©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

ANNUAL EXAM QUESTION PAPER MARCH -2014

Part A

1. A relation R on $\mathrm{A}=\{1,2,3\}$ defined by $R=\{(1,1),(1,2),(3,3)\}$ is not symmetric. Why?

- Watch Video Solution

2. Write the domain of $f(x)=\cos ^{-1} x$.
3. define a scalar matrix.

- Watch Video Solution

4. IF $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, find $|2 \mathrm{~A}|$.

(D) Watch Video Solution

5. If $y=\log (\sin x)$, find $\frac{d y}{d x}$.

- Watch Video Solution

6. Evaluate: $\int(\sin x+\cos x) d x$.

- Watch Video Solution

7. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
8. Find the equation of plane with intercept 4 on z axis and parallel to $X Y$ plane.

- Watch Video Solution

9. Define Feasible region in LPP.

- Watch Video Solution

10. IF $P(A)=\frac{4}{5} \quad P(B / A)=\frac{2}{4}$ find $P(A \cap B)$

- Watch Video Solution

Part B

1. Verify whether the operation * defined on Q by a $a \cdot b=a b / 2$ is associative or not.

- Watch Video Solution

2. Write in the simplest form of $\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}, 0<x<\pi$

- Watch Video Solution

3. $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to

- Watch Video Solution

4. Find the equation of a line passing through (3,1) and $(9,3)$ using determinants.
5. $y+\sin y=\cos x$ find $\frac{d y}{d x}$

- Watch Video Solution

6. If $y=x^{x}$, find $\frac{d y}{d x}$

- Watch Video Solution

7. Approximate change in the volume V of a cube of side x metres caused by increasing the side be 3% is

D Watch Video Solution

8. Evaluate $\int \frac{\sin ^{2} x}{1+\cos x} d x$

- Watch Video Solution

9. Evaluate $\int_{2}^{3} \frac{1}{x} d x$

- Watch Video Solution

10. Find the order and degree of the differential equation
$x y \frac{d^{2} y}{d x^{2}}+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$

- Watch Video Solution

11. If \vec{a} is a unit vector such that $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, find $|\mathrm{x}|$.

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vecor $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$
13. Find the angle between the pair of lines

$$
\vec{r}=3 \hat{i}+5 \hat{j}-\hat{k}+\lambda(\hat{i}+\hat{j}+\hat{k}) \text { and } \vec{r}=7 \hat{i}+4 \hat{k}+\mu(2 \hat{i}+2 \hat{j}+2 \hat{k})
$$

- Watch Video Solution

14. Find the probability distribution of number of heads in two tosses of a coin .

- Watch Video Solution

Part C

1. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$ Show that gof \neq fog

- Watch Video Solution

2. Prove that $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right) \quad x \in\left[\frac{1}{2}, 1\right]$

- Watch Video Solution

3. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

(Watch Video Solution

4. The normal to the curve :
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any point ' θ ' is such that:

(Watch Video Solution

5. Verify Rolle's theorem for the function $y=x^{2}+2 x \in[-2,2]$.
6. Find the interval in which the function f given by $f(x)=x^{2}-4 x+6$ is strictly decreasing.

- Watch Video Solution

7. Find $\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x$.

- Watch Video Solution

8. Evaluate $\int \tan ^{-1} x d x$.

- Watch Video Solution

9. Find the area of the region bounded by the curve $y=x^{2}$ and line $\mathrm{y}=4$
10. Form the differential equation of family of curves $y=m x$ where m is arbitrary constant.

- Watch Video Solution

11. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

Watch Video Solution

12. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$, then th such that $\vec{a}+t \vec{b}$ is at right angles to \vec{c}, will be equal to :

- Watch Video Solution

13. Find the distance of a point $(2,5,-3)$ from the plane. $\vec{r}(6 \hat{i}-3 \hat{j}+2 \hat{k})$ $=4$
14. A die is tossed thrice. Find the probability of getting an odd number at least once.

- Watch Video Solution

Part D

1. Prove that the function $f: N \rightarrow Y$ defined by $f(x)=4 x+3$, where $Y=[y: y=4 x+3, x \in N]$ is invertible. Also write inverse of $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

2. If $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right], C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$ calculate AC , $B C$ and $(A+B) C$. Also verify that $(A+B) C=A C+B C$
3. Solve the following system of linear equation by matrix method.
$x-y+2 z=1$
$2 y-3 z=1$
and $3 x-2 y+4 z=2$.

- Watch Video Solution

4. If $y=3 e^{2 x}+2 e^{3 x}$ prove that $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$

- Watch Video Solution

5. A ladder 24 ft long leans against a vertical wall. The lower end is moving away at rate of $3 \mathrm{ft} / \mathrm{sec}$ find the rate at which the top of the ladder is moving downwards. If its foot is 8 ft from the wall.

- Watch Video Solution

6. Find $\int \frac{d x}{x^{2}-a^{2}}$ and hence Evaluate $\int \frac{d x}{3 x^{2}+13 x-10}$

Given $\int \frac{d x}{x^{2}-a^{2}}$ (Multiply and divide by 2a)

- Watch Video Solution

7. Area of the region bounded by two parabolas $y=x^{2}$ and $x=y^{2}$ is

- Watch Video Solution

8. Find the general solution of $e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$

- Watch Video Solution

9. Derive the equation of a plane in normal form both in the vector and Cartesian form .
10. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $1 / / 100$. what is the probability that he will win a prize
atleast once

- Watch Video Solution

Part E

1. a) Solve the following linear programming problem graphically :

Minimize and maximize $Z=x+2 y$, subject to constraints
$x+2 y \geq 100,2 x-y \leq 0,2 x+y \leq 200, x, y \geq 0$.

- Watch Video Solution

2. Prove that $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & b+a\end{array}\right|=4 a b c$
3. Evaulate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$.

- Watch Video Solution

4. $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x} \text { if } & x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2}\end{array}\right.$ at $x=\frac{\pi}{2}, \mathrm{f}(\mathrm{x})$ is containuous, find the value of k.
