© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER JULY -2018

1. The relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2)$,
$(3,3),(1,2),(2,3)\}$ is not transitive. Why?
2. Write the range of $y=\cos ^{-1} x$

D Watch Video Solution

3. If a matrix has 5 elements, what are the possible orders it can have?

- Watch Video Solution

4. Find the value of x for which
$\left[\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right]=\left[\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right]$

D Watch Video Solution

5. If $\mathrm{y}=\sin (\mathrm{ax}+\mathrm{b})$ find $\frac{d y}{d x}$

- Watch Video Solution

6. Find $\int \sec x(\sec x+\tan x) d x$

- Watch Video Solution

7. Define negative of a vector.

- Watch Video Solution

8. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

(D) Watch Video Solution

9. Define optimal solution in linear programming problem.

D Watch Video Solution

10. Find $P(A \mid B)$ if $\mathrm{P}(\mathrm{B})=0.5$ and $P(A \cap B)=0.32$
11. Define binary operation on a set. Verify whether the operation * defined on Q set of rational number by $a \cdot b=a b+1 \forall a, b \in Q$ is commutative or assosiative.

- Watch Video Solution

2. Write $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pi$ in the simplest form.

- Watch Video Solution

3. Find the value of $\cos ^{-1}\left(\cos \left(\frac{13 \pi}{6}\right)\right)$

- Watch Video Solution

4. If the area of the triangle with vertices $(2,-6),(5,4)$ and
$(k, 4)$ is 35 square units, find values of k using determinants.

- Watch Video Solution

5. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

- Watch Video Solution

6. Differentiate $(\sin x)^{\cos x}$ with respect to x .
7. If the radius of a sphere is measured as 7 m with an error of 0.02 m , then find the approximate error in calculating its volume

- Watch Video Solution

8. Evaluate $\int \cos 6 x \sqrt{1+\sin 6 x} d x$

- Watch Video Solution

9. Evaluate $\int \frac{x e^{x}}{(1+x)^{2}} d x$
10. Find the order and degree of the differential equation, $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$

- Watch Video Solution

11. Find the projection of vec a

- View Text Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$
13. Find the angle between the line
$\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 \mathrm{x}+2 \mathrm{y}-11 \mathrm{z}=3$

- Watch Video Solution

14. The random variable X has probability distribution
$P(X)$ of the following form.
$P(X)= \begin{cases}k & \text { if } X=0 \\ 2 k & \text { if } X=1 \\ 3 k & \text { if } X=2 \\ 0 & \text { otherwise }\end{cases}$
Determine value of K
15. The random variable X has probability distribution $\mathrm{P}(\mathrm{X})$ of the following form.
$P(X)= \begin{cases}k & \text { if } X=0 \\ 2 k & \text { if } X=1 \\ 3 k & \text { if } X=2 \\ 0 & \text { otherwise }\end{cases}$
Find $P(X<2)$

D Watch Video Solution

Part C

1. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$.Show that gof $\neq f o g$
2. Solve : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

3. By using elementary operations, Find the inverse of the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

- Watch Video Solution

4. If $x=a(\theta-\sin \theta)$ and $y=a(1+\cos \theta)$ then prove
that $\frac{d y}{d x}=-\cot \left(\frac{\theta}{2}\right)$

- Watch Video Solution

5. Verify Mean value theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b]$ where $a=1$ and $b=4$

D Watch Video Solution

6. Find two positive number whose sum is 15 and the sum of whose squares is minimum.

- Watch Video Solution

7. Evaluate : $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
8. Integrate $\frac{d x}{x\left(x^{2}+1\right)}$ with respect to x .

D Watch Video Solution

9. Find the area of the parabola $y^{2}=4 a x$ bounded by its latus rectum.

D Watch Video Solution

10. Form the differential equation representing the given
family of curves $y=a \sin (x+b)$ where a, b are arbitrary constants.
11. Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b} \quad$ and $\quad \vec{a}-\vec{b}$ when
$\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

D Watch Video Solution

12. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

D Watch Video Solution

13. Find the equation of the plane through the intersection of the planes
$3 x-y+2 z-4=0, x+y+z-2=0$ and the point

- Watch Video Solution

14. A man is know to speak truth 4 out of 5 times. He tossed a coin and reports that it is head. Find the probability that it is actually head.

- Watch Video Solution

Part D

1. Let R_{+}be the set of all non-negative real numbers.

Show that the function $f: R_{+} \rightarrow[4, \infty]$ defind by $f(x)=x^{2}+4$ Is invertible and write the inverse of f .
2. If $A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right]$ and $B=[-1,2,1]$ verify that $(A B)^{1}=B^{1} A^{1}$

- Watch Video Solution

3. Solve the following system of linear equations by matrix method
$4 x+3 y+2 z=60,2 x+4 y+6 z=90,6 x+2 y+3 z=70$

- Watch Video Solution

4. If $y=A e^{m x}+B e^{n x}$ prove that
$\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+(m n) y=0$

D Watch Video Solution

5. A particle moves along the curve $6 y=x^{3}+2$ find the points on the curve at which the y-coorinate is changing 8 times as fast as the x-coordinate.

- Watch Video Solution

6. Find the integral of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ with respect to x and hence find $\int \frac{1}{\sqrt{7-6 x-x^{2}} d x}$
7. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by the method of integration.

- Watch Video Solution

8. Find the general solution of the differential equation
$x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$

- Watch Video Solution

9. Derive the equation of a line space passing through two given points both in vector and cartesian form.

- Watch Video Solution

10. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $1 / / 100$. what is the probability that he will win a prize atleast once

- Watch Video Solution

11. A person buys a lottery ticket in 50 lotteries in each of which his chance of winning a prize is $1 / / 100$. what is the probability that he will win a prize exactly once

Part E

1.

Prove
that
$\int_{-a}^{a} f(x) d x= \begin{cases}2 \int_{0}^{a} f(x) d x & \text { if } \mathrm{f}(\mathrm{x}) \text { is even function } \\ 0 & \text { if } \mathrm{f}(\mathrm{x}) \text { is odd function }\end{cases}$
and hence evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$

- Watch Video Solution

2. Find the value of k if
$f(x)=\left\{\begin{array}{ll}k x^{2} & \text { if } x \leq 2 \\ 3 & \text { if } x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$

3. Solve the following problem graphically:

Maximum and minimize

$Z=10500 x+9000 y$

Subject to the constraints
$x+y \leq 50$
$2 x+y \leq 80$
$x \geq 0, y \geq 0$

- Watch Video Solution

4. Prove that
$\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$
\square
