©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PUBLICATION

 PHYSICS (KANNADA ENGLISH)
ELECTRIC CHARGES \& FIELDS

Topic 1 Very Short Answer Type Questions

1. Define S.I unit of charge .

2. Write the SI unit of charge .

D Watch Video Solution
3. Define electric intensity at a point in an electric field.
(Watch Video Solution
4. What is the least quantity of the magnitude of the charge that can be given to or removed from a body ?

- Watch Video Solution

5. What is the value of the angle between the vectors \vec{P} and \vec{E} for which the potential energy of an electric dipole of dipole moment p, kept in an external electric field \vec{E}, has the maximum value.
6. Two point charges q_{1} and q_{2} are placed at a distance ' d ' apart as shwon in the figure. The electric field intensity is zero at a point ' P ' on the line joining them as shown . Write two conclusions that you can draw from this.
7. Deficiency of how many electrons will produce a positive charge of $8 \times 10^{-19} C$?

D Watch Video Solution

8. The unit of electric dipole moment is:

D Watch Video Solution

9. In which oeientation a dipole placed in a
unstable equilibrium?

D Watch Video Solution

10. Two electrically charged particles, having charges of different magnitudes, when placed at a distance 'd' from each other, experience a force of attraction ' F ' . These two particles are put in contact and again placed at the same distance from each other. What is the nature of new force between them?
11. Figure shows the field lines on a positive charge. Is the work done by the field in moving a small positive charge from Q to P, positive or negative? Give reason.

D Watch Video Solution

12. A point charge of $5 \times 10^{-6} C$ experience a
force of $2 \times 10^{-3} \mathrm{~N}$ when kept in a uniform electric field of intensity E. find E.
13. Why should electrostatic field be zero inside a conductor ?

- Watch Video Solution

14. Which of the following physical quantity does not represent electric field ?
(i) V / m,
(ii) J/C

Watch Video Solution

15. What is the angle between the direction of electric field at any (i) axial point , and equatorial point due to an electric dipole?

D Watch Video Solution

16. Write the formula for linear charge density
17. Write the dimensional formula of electric charge.

- Watch Video Solution

Topic 1 Short Answer Type Questions I

1. Write Coulomb's law in vector form and explain the terms.
2. State Coulomb's law .

D Watch Video Solution

3. What is (a) electric dipole moment , (b) dielectric strength?

D Watch Video Solution

4. (a) explain the menaing of the statement electric charge of a body is quantised
(b) why can one ignore quantisation of electric charge when dealing with macrosocpic large scale charges

- Watch Video Solution

5. (a) explain the menaing of the statement electric charge of a body is quantised
(b) why can one ignore quantisation of electric charge when dealing with macrosocpic large scale charges
6. When a galss rod is rubbed with a sild cloth charges appear on both a smilar phenomenon is observeed with many other pairs of bodies expalin how this observation is consistent with the law of conservation of charge

D Watch Video Solution

7. (a) an electrostatic field line is a contiuous
curve that is field line cannot have sudden breaks why not
(b) explain why two field lines never cross each other at any point

- Watch Video Solution

8. (a) an electrostatic field line is a contiuous
curve that is field line cannot have sudden breaks why not
(b) explain why two field lines never cross each other at any point
9. A small metallic sphere carrying charge $+Q$
is located at the centre of a spherical cavity in
a large uncharged metallic spherical shell.
Write the charges on the inner and outer
surfaces of the shell. Write the expression for
the electric field at the point P_{1}.

D Watch Video Solution

10. Two point charges q_{1} and q_{2} are located at \vec{r} and \vec{r}_{2} respectively in an external electric
field E. Obtain the experession for the total work done in assembling this configuration .

D Watch Video Solution

11. An electric dipole is placed in a uniform electric field \vec{E} with its dipole moment \vec{p} parallel to the field. Find
(i) the work done in turning the dipole till its dipole moment points in the direction opposite to \vec{E}.
(ii) The orientation of the dipole for which the torque acting on it become the maximum.

D Watch Video Solution

12. An electric dipole is held in a uniform electric field .
(i) Show that the net force acting on it is zero.
(ii) The dipole is aligned parallel to the field .

Find the work done in rotating it throught the angle of 180°
13. A spherical conducting shell of inner radius r_{1} and outer radius r_{2} has a charge Q .
(a) A charge q is placed at the centre of the
shell. What is the surface charge density on
the inner and outer surfaces of the shell?
(b) Is the electric field inside a cavity (with no
charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.

- Watch Video Solution

14. Explain quantization of charge.

D Watch Video Solution

15. What are the different type of continous charge distribution?

- Watch Video Solution

16. Mention and five properties of electric field
lines.

- Watch Video Solution

17. Explain dielectric constant with expressions

- Watch Video Solution

18. What do you understand by principle of superposition?
19. (a) A point charge $(+Q)$ is kept in the vicinity of an uncharged conducting plate . Sketch electric field lines between the charge and the plate.

Two infinitely large plane thin parallel sheets having surface charge densities
σ_{1} and $\sigma_{2}\left(\sigma_{1}>\sigma_{2}\right)$ are shown in the figure . Write the magnitudes and directions of the fields in the regions marked II and III.

- Watch Video Solution

20. Am electric dipole is placed in a uniform electric field.
(i) Show that no traslatory force acts on it .
(ii) Derive an expression for the torque acting on it.
(iii) Find work done in rotating the dipole through 180°.

D Watch Video Solution

21. An electron dipole of moment \vec{p} is placed in a uniform electric field \vec{E}. Write the
expression for the torque $\vec{\tau}$ experienced by the dipole. Identify two pairs of perpendicular vectors in the expression . Shown diagrammatically the orientation of the dipole in the field for which the torque is
(i) the maximum , (ii) Half the maximum value ,
(iii) Zero.

D Watch Video Solution

22. Two point charges $+q$ and $-2 q$ are placed at the vertices ' B ' and ' C ' of an
equilateral triangle $A B C$ of side 'a' as given in
the figure. Obtain the expression for (i) the magnitude and (ii) the direction of the resultant electric field at the vertex A due to these two charges .

D Watch Video Solution

Topic 1 Long Answer Type Questions

1. Obtain an expression for the electric field intenstiy at a point on the equatorial line of an electric dipole.

D Watch Video Solution

2. Derive an expression for electric field due to
an electric dipole at a point on the axial line.

D Watch Video Solution

1. Point charges of $10 n \mathrm{n}, 20 \mathrm{nCand} 10 \mathrm{nC}$ are kept at the corners $A, B C$ of a square $A B C D$ of side

3 m . Calculate the magnitude of the resultant electric intensity at D.

D Watch Video Solution

2. Two point charges of 6 nC and 12 nC are placed at the corners of B and C of an equilateral triangle $A B C$ of side 0.03 m .

Calculate the magnitude of the resultant electric intensity at the vertex A of triangle.

D Watch Video Solution

3. The electrostatic force on a small sphere of
charge $0.4 \mu \mathrm{c}$ due to another small sphere of
charge $-0.8 \mu \mathrm{c}$ in air is 0.2 N (a) What is the distance between the two spheres (b) what is the force on the second sphere due to the first

- Watch Video Solution

4. Two point charges $q_{A}=3 \mu C$ and
$q_{B}=-3 \mu C$ are located 0.2 m apart in
vacuum.
a. What is the electric field at the mid point O of the line $A B$ joining the two charges?
b. If a negative test charge of magnitude $1.5 \times 10^{-9} C$ is placed at this point, what is the force experienced by the test charge?

D Watch Video Solution
5. a. Two insulated charged copper spheres A
and B have their centres separated by a distance o 0.5 m . What is the mutual force of electrostatic repulsion if the charge on each is
$6.5 \times 10^{-7} C$? Assume that the radii of A and
B are negligible compared to the distance fof separation.
b. What is the fore of repulsion if each sphere
is charged double the above amount and the distance between them is halved?
6. Two charges respectively of $+3.2 \times 10^{-19}$ coublem and -3.2×10^{-19} coulomb are separated by a distance of $2.4 \times 10^{-10} \mathrm{~m}$. This dipole is placed in a homogeneous electric field of $4.0 \times 10^{5} \mathrm{~V} / \mathrm{m}$. Find
(i) Electric dipole moment
(ii) The maximum moment exerted on the dipole by the electric field.
(iii) The energy necessary for rotating the dipole from equilibrium position to 180°.
7. Calculate the amount of work done to dissociate a system of three charge $1 \mu C, 1 \mu C$ and $-4 \mu C$ placed on the vertices of an equilateral triangle of side 10 cm .

- Watch Video Solution

8. Two charges of 1.0×10^{-6} coulomb are separated by a distance 10 cm . Where will the electric field be zero on the line joining the two charges?
9. The charges of an electric dipole are respectively 32×10^{-7} coulomb and -32×10^{-7} coulomb are separated by a distance of 10 cm . Find the field at a point situated at a distance of 8 cm from each charge.

- Watch Video Solution

Topic 2 Very Short Answer Type Questions

1. Write the expression for electric flux passing
through a surface in the electric field in terms
of electric intensity of the field and area of the surface.

- Watch Video Solution

2. Define Electric flux.

D Watch Video Solution

3. State and explain Gauss's theorem in

Electrostatics.

D Watch Video Solution
4. State and explain Gauss's theorem in

Electrostatics.

D Watch Video Solution
5. Define positive electric flux.

- Watch Video Solution

6. Define negative electric flux.

- Watch Video Solution

Topic 2 Short Answer Type Questions I

1. State and explain Gauss's theorem in

Electrostatics.

D Watch Video Solution
2. Figure shown three point charges , $+2 q,-q,-q$ and $+3 q$. Two charges $+2 q$ and $-q$ are enclosed within a surface ' S ' . What is the electric flux due to this configuration through the surface 'S'?

D Watch Video Solution
3. Two charges of magnitudes $-2 Q$ and $+Q$
are located at points $(a, 0)$ and $(4 a, 0)$
respestively. What is the electric flux due to
these charges through a sphere of radius 3 a with its centre at the origin ?

D Watch Video Solution

4. A sphere S_{1} of radius r_{1} encloses a net charge Q. If there is another concentric sphere S_{2} of radius $r_{2}\left(r_{2}>r_{1}\right)$ enclosing charge $2 Q$,
find the ratio of the electric flux through S_{1} and S_{2}. How will the electric flux through sphere S_{1} change, if a medium of dielectric constant K is introduced in the space inside S_{2} in place of air?

D Watch Video Solution

5. Consider two hollow concentric spheres,
S_{1} and S_{2} enlosing charges 2 Q and 4 Q respectively as shown in the figure . (i) Find
out the ratio of the electric flux through them
(ii) How will the flux through the sphere S_{1} change if a medium of dielectric constant ε_{r} is introduced in the space inside S_{1} in place of air ? Deduce the necessary expression.

D Watch Video Solution

6. Use Gauss s law to derive the expression for
the electric field between two uniformly
charged large parallel sheets with surface charge densities σ and $-\sigma$ respectively.

D Watch Video Solution

7. Given the expression for electric field intensity at a point due to a thin infinitely long straight wire. Give the meaning the of symbols used.

Topic 2 Long Answer Type Questions

1. State Gauss's theorem. Obtain an expression
for elactric field at any point outside a charged spherical hollow conductor (shell).

- Watch Video Solution

2. Write the expression for electric field intensity at any point outside and inside due to a charged spherical shell.
3. (a) Define electric flux. Write its S.I. unit.
(b) Using Gauss's law , prove that electric field at a point due to a uniformly charged infinite plane sheet is independent of the distance from it.
(c) How is the field directed if (i) the sheet is positively charged, (ii) negatively charged ?
4. (a) Define electric flux. Write its S.I . Unit.
(b) A small metal sphere carrying charge $+Q$
is located at the centre of a spherical cavity inside a large uncharged metallic spherical shell as shown in the figure. Use Gauss 's law to find the expressions for the electric field at point P_{1} and P_{2}.
(c) Draw the pattern of electric field lines in this arrangement .

Topic 2 Numerical Problems

1. An atom was earlier assumed to be sphere of radius a having a positively charged point nucleus of charge $+Z e$ at its centre. This nucleus was believed to be surrounded by a uniform desity of negative charge that made the atom neutral as a whole.

Use this theorem to find the electric field of this atom at a distance $r(r>a)$ from the centre of the atom.
2. A hollow cylindrical box of length 1 m and area of cross - section $25 \mathrm{~cm}^{2}$ is placed in a three dimensional coordinate system as shown in the figure. The electric field in the region is given by $\vec{E}=50 x \hat{i}$, where E is
$N C^{-1}$ and x is in metres. Find .
(i) Net flux through the cylinder.
(ii) Charge enclosed by the cylinder.
3. A point charge causes an elelctric flux of
$-1.0 \times 10^{3} N \frac{m^{2}}{C}$ to pass through a spherical gaussioan of 10.0 cm radius centred on the charge (a) if the radius of the gaussian surface wrere doubled how much flux would pas through the surface (b) what is the value of the point charge

- Watch Video Solution

4. A uniformly charged conducting sphere of
2.4 m diameter has a surface charge density of
$80 \times 10^{-6} \mathrm{~cm}^{-2}$
a. Find the charge on the sphere.
b. What is the total electric flux leaving the surface of the sphere?

D Watch Video Solution

5. Two large, thin metal plates are parallel and
close to each other. On their inner faces, the
plates have surface charge densities of opposite signs and magnitude
$17.0 \times 10^{-22} \mathrm{Cm}^{-2}$. What is the electric field
a. in the outer region of the first and the second plates?
b. between the plates?

D Watch Video Solution

