

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JULY -2014

Part A

1. Define binary operation on a set. Verify whether the operation * defined on Q set of rational number by $a \cdot b = ab + 1 \forall a, b \in Q$ is commutative or assosiative.

5. Find
$$\frac{dy}{dx}$$
, if $y = \cos(1-x)$.

8. If a line makes angle 90° , 60° and 30° with the positive direction of x,y and z axis respectively , find its direction cosines.

9. In linear propagmming problem , define linear objective function.

10. IF P(E) = 0.6, P(F) = 0.3 and $P(E \cap F) = 0.2,$ find $P(F \mid E).$

Watch Video Solution

1. Show that the function $f\colon N o N$ given by f(1)=f(2)=1 and f(x)=x-1 for every x>2 is on to but not one -one.

4. Find the equation of a line passing through (3,1) and

(9,3) using determinants.

Watch Video Solution
5. If
$$\sqrt{x} + \sqrt{y} = \sqrt{10}$$
, show that $\frac{dy}{dx} + \sqrt{\frac{y}{x}} = 0$
Watch Video Solution
6. Find $\frac{dy}{dx}$, if $y = (\log x)^{\cos x}$.
Watch Video Solution

7. Use differential to approximate $\sqrt{36.6}$.
Watch Video Solution
8. Integrate $\sin x . \sin(\cos x)$ with respect to x.
Watch Video Solution
9. Evaluate $\int_a^1 rac{1}{1+x^2} dx$
Watch Video Solution

10. Find the order and degree of the D.E

$$\left(rac{d^3y}{dx^3}
ight)^2+\left(rac{d^2y}{dx^2}
ight)^3+rac{dy}{dx}+y=0$$

Watch Video Solution

11. Find the area of the parallelogram whose adjacent sides determined by vectors.

$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k} \hspace{0.5cm} \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$$

Watch Video Solution

12. Find the projection of the vector $\overrightarrow{a}=2\hat{i}+3\hat{j}+2k$ on the vector $\overrightarrow{b}=\hat{i}+2\hat{j}+\hat{k}.$

13. Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0, x + y + z - 2 = 0 and the point (2,2,1)

Watch Video Solution

14. A die is throuwn. If E is the event the number appearing is a multiple of 3 and F be the event the number appearing is even then prove that E and F are independent events.

1. Solve that the relation R in the set z of intergers given by $R = \{(x, y): 2 \text{ divides } (x - y)\}$ is an equivalence relation.

3. For any square matrix A with real numbers.

Prove that $A + A^1$ is a symmetric and

 $A - A^1$ is a skew symmetric.

Watch Video Solution

4. If $x=a(heta-\sin heta)$ and $y=a(1+\cos heta)$ then prove

that $rac{dy}{dx} = -\cot\left(rac{ heta}{2}
ight)$

Watch Video Solution

5. Verify Mean value theorem, if $f(x) = x^2 - 4x - 3$ in

the interval [a,b] where a=1 and b=4

6. Find two positive numbers x and y such that x + y = 60and xy^3 is maximum.

7. Evaluate : $\int \sin 3x \cos 4x dx$

Watch Video Solution

Watch Video Solution

8. Evaluate
$$\int \!\!\! x^2 e^x dx$$

9. Determine the area of the region bounded by $y^2 = x$

and the line x = 1, x = 4 and x - axis in 1st quadrant.

10. Form the differential equation of the family of circles

having centre on y - axis and radius 3 units.

Watch Video Solution

11. If two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} such that $\left|\overrightarrow{a}\right| = 2\left|\overrightarrow{b}\right| = 3$ and \overrightarrow{a} . $\overrightarrow{b} = 4$. Find $\left|\overrightarrow{a} - \overrightarrow{b}\right|$.

12. Find a unit vector perpendicular to each of the vectors

Watch Video Solution

13. Find the shortest distance betweeen the line l_1 and l_2

whose vector equations are $\overrightarrow{r}=\hat{i}+\hat{j}+\lambda\Big(2\hat{i}-\hat{j}+\hat{k}\Big)$ and $\overrightarrow{r}=2\hat{i}+\hat{j}+\lambda\Big(3\hat{i}-5\hat{j}+2\hat{k}\Big)$

Watch Video Solution

14. A Bag I contain 3 red and 4 black balls. White bag II contains 5 red 6 black balls. One ball is drawn at random

from one of the bags and it is found to be red. Find the

probability that it was drawn from bag II.

17. The length x of a rectangle is decreasing at the rate of 5 cm/minute & the width y is increasing at the rate of 4cm/minute. When x=8 cm & y=6 cm. Find the rate of change of

i. The perimeter and

ii. The area of rectangle

Watch Video Solution

18. Find the integral of
$$\frac{1}{\sqrt{x^2+a^2}}$$
 with respect to x and hence evaluate $\int \frac{1}{\sqrt{x^2+7}} dx$

20. Let y(x) be the solution of the differential equaiton :

$$(x\log x)rac{dy}{dx}+y=2x\log x,\,(x\geq 1)$$

Then y(e) is equal to :

21. Derive the equation of the line in space passing through a point and parallel to a vector both in vector and cartesian form.

Watch Video Solution

22. If a fair coin is tossed 6 times. Find the probability of (i)

at least five heads and (ii) exactly 5 heads.

1. Prove that
$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$
 and hence evaluate $\int_{rac{\pi}{6}}^{rac{\pi}{3}}rac{1}{1+\sqrt{ an x}}dx.$

Watch Video Solution

2.
$$f(x)=egin{cases} rac{k\cos x}{\pi-2x} ext{if} & x
eq rac{\pi}{2} \ 3 & ext{if} x=rac{\pi}{2} \ \end{array}$$
 at $x=rac{\pi}{2}$, f (x) is

containuous , find the value of k .

Watch Video Solution

3. a) Solve the following linear programming problem graphically : Minimize and maximize Z = x + 2y, subject to

constraints

 $x+2y \geq 100, 2x-y \leq 0, 2x+y \leq 200, x, y \geq 0.$

