prove that vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}, \vec{c}-\vec{a}$ are coplanar.

- Watch Video Solution

26. Find the distance between the lines
$\vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{j}) \& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+3 \hat{j}$

- Watch Video Solution

27. Find the sine of the angle between the vectors $\hat{i}+2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

28. Find the equation of the curve passing through the point $(1,1)$, given that the slope of the tangent to the curve at any point is $\frac{x}{y}$

Part D Answer Any Six Questions

1. If $A=\left[\begin{array}{l}-2 \\ 4 \\ 5\end{array}\right]$ and $B=[1,3-6]$, verify that $(A B)^{1}=B^{1} A^{1}$

- Watch Video Solution

2. Solve the system of linear equations by matrix method : $2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 x=-3$.

- Watch Video Solution

3. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ where S is the range of function f , is invertible. Also find the inverse of f .
4. IF length of x reactangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width is increasing at the rate of $2 \mathrm{~cm} /$ minute, when $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$. Find the rate of change of
I. The perimeter
II. The area of the reactange

- Watch Video Solution

5. IF length of x reactangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width is increasing at the rate of $2 \mathrm{~cm} /$ minute, when $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$. Find the rate of change of
I. The perimeter
II. The area of the reactange

D Watch Video Solution

6. If $y=\left(\sin ^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$

- Watch Video Solution

7. Find the integral of $\frac{1}{x^{2}+a^{2}}$ w.r.t.x and hence evaluate $\int \frac{1}{x^{2}+2 x+3}$ dx .

- Watch Video Solution

8. Using integration find the area of the region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).

- Watch Video Solution

9. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector and Cartesian form.
10. Choose the correct answer:

The probability that a student is not a swimmer is $\frac{1}{5}$ out of five students, four are swimmers is

- Watch Video Solution

11. The probability that a student is not a swimmer is $\frac{1}{5}$. Find the probability that out of 5 students.
at most three are swimmers.

- Watch Video Solution

12. Solve the differential equation $y d x+\left(x-y e^{y}\right) d y=0$

- Watch Video Solution

13. If $A=\left[\begin{array}{l}-2 \\ 4 \\ 5\end{array}\right]$ and $B=[1,3-6]$, verify that $(A B)^{1}=B^{1} A^{1}$

- Watch Video Solution

14. Solve the system of linear equations by matrix method : $2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 x=-3$.

- Watch Video Solution

15. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ where S is the range of function f , is invertible. Also find the inverse of f .

- Watch Video Solution

16. IF length of x reactangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width is increasing at the rate of $2 \mathrm{~cm} /$ minute, when $x=10 \mathrm{~cm}$ and
$\mathrm{y}=6 \mathrm{~cm}$. Find the rate of change of
I. The perimeter
II. The area of the reactange

- Watch Video Solution

17. IF length of x reactangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width is increasing at the rate of $2 \mathrm{~cm} /$ minute, when $x=10 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$. Find the rate of change of
I. The perimeter
II. The area of the reactange

- Watch Video Solution

18. If $y=\left(\sin ^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$

D Watch Video Solution

19. Find the integral of $\frac{1}{x^{2}+a^{2}}$ w.r.t. x and hence evaluate $\int \frac{1}{x^{2}+2 x+3}$ dx.

Watch Video Solution

20. Using integration find the area of the region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).

- Watch Video Solution

21. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector and Cartesian form.

- Watch Video Solution

22. The probability that a student is not a swimmer is $\frac{1}{5}$. Find the probability that out of 5 students.
at most three are swimmers.

- Watch Video Solution

23. The probability that a student is not a swimmer is $\frac{1}{5}$. Find the probability that out of 5 students. at most three are swimmers.

- Watch Video Solution

24. Solve the differential equation $y d x+\left(x-y e^{y}\right) d y=0$

- Watch Video Solution

Part E Answer Any One Questions

1. Minimise and Maximise $z=5 x+10 y$
subject to constraints :
$x+2 y \leq 120$,
$x+y \geq 60$,
$x-2 y \geq 0$,
$x>0$ and $y \geq 0$
by graphical method.

Watch Video Solution

2. if the function $f(x)=\left\{\frac{1-\cos 2 x}{1-\cos x}, x \neq 0\right.$
$i s k f$ or $x=0$
is continuous at $x=0$ then the the value of k is

Watch Video Solution

3. Evaluate $\int_{0}^{2 \pi} \cos ^{5} x d x$
4. Prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Watch Video Solution

5. Minimise and Maximise $z=5 x+10 y$
subject to constraints :
$x+2 y \leq 120$,
$x+y \geq 60$,
$x-2 y \geq 0$,
$x>0$ and $y \geq 0$
by graphical method.

- Watch Video Solution

6. if the function $f(x)=\left\{\frac{1-\cos 2 x}{1-\cos x}, x \neq 0\right.$
iskf or $x=0$
is continuous at $x=0$ then the the value of k is

Watch Video Solution

7. Evaluate $\int_{0}^{2 \pi} \cos ^{5} x d x$

- Watch Video Solution

8. Prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$
