びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JULY- 2015

Part A Answer All The Ten Questions

1. Let * be a binary operation on the set of natural numbers given by $a * b=L . C . M$ of a and b , find $5 * 7$,

- Watch Video Solution

2. Find the value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
3. define a scalar matrix.

- Watch Video Solution

4. If $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$, then show that $|3 A|=27|A|$

(Watch Video Solution

5. Differentiate $\cos \sqrt{x}$ w.r.t.x

- Watch Video Solution

6. Evaluate $\int \sec x(\sec x+\tan x) d x$
7. Show that the vectors $\bar{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\bar{b}=-4 \hat{i}+6 \hat{j}-8 k$ are collinear.

- Watch Video Solution

8. Find the intercepts cutoff the plane $2 x+y-z=5$.

- Watch Video Solution

9. Define optimal solution in Linear Programming problem.

- Watch Video Solution

10. If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$ then find $P(A \cap B)$.
11. If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then fof (x) is

D Watch Video Solution

2. Write the simplest form of $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\frac{\pi}{2}$

D Watch Video Solution

3. Prove that $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, x \in[-1,1]$

- Watch Video Solution

4. If area of the triangle with vertices $(-2,0),(0,4)$ and $(0, k)$ is 4 square units, find the value of ' k ' using determinants.
5. Find $\frac{d y}{d x}$, if $y=\log (\log x)$

- Watch Video Solution

6. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

- Watch Video Solution

7. Using differentials find the approximate value of $\sqrt{49.5}$

- Watch Video Solution

8. Evaluate $\int \frac{x^{2}}{1-x^{6}}$

- Watch Video Solution

9. Evaluate:
$\int e^{x}\left(\frac{x-1}{x^{2}}\right) d x$

- Watch Video Solution

10. Find the order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

- Watch Video Solution

11. Find the projection of the vector $\hat{i}+3 \hat{j}+\hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$

- Watch Video Solution

12. $|\vec{a}|=3,|\vec{b}|=\sqrt{2} / 3$ and $|\vec{a} \times \vec{b}|=1$. find the angle between \vec{a} and \vec{b}
13. Find the vector equation of the line passing through the point $(-1,0,2)$ and $(3,4,6)$

- Watch Video Solution

14. Find the probability distribution of
(i) number of heads in two tosses of a coin.
(ii) number of tails in the simultaneous tosses of three coins.
(iii) number of heads in four tosses of a coin.

- Watch Video Solution

Part C Answer Any Ten Questions

1. Prove that the relation R in the set of integers z defined by $R=\{(x, y): x-y$ is an integer $\}$ is an equivalence relation.

- Watch Video Solution

2. Solve : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

3. Express $A=\left[\begin{array}{ll}3 & 5 \\ 1 & -1\end{array}\right]$ as sum of symmetric and skew symmetric matrix.

- Watch Video Solution

4. Find $\frac{d y}{d x}$, if $x=a[\cos t+\log (\tan t / 2)] \& y=a \sin t$

- Watch Video Solution

5. Verify Mean value theorem, if $f(x)=x^{2}-4 x-3$ in the interval [a,b] where $\mathrm{a}=1$ and $\mathrm{b}=4$

- Watch Video Solution

6. Find two number whose sum 24 and whose product is as large as possible.

Watch Video Solution
7. Find $\int \frac{x d x}{(x+1)(x+2)}$

- Watch Video Solution

8. Evaluate: $\int_{0}^{2} e^{x} d x$ as a limit of sum.
9. Find the area lying between the curve $y^{2}=4 x$ and the line $y=2 x$

- Watch Video Solution

10. Form the differential equation representing the family of curves $y=a \sin (x+b)$ where a,b are arbitrary constant.

- Watch Video Solution

11. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

$\begin{array}{cccc}\text { 12. } & \text { Find } & \lambda & \text { if } \\ \vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k} & \text { the } \vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k} & \text { vectors }\end{array}$ coplanar

$$
\begin{aligned}
& \text { 13. Find the distance between the lines } \\
& \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{j}) \& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(-2 \hat{i}+3 j
\end{aligned}
$$

- Watch Video Solution

14. A Bag I contain 3 red and 4 black balls. White bag II contains 5 red 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from bag II.

- Watch Video Solution

Part D Answer Any Six Questions

1. Prove that the function $f: R \rightarrow R$ defined by $f(x)=4 x+3$ is invertible and find the inverse of ' f '.
2. If $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]$ and $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right]$
then compute $(A+B)$ and $(B-C)$. Also verify that $A+(B-C)=(A+B)-C$.

- Watch Video Solution

3. Solve system of linear equations, using matrix method
$2 x+3 y+3 z=5$
$x-2 y+z=-4$
$3 x-y-2 z=3$

- Watch Video Solution

4. If $y=\left(\tan ^{-1} x\right)^{2}$, show that
$\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$.
5. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?

- Watch Video Solution

6. Find the integral of $\sqrt{x^{2}+a^{2}}$ with respect to x and hence evaluate $\int \sqrt{x^{2}+4 x+6} d x$

(Watch Video Solution

7. Find the area bounded by the curve $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.

- Watch Video Solution

8. Find the general solution of the differential equation $\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y>0)$

- Watch Video Solution

9. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector and Cartesian form.

- Watch Video Solution

10. Five cards are drawn successively with replacement from a with replacement from a well shuffled deck of 52 cards. What is the probability that
I. all five cards are spades ?
II. Only 3 cards are spades ?
III. None is spade ?
11. Five cards are drawn successively with replacement from a with replacement from a well shuffled deck of 52 cards. What is the probability that
I. all five cards are spades ?
II. Only 3 cards are spades ?
III. None is spade?

- Watch Video Solution

12. Five cards are drawn successively with replacement from a with replacement from a well shuffled deck of 52 cards. What is the probability that
I. all five cards are spades ?
II. Only 3 cards are spades ?
III. None is spade ?

- Watch Video Solution

1. One kind of cake requires 200 gm of flour and 25 g of fat and another kind of cake requires 100 gm of flour and 50 gm of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no shortage of the other ingredients used in making the cakes.

- Watch Video Solution

2. Find the values of a and b that
$f(x)=\left\{\begin{array}{ll}5, & \text { if } x \leq 2 \\ a x+b, & \text { If } 2<x<10 \\ 21, & \text { if } x \geq 10\end{array}\right.$ is a continuous function

- Watch Video Solution

3. Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x$.

Watch Video Solution

4. Prove that $\left|\begin{array}{lll}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$
