

India's Number 1 Education App

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

K-CET-MATHEMATICS -2019

Mcqs

1. If
$$lpha$$
 and eta are the roots of $x^2+x+1=0$, then $lpha^{16}+eta^{16}=$

A.
$$\frac{-1-i\sqrt{3}}{2}$$

B. 1

C. -1

D.
$$\frac{-1+i\sqrt{3}}{2}$$

Answer: C

watch video Solution

2. The number of 4 digit numbers without repetition that can be formed using the digit 1,2,3,4,5,6,7 in which each number has two odd digits and two digits is

- A. 1)450
- B. 2)432
- C. 3)454
- D. 4)436

Answer: B

Watch Video Solution

3. The number of terms in the expansion of $\left(x^2+y^2\right)^{25}-\left(x^2-y^2\right)^{25}$ after simplification is

A. 26

 $C.3^{12}$

D. 3^{9}

Answer: A

5. A line cuts of equal intercepts on the coordinate axes. Find the angle made by the line with the positive x - axis.

- A. 120°
- B. 45°
- C. 135°
- D. 90°

Answer: C

- **6.** The order of the differential equation $y=C_1e^{c_2+x}+C_3e^{c_4+x}$ is
 - A. 1)3

 - B. 2)1
 - C. 3)4
 - D. 4)2

Answer: B

Watch Video Solution

- **7.** If $\left|\overrightarrow{a}\right|=16,\left|\overrightarrow{b}\right|=4, \quad ext{then, } \sqrt{\left|\overrightarrow{a} imes\overrightarrow{b}\right|^2+\left|\overrightarrow{a}.\overrightarrow{b}\right|^2}=$
 - A. 16
 - B. 4
 - C. 64
 - D. 8

Answer: C

Watch Video Solution

8. If the angle between \overrightarrow{a} and \overrightarrow{b} is $2\pi/3$ and the projection of \overrightarrow{a} in the direction \overrightarrow{b} is -2, the $\left|\overrightarrow{a}\right|=$

- A. 1)2
- B. 2)4
- C. 3)1
- D. 4)3

Answer: B

Watch Video Solution

9. A unit vector perpendicular to the plane containing the vectors $\hat{i} + 2\hat{j} + \hat{k}$ and $-2\hat{i} + \hat{j} + 3\hat{k}$ is

A. 1)
$$\dfrac{-\,\hat{i}\,+\hat{j}+\hat{k}}{\sqrt{3}}$$

$$\frac{J+h}{\sqrt{3}}$$

B. 2)
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$
C. 3)
$$\frac{-\hat{i} - \hat{j} - \hat{k}}{\sqrt{3}}$$

$$\mathsf{D.4})\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$$

Answer: A

$$\textbf{10.} \left[\overrightarrow{a} + 2 \overrightarrow{b} - \overrightarrow{c}, \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c} \right] =$$

A. 1)2
$$\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right]$$

B. 2)0

C. 3)3
$$\left[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right]$$

D. 4) $\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right]$

11. If $\sqrt[3]{y}\sqrt[3]{x}=\sqrt[6]{\left(x+y\right)^5}$, then `(dy)/(dx)

 $\mathsf{C.}\,\frac{y}{x}$

B.
$$\frac{x}{y}$$

Answer: C

Watch Video Solution

12. Rolle's theorem is not applicable in which one of the following cases?

A.
$$f(x) = |x|$$
 in $[-2, 2]$

B.
$$f(x) = x^2 - 4x + 5$$
 in [1, 3]

$$C. f(x) = [x] \text{ in } [2.5, 2.7]$$

D.
$$f(x) = x^2 - x$$
 in $[0, 1]$

Answer: A

View Text Solution

13. THe interval in which the function $f(x) = x^3 - 6x^2 + 9x + 10$ is increasing in

A. [1,3]

B. $(-\infty,1)\cup(3,\infty)$

C. $(-\infty, -1) \cup (3, \infty)$

D. $(-\infty,1]\cup[3,\infty)$

Answer: B::D

14. The side if an equilateral triangle are increasing at the rate of 4 cm/sec. the rate at which its areais increasing, when the side is 14 cm.

A. 1) $42cm^2/\sec$

B. 2) $10\sqrt{2}cm^2/\sec$

C. 3) $14cm^2/\sec$

D. 4) $28\sqrt{3}cm^2/\sec$

Answer:

Watch Video Solution

- **15.** The value of $\sqrt{24.99}$ is
 - A. 1)5.001

B. 2)4.999

- C. 3)4.897
- D. 4)4.899

Answer:

Answer: D

Watch Video Solution

A. 1) $1 \leq x \leq \frac{9}{3}$

B. 2) $-1 \le x \le \frac{7}{3}$

C. 3) $-1 \le x \le \frac{9}{3}$

D. 4)1 $\leq x \leq \frac{7}{3}$

- 17. If A and B are two events of a sample space S such that
- $P(A) = 2.0, P(B) = 0.6 \, ext{ and } \, P(A \mid B) = 0.5 \, ext{then } Pig(A^1 \mid Big) = 0.6 \, ext{ and } \, P(A \mid B) = 0.6 \, ext{then } \, P(A \mid B) = 0.6$
 - A. 1) $\frac{1}{2}$
 - B. 2) $\frac{3}{10}$
 - C. 3) $\frac{1}{3}$

D. 4) $\frac{2}{3}$

Answer: A

18. If 'X' has a binomial distribution with parameters n=6, p and P(X=2)=12,

P(X=3)=5 then P=

A. 1)
$$\frac{1}{2}$$

B. 2)
$$\frac{5}{21}$$

C. 3)
$$\frac{5}{16}$$

D. 4)
$$\frac{16}{21}$$

Answer:

Watch Video Solution

19. A man speaks truth 2 out of 3 times. He picks one of the natural numbers in the set $S=\{1,2,3,4,5,6,7\}$ and reports that it is even. The probability that it is actually even is

B.
$$3\pi$$

C. 3
D. 0

Watch Video Solution

20. $\int_{-3}^{3} \cot^{-1} x dx =$

A. 6π

A. 1) $\frac{1}{10}$

 $\mathrm{B.\,2)}\frac{2}{5}$

C. 3) $\frac{3}{5}$

D. 4) $\frac{1}{5}$

Answer: C

Answer: B

21.
$$\int \frac{1}{\sqrt{x} + x\sqrt{x}} dx =$$

A.
$$\tan^{-1}\sqrt{x} + c$$

$$\mathsf{C.}\,2 an^{-1}\sqrt{x}+C$$

B. $2\log(\sqrt{x}+1)+C$

D.
$$rac{1}{2} an^{-1}\sqrt{x}+C$$

Answer: C

Watch Video Solution

22. $\int \!\! rac{2x-1}{(x-1)(x+2)(x-3)} dx = A \log \lvert x-1
vert + B \log \lvert x+2
vert + C \log \lvert x-3
vert$

Then A,B,C are respectively.

A.
$$\frac{1}{6}$$
, $\frac{-1}{3}$, $\frac{1}{3}$

A.
$$\frac{6}{6}$$
, $\frac{3}{3}$, $\frac{3}{3}$
B. $\frac{-1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$

C.
$$\frac{-1}{6}$$
, $\frac{-1}{3}$, $\frac{1}{2}$
D. $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{5}$

Answer: C

Watch Video Solution

23.
$$\int_0^2 \left[x^2 \right] dx =$$

A. 1)
$$5-\sqrt{2}+\sqrt{3}$$

B. 2)5 $-\sqrt{2}-\sqrt{3}$

C. 3)
$$-5 - \sqrt{2} - \sqrt{3}$$

D. 4)5 + $\sqrt{2}$ - $\sqrt{3}$

Answer: B

24.
$$\int_0^1 \sqrt{rac{1+x}{1-x}} dx =$$

A. 1)
$$\frac{\pi}{2}$$

B. 2)
$$\frac{\pi}{2}-1$$

C. 3) $\frac{\pi}{2}$

D. 4)
$$\frac{\pi}{2} + 1$$

Answer: D

25.

Watch Video Solution

 $f: R \to R \ ext{and} \ g: [0, \infty] \to R$

 $f(x)=x^2 \ ext{and} \ g(x)=\sqrt{x}.$ Which one of the following is not true?

defined

by

is

A. 1)
$$foq(2)=2$$

$$\mathsf{B.\,2}) qof(4) = 4$$

$$\mathsf{C.3}) gof(\,-\,2) = 2$$

D. 4)
$$fog(-4) = 4$$

Answer: D

Watch Video Solution

- **26.** If A $=\{x\mid x\in N, x\leq 5\}, B=\{x\mid x\in Z, x^2\!\!-\!5x+6=0\}$, then the number of onto functions from A to B is
 - A. 30
 - B. 2
 - C. 32
 - D. 23

Answer: A

27. On the set of positive rationals, a binary operation * is defined by a*b=

$$\frac{2ab}{5}$$
 . If 2 * x=3⁻¹ then x=

- A. $\frac{2}{5}$
- $\mathsf{B.}\;\frac{1}{6}$
- c. $\frac{125}{48}$
- D. $\frac{5}{12}$

Answer: C

28.
$$\cos \left[2\sin^{-1} \frac{3}{4} + \cos^{-1} \frac{3}{4} \right] =$$

- A. $\frac{3}{5}$
 - $\mathsf{B.}-\frac{3}{4}$
 - C. Does not exist

D.
$$\frac{3}{4}$$

Answer: B

Watch Video Solution

- **29.** If $a+rac{\pi}{2} < 2 an^{-1}x + 3\cot^{-1}x < b$ then 'a'and 'b' are respectively.
 - A. 1)0 and 2π
 - B. 2)0 and π
 - C. 3) $\frac{-\pi}{2}$ and 2π
 - D. 4) $\frac{\pi}{2}$ and 2π

Answer: D

30. Let n(U) = 700 , n (A) = 200 , n (B) = 300 and $n(A\cap B)$ =100, then $n(A'\cap B') =$

A. 90

C. 10

function $f: R \to R$ defined

by

Answer: C

B. 40

D. 20

31.

The

domain

of

the

 $f(x)=\sqrt{x^2-7x+12}$ is A. 1) $(-\infty,3]\cap [4,\infty)$

B. 2) $(-\infty,3]\cup[4,\infty)$

C. 3)(3, 4)

D. 4)
$$(-\infty, 3] \cup (4, \infty)$$

Answer: B

Watch Video Solution

32. If $\cos x = |\sin x|$ then, the general solution is

A. a.
$$x=n\pi+(\,-1)^nrac{\pi}{4}, n\in Z$$

B. b.
$$x=n\pi\pmrac{\pi}{4}, n\in Z$$

C. c.
$$x=(2n+1)\pi\pmrac{\pi}{4}, n\in Z$$

D. d.
$$x=2n\pi\pmrac{\pi}{4},n\in Z$$

Answer: D

A. 4 B. 2 C. 1 D. 3 **Answer: A** Watch Video Solution **34.** If P(n): $2^n < n!$ Then the smallest positive integer for which P(n) is true, is A. 4 B. 2 C. 5 D. 3 **Answer: A**

35. Foot of the perpendicular drawn from the point (1,3,4) to the plane

$$2x - y + z + 3 = 0$$
 is

Answer: B

Watch Video Solution

36. Acute angle between the line $\frac{x-5}{2} = \frac{y+1}{-1} = \frac{z+4}{1}$ and the plane 3x - 4y - z + 5 = 0 is

A. 1)
$$\cos^{-1}\!\left(\frac{5}{2\sqrt{13}}\right)$$

C. c.
$$\frac{20}{3}$$
D. d. $\frac{2\sqrt{5}}{3}$

A. a. $\frac{\sqrt{5}}{2}$

B. b. $\frac{2\sqrt{3}}{5}$

 $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{2}$ is

The

distance of

the

point

from

(1,2,1)

line

the

B. 2) $\cos^{-1}\left(\frac{9}{\sqrt{364}}\right)$

C. 3) $\sin^{-1}\left(\frac{6}{2\sqrt{13}}\right)$

D. 4) $\sin^{-1} \left(\frac{9}{\sqrt{364}} \right)$

Answer: A

37.

38. XY-plane divides the line joining the points A(2,3,-5) and B(-1,-2,-3) in the ratio

- A. 5:3 internally
- B. 2:1 internally
- C. 5:3 externally
- D. 3:2 externally

Answer: C

Watch Video Solution

39. The inverse of the matrix $\begin{bmatrix} 2 & 5 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix}$ is

A.
$$\begin{bmatrix} -3 & -15 & 5 \ -1 & 6 & -2 \ 1 & -5 & 2 \end{bmatrix}$$

B. Identity matrix

C. Skew symmetric matrix

D. Symmetric matrix

Answer: C

41.

If

$$3A + 4B' = egin{bmatrix} 7 & -10 & 17 \ 0 & 6 & 31 \end{bmatrix} ext{ and } 2B - 3A' egin{bmatrix} -1 & 18 \ 4 & 0 \ -5 & -7 \end{bmatrix} ext{ then } B =$$

A.
$$\begin{bmatrix} -1 & -18 \\ 4 & -16 \\ -5 & -7 \end{bmatrix}$$
B.
$$\begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 2 & 4 \end{bmatrix}$$
C.
$$\begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 2 & -4 \end{bmatrix}$$
D.
$$\begin{bmatrix} 1 & -3 \\ -1 & 1 \\ 2 & 4 \end{bmatrix}$$

Answer: B

42. If
$$A=\begin{bmatrix}1&3\\4&2\end{bmatrix}, B=\begin{bmatrix}2&-1\\1&2\end{bmatrix}, ext{ then } |ABB'|=$$

44. The eccentricity of the ellipse
$$9x^2+25y^2=225$$
 is

A.
$$\frac{3}{4}$$

$$\mathsf{B.}\;\frac{4}{5}$$

C.
$$\frac{9}{16}$$
D. $\frac{3}{5}$

Answer: B

Watch Video Solution

45.

$$\sum_{r=1}^{n} \left(2r-1
ight) = x \;\; ext{then} \;\; \lim_{n o \infty} \; \left[rac{1^3}{x^2} + rac{2^3}{x^2} + rac{3^3}{x^2} + + rac{n^3}{x^2}
ight] =$$

B. 2)
$$\frac{1}{2}$$

- C. 3)4
- D. 4) $\frac{1}{4}$

Answer: D

Watch Video Solution

- **46.** The negative of the statement "All continuous functions are differentiable".
 - A. Some continuous functions are not differentiable
 - B. All continuous functions are not differentiable
 - C. All continuous functions are differentiable
 - D. Some continuous functions are differentiable

Answer: A

47. Mean and standard deviation of 100 items are 50 and 4 respectively.

The sum of all squares of the items is

- A. 266000
- B. 251600
- C. 261600
- D. 256100

Answer: B

- 48. Two letters are chosen from the letters of the word 'EQUATIONS'. The probability that one is vowel and the other is consonant is
 - A. 1) $\frac{3}{9}$
 - B. 2) $\frac{8}{9}$

D. 4)
$$\frac{4}{9}$$

Answer: C

Watch Video Solution

$$\mathbf{49.} \int \, \mathbf{x}^3 \sin 3x dx =$$

A. 1)
$$-rac{x^3.\cos 3x}{3}+rac{x^2\sin 3x}{3}+rac{2x\cos 3x}{9}-rac{2\sin 3x}{27}+C$$

B. 2)
$$-rac{x^3\cos 3x}{3} - rac{x^2\sin 3x}{3} + rac{2x\cos 3x}{9} - rac{2\sin 3x}{27} + C$$

C. 3)
$$-rac{x^3\cos 3x}{3} + rac{x^2\sin 3x}{3} - rac{2x\cos 3x}{9} - rac{2\sin 3x}{27} + C$$

$$\mathsf{D}.\,4)\frac{x^3\cos 3x}{3} + \frac{x^2\sin 3x}{3} - \frac{2x\cos 3x}{9} - \frac{2\sin 3x}{27} + C$$

Answer: A

50. The area of the region above X-axis included between the parabola

$$y^2=x$$
 and the circle $x^2+y^2=2x$ in square units is

A. 1:
$$\frac{2}{3}-\frac{\pi}{4}$$

B. 2:
$$\frac{\pi}{4} - \frac{3}{2}$$

C. 3:
$$\frac{\pi}{4}-\frac{2}{3}$$

D. 4:
$$\frac{3}{2} - \frac{\pi}{4}$$

Answer: C

View Text Solution

51. The area of the region bounded by Y-axis, y=cos x and y = $\sin imes 0 \le x \le \frac{\pi}{2}$ is

A. 1)
$$\sqrt{2}+1$$
 Sq.units

B. 2)
$$\sqrt{2}-1$$
 Sq.units

C. 3)
$$2-\sqrt{2}$$
 Sq.units

D. 4) $\sqrt{2}$ Sq.units

Answer: B

Watch Video Solution

- **52.** The integrating factor of the differential equation $ig(2x+3y^2ig)dy=ydx(y>0)$ is

 - A. $\frac{1}{x}$
 - $\operatorname{B.}\frac{1}{e^y}$
 - $\mathsf{C.}\,\frac{1}{y^2}$
 - $\mathrm{D.} \frac{1}{y^2}$

Answer: C

53. The equation of the curve passing through the point (1,1) such that the slope of the tangent at any point (x,y) is equal to the product of its co-ordinates is

A.
$$2\log y = x^2 - 1$$

B.
$$2\log x = y^2 - 1$$

$$\mathsf{C.}\,2\log x = y^2 + 1$$

D.
$$2\log y = x^2 + 1$$

Answer: A

Watch Video Solution

54. The constant term in the expansion of $\begin{bmatrix}3x+1&2x-1&x+2\\5x-1&3x+2&x+1\\7x-2&3x+1&4x-1\end{bmatrix}$ is

B. 0

C. 6

D. 2

Answer: C

Watch Video Solution

55. If [x] represents the greatest integer function and $f(x) = x - [x] - \cos x$ then $f^1\left(\frac{\pi}{2}\right) =$

A. 1)2

B. 2)0

C. 3)does not exist

D. 4)1

Answer: A

56. If $f(x) = \left\{ \left(rac{\sin 3x}{e^{2x} - 1}, \, , \, , \, x
eq 0
ight), (k-2, \, : \, , \, x = 0) ext{ is }$

Continuous at x=0, then k=

A. 1)
$$\frac{7}{2}$$

B. 2)
$$\frac{3}{2}$$

C. 3)
$$\frac{2}{3}$$
D. 4) $\frac{9}{5}$

Answer:

Watch Video Solution

57. If $f(x) = \sin^{-1}\left[\frac{2^{x+1}}{1+4^x}\right]$, then $f^1(0) =$

A.
$$\frac{2\log 2}{5}$$

$$\mathsf{B.}\,2\log 2$$

$$\mathsf{C.} \frac{4\log 2}{5}$$

 $D. \log 2$

Answer:

Watch Video Solution

58. If $x=a\sec^2\theta, y=a\tan^2\theta$ then $\frac{d^2y}{dx^2}=$

A. 0

B. 2a

C. 4

D. 1

Answer: A

