©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER MARCH - 2020

Part A

1. Let * be the binary operation on N given by $\mathrm{a} * \mathrm{~b}=$ L.C.M. of a and b . Find 5 * 7.

- Watch Video Solution

2. Write the range of the function $y=\sec ^{-1} x$.

- Watch Video Solution

3. If a matrix has 5 elements, what are the possible orders it can have?

- Watch Video Solution

4. Find the values of x for which

$$
\left|\begin{array}{cc}
x & 2 \\
18 & x
\end{array}\right|=\left|\begin{array}{cc}
6 & 2 \\
18 & 6
\end{array}\right|
$$

(D) Watch Video Solution

5. If $y=\tan (\sqrt{x})$, find $\frac{d y}{d x}$.

(D) Watch Video Solution

6. Find $\int\left(2 x^{2}+e^{x}\right) d x$.

(D) Watch Video Solution

7. Define negative of a vector.

D Watch Video Solution

8. If a line makes angles $90^{\circ}, 135^{\circ}$ and 45° with the X, Y and Z axis respectively, find its direction cosines.

(D) Watch Video Solution

9. Define optimal solution in Linear Programming problem.

D Watch Video Solution

10. If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$ find $P(A \cap B)$.

If A and B are independent events

- Watch Video Solution

Part B

1. If $f: R \rightarrow R$ and $g: R \rightarrow R \quad$ are given by
$f(x)=\cos x$ and $g(x)=3 x^{2}$. Find gof and fog.

- Watch Video Solution

2. Prove that $\cot ^{-1}(-x)=\pi-\cot ^{-1} x, \forall x \in R$.

D Watch Video Solution

3. Find the value of $\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$.

D Watch Video Solution

4. Find the area of the triangle whose vertices are $(-2,-3),(3,2)$ and ($-1,-8$) using determinant method.

- Watch Video Solution

5. Find $\frac{d y}{d x}$, if $\sin ^{2} x+\cos ^{2} y=1$.
6. If $y=x^{x}$, find $\frac{d y}{d x}$

- Watch Video Solution

7. Find the interval in which the function f given by $f(x)=x^{2}-4 x+6$ is strictly decreasing.

D Watch Video Solution
8. Find $\int \cos x \log (\sin x) d x$.

D Watch Video Solution

9. Find $\int x \sec ^{2} x d x$.

(D) Watch Video Solution

10. Find the order and degree (if defined) of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$

D Watch Video Solution

11. Find the projection of the vector
$\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector
$\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$.

D Watch Video Solution
12. Find the area of the parallelogram whose adjacent sides are determined by the vectors
$\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \vec{i}-7 \hat{j}+\hat{k}$.

D Watch Video Solution

13. Find the equation of plane with intercept 2,3 and 4 on x, y and z axis respectively.

- Watch Video Solution

14. A random variable X has the following probability distribution:

find the value of k

- Watch Video Solution

Part C

1. Show that the relation R defined in the set A of all triangles as
$R=\left\{\begin{array}{ll}T_{1} & T_{2}\end{array}\right): T_{1}$ is similar to $\left.T_{2}\right\}$ is equivalence relation.

Consider three right angle triangles T_{1} with sides $3,4,5, T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangles among T_{1}, T_{2} and T_{3} are related?

D Watch Video Solution

2. Show that $2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\tan ^{-1}\left(\frac{31}{17}\right)$

D Watch Video Solution

3. If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, show that
$F(x) F(y)=F(x+y)$.

- Watch Video Solution

4. If $x=2 a t^{2}, y=a t^{4}$ then find $\frac{d y}{d x}$.
5. Verify Mean value theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b]$ where $a=1$ and $b=4$

- Watch Video Solution

6. Use differential to approximate $\sqrt{36.6}$.

- Watch Video Solution

7. Find $\int \frac{(x-3)}{(x-1)^{3}} d x$.

- Watch Video Solution

8. Evaluate : $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$.
9. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

- Watch Video Solution

10. Find the equation of a curve passing through the point (-2 ,
3), given that the slopw of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$.

- Watch Video Solution

11. Find a unit vector perpendicular to each of the vectors

$$
\begin{aligned}
& \vec{a}+\vec{b} \quad \text { and } \quad \vec{a}-\vec{b} \\
& \vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}
\end{aligned}
$$

(D) Watch Video Solution

12. Find x such that the four points $A(3,2,1), B(4, x, 5), C(4,2,-2)$ and $D(6,5,-1)$ are coplanar

- Watch Video Solution

13. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0, x+y+z-2=0$ and the point $(2,2,1)$

- Watch Video Solution

14. A man is known to speak truth 3 out of 4 times. He throws a dice and reports that it is a six. Find the probability that it is
actually a six.

- Watch Video Solution

Part D

1. If $f: R \rightarrow R$ defined by $f(x)=(4 x+3)$, show that f is invertible and find f^{-1}.

- Watch Video Solution

2.

$A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$
then compute $(A+B)$ and $(B-C)$. Also verify that $A+(B-C)=(A$
$+B)-C$.

Watch Video Solution

3. Solve system of linear equations, using matrix method
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$

- Watch Video Solution

4. If $y=\left(\tan ^{-1} x\right)^{2}$, show that
$\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$.

- Watch Video Solution

5. Sand is pouting from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one - sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

6. Find the integral of $\frac{1}{x^{2}+a^{2}}$ w.r.t x and hence evaluate $\int \frac{1}{x^{2}+2 x+2} d x$.

D Watch Video Solution

7. Using the method of integration, find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line

$$
\frac{x}{3}+\frac{y}{2}=1 .
$$

(D) Watch Video Solution

8. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2} \log x$.

D Watch Video Solution

9. Derive the equation of a line in space passing through a given point and parallel to a given vector in both Vector an Cartesian
form.

- Watch Video Solution

10. A person buys a lottery ticket in 50 lotteries, in ech of which his chance of winning a prize is $1 / 100$. What is the probability that he will a prize (a) exactly once (b) atleast once?

(D) Watch Video Solution

1. Evaluate $\int_{-1}^{1} \sin ^{5} x \cos ^{4} x d x$.

- Watch Video Solution

2. Show that $\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$

D Watch Video Solution

3. (a)Maximise $z=4 x+y$
subject to constraints :
$x+y \leq 50$
$3 x+y \leq 90$
$x \geq 0$
$y \geq 0$
by graphical method.
(b) Find the value of K , if $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}K x+1 & \text { if } x \leq \pi \\ \cos x & \text { if } x>\pi\end{array}\right.$ is continuous at $\mathrm{x}=\pi$.

D Watch Video Solution

4. Find the value of k.

If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}k x+1, \text { if } x \leq \pi \\ \cos x,\end{array}\right.$ if $x>\pi \mathrm{i}$ is continuous at $x=\pi$.

- View Text Solution

