©゙doubtnut

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

II PUC MATHEMATICS ANNUAL EXAM QUESTION PEPER MARCH -17

1. Let * be a binary operation on N given bya*b
$=\mathrm{LCM}$ of a and b . Find $20 * 16$.

Watch Video Solution

2. Find the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$.

- Watch Video Solution

3. Construct a 2×2 matrix $A=\left[a_{i j}\right]$, whose
elements are given by $a_{i j}=\frac{i}{j}$

- Watch Video Solution

4. If A is a square matrix with $|A|=6$, find the value of $\left|A A^{\prime}\right|$.

- Watch Video Solution

5. If $\mathrm{y}=\cos \sqrt{x}$, find $\frac{d y}{d x}$

- Watch Video Solution

6. Find : $\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$.
7. Define collinear vectors.

- Watch Video Solution

8. Find the direction cosines of a line, passing through origin and lying in the first octant, making equal angles with the three coordinate axes.

- Watch Video Solution

9. Define Feasible region in LPP.

- Watch Video Solution

10. If A and B are mutually exclusive events, given
that $P(A)=\frac{3}{5}, P(B)=\frac{1}{5}$, then $\mathrm{P}(\mathrm{A}$ or B$)$ is

- Watch Video Solution

Part B

1. If $\mathrm{f}: R \rightarrow R$ defined by $f(x)=1+x^{2}$, then show that f is neither 1-1 nor onto.
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x, \frac{1}{\sqrt{2}} \leq x \leq 1$.

- Watch Video Solution

3. Solve for $\mathrm{x} \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x, x>0$

- Watch Video Solution

4. Find values of k if area of triangle is 4 sq. units and vertices are

$$
(i)(k, 0),(4,0),(0,2) \quad(-2,0),(0,4),(0, k)
$$

5. If $a x+b y^{2}=\cos y$, find $\frac{d y}{d x}$

- Watch Video Solution

6. Verify Rolles theorem for the function:

$$
f(x)=x^{2}+2 x-8, x \in[-4,2]
$$

- Watch Video Solution

7. Approximate change in the volume V of a cube of
side x metres caused by increasing the side be 3% is
8. Intergrate $\frac{\tan ^{4} \sqrt{x} \sec ^{2} \sqrt{x}}{\sqrt{x}}$ with respect to x.

- Watch Video Solution

9. Choose the correct answer
$\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}$ equals

- Watch Video Solution

10. Find the order and degree of the differential equation $\left(\frac{d y}{d x}\right)^{2}+\frac{d y}{d x}-\sin ^{2} y=0$.

- Watch Video Solution

11. Find the positioon vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively in the ratio $2: 1$ Internally
12. Find the area of the parallelogram whose adjcent sides are determined by the vector.

D View Text Solution

13. Find the vector and cartesian equation of the line that passes through the points $\left(\begin{array}{lll}3 & -2 & -5\end{array}\right)$ and $\left(\begin{array}{lll}3 & -2 & 6\end{array}\right)$

- Watch Video Solution

14. Find the probability distribution of number of heads in two tosses of a coin .

- Watch Video Solution

Part C

1. Show that the relation R in R (Set of real numbers) is defined as $R=\{(a, b): a \leq b\}$ is reflexive and transitive but not symmetric.
2. Write the function $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x}\right) x \neq 0$, in the simplest form.

- Watch Video Solution

3. If A and B are symmetric matrices of the same order, then $(A B-B A)$ is a :

- Watch Video Solution

4. Find $\frac{d y}{d x}$, if $y=(\log x)^{\cos x}$.
5. Differentiate $\sin ^{2} x$ w.r.t $e^{\cos x}$

- Watch Video Solution

6. Find two positive numbers x and y such that $x+y$
$=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

7. evaluate : $\int \frac{x}{(x+1)(x+2)} d x$.
8. Evaluate : $\int e^{x} \sin x d x$.

- Watch Video Solution

9. Find area of the region bounded by the curve $y^{2}=4 x, y$ - aixs and the line $y=3$.

- Watch Video Solution

10. Form the differential equation of the family of
circles having centre on y-axis and radius 3 units.
11. Find x such that the four points $A(3,2,1), B(4, x, 5)$,
$C(4,2,-2)$ and $D(6,5,-1)$ are coplanar

D Watch Video Solution

12. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity $\quad \mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}, \quad$ if

$$
|\vec{a}|=3,|\vec{b}|=4 \text { and }|\vec{c}|=2
$$

13. Find the shortest distance between the following pair of lines :

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}, \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}
$$

- Watch Video Solution

14. Given that the two numbers appearing on throwing two dice are different. Find the probabitlity of the event the sum of numbers on the dice is 4 .

1. Let $f: N \rightarrow R$ be defined

$f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$
where S is the range of function f, is invertible. Also
find the inverse of f.

- Watch Video Solution

2.

$A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right], \operatorname{Provet} \widehat{A}^{3}-6 A^{2}+7 A+21=0$
3. Solve the following system of linear equation by matrix method.
$x-y+2 z=1$
$2 y-3 z=1$
and $3 x-2 y+4 z=2$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 4. If } y=\left(\tan ^{-1} x\right)^{2} \quad \text { show that } \\
& \left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2
\end{aligned}
$$

5. The length x of a rectangle is decreasing at the rate of $5 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $4 \mathrm{~cm} /$ minute. When $x=8 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter, and (b) the area of the rectangle.

- Watch Video Solution

6. Find the integral of $\sqrt{x^{2}-a^{2}}$ w.r.t xand hence
evaluate $\int \sqrt{x^{2}-8 x+7} d x$

- Watch Video Solution

7. Using integration find the area of the triangular region whose sides have the equations $Y=2 x+1, y=3 x+1$ and $x=4$.

- Watch Video Solution

8. solve the differential equation
$\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$.

- Watch Video Solution

9. Derive the equation of a plane perpendicular to a given vector and passing through a given point in
both vector and Cartesian form.

- Watch Video Solution

10. The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05 . Find the probability that out of 5 such bulbs
(i) None (ii) Not more than one
(iii) more than one (iv) at least one will fuse after

150 days of use?

- Watch Video Solution

11.

Show
that
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$

D Watch Video Solution

12. Minimize and Maximize $z=600 x+400 y$

Subject to the constraints :
$x+2 y \leq 12$
$2 x+y \leq 12$
$4 x+5 y \geq 21$ and $x \geq 0, y \geq 0$ graphical method.

