©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNSTAR PHYSICS (KANNADA ENGLISH)

ANNUAL EXAM QUESTION PAPER

$$
\text { MARCH - } 2018
$$

- Watch Video Solution

2. Define 'drift velocity' of free electrons .

- Watch Video Solution

3. Write any one application of the cyclotron.

- Watch Video Solution

4. State Faraday's law of electromagnetic induction.

D Watch Video Solution
5. If the peak value of a.c. current is $4.24 A$, what is its root mean square value?

D Watch Video Solution

6. Mention any one mode of energy transfer.

- Watch Video Solution

7. Two lenses of power +2 D and -5 D are kept in contact. The focal length of the combination is

- Watch Video Solution

8. The decay of proton to neutron is possible only inside the nucleus. Why ?
9. What is 'depletion region' in a semiconductor diode?

D Watch Video Solution

10.

What is the output of this combination?

- Watch Video Solution

1. Mention any two factors on which the capacitance of a parallel plate capacitor depends.

D Watch Video Solution

2. State Kirchhoff's laws of Electrical network.

- Watch Video Solution

3. Define:

(a) Magnetic declination (b)Magnetic dip.

Mention the S.I. unit of magnetisation.

- Watch Video Solution

4. Write an expression for magnetic potential energy of a magnetic dipole kept in a uniform magnetic field and explain the terms.

- Watch Video Solution

5. Give any two applications of X-rays.

D Watch Video Solution

6. What is 'myopia' ? How to rectify it?

- Watch Video Solution

7. Draw the diagram respresenting the schematic arrangement of Geiger-Marsdon
experimental set up tor the alpha particle scattering

- View Text Solution

8. What are the characteristics of nuclear

forces?

- Watch Video Solution

1. Mention any three properties of an electric charge.

D Watch Video Solution

2. State Ampere's circuital law . Using it, derive
the expression for magnetic field at a point due to a long current carrying conductor .

D Watch Video Solution

3. What is hysterisis? Define the terms
'coercivity' and 'retentivity' of a ferromagnetic material.

D Watch Video Solution

4. Arrive at Snell's law of refraction, using

Huygen's principle for refraction of a plane wave.

5. Writer Bohr's postulates for the hydrogen

 atom model.
- Watch Video Solution

6. Write the expression for the half life of a radioactive element.

D Watch Video Solution

7. Distinguish between n-type and p-type semiconductos.

D Watch Video Solution
8. Draw the block diagram of generalised communication system.

- Watch Video Solution

1. How is the electric potential at a point due to a given charge measured? Obtain an expression for the electric potential at a point due to an isolated point charge.

D Watch Video Solution

2. Obtain an expression for the equivalent emf and internal resistance of two cells connected in parallel.
3. Derive the expression for magnetic field at a point on the axis of a circular current loop.

D Watch Video Solution

4. Derive an expression for the impedance of a series LCR, circuit, when an AC voltage is applied to it.

- Watch Video Solution

5. Write the relation between B_{E}, B_{H} and B_{V}

 along with an appropriate diagram .
- Watch Video Solution

6. What is a rectifier ? With suitable circuit describe the action of a full wave rectifier by drawing input and output waveforms.

- Watch Video Solution

1. Three charges each equal to $+4 n C$ are placed at the three comers of a square of side 2 cm .

Find the electric field at the fourth corner.

D Watch Video Solution

2. 100 mg mass of nichrome metal is drawn
into a wire of area of cross-section 0.05 mm .

Calculate the resistance of this wire. Given density of nichrome $8.4 \times 10^{3} \mathrm{kgm}^{-3}$ and resistivity of the material as $1.2 \times 10^{-6} \Omega \mathrm{~m}$.

- Watch Video Solution

3. A circular coil of radius 10 cm and 25 turns is
rotated about its vertical diameter with an angular speed of $40 \mathrm{rads}^{-1}$, in a uniform horizontal magnetic field of magnitude
$5 \times 10^{-2} T$. Calculate the maximum emf induced in the coil. Also find the maximum
current in the coil if the resistance of the coil is 15Ω.
4. In Young's double slit experiment the slits are separated by 0.28 mm and the screen is placed at a distance of $1.4 m$ away from the slits. The distance between the central bright fringe and the fifth dark fringe is measured to be 1.35 cm . Calculate the wavelength of the light used. Also find the fridge width if the screen is moved towards the slits by $0.4 m$, for the same experimental set up.
5. Light of frequency $8.41 \times 10^{14} \mathrm{~Hz}$ is incident on a metal surface. Electrons with their maximum speed of $7.5 \times 10^{5} \mathrm{~ms}^{-1}$ are ejected from the surface. Calculate the threshold frequency for photoemission of electrons. Also find the work function of the metal in electron volt $(e V)$. Given Plank's constant $h=6.625 \times 10^{-34} \mathrm{Js}$ and mass of the electron $9.1 \times 10^{-31} \mathrm{~kg}$.

D Watch Video Solution

