©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNSTAR PHYSICS

(KANNADA ENGLISH)

$$
\text { K - CET - PHYSICS - } 2018
$$

1. The energy equivalent to a substance of
A. $18 \times 10^{13} \mathrm{~J}$
B. $9 \times 10^{13} J$
C. $18 \times 10^{6} J$
D. $9 \times 10^{6} J$

Answer: B

D Watch Video Solution

2. The half - life of tritium is 12.5 years. What mass of tritium of initial mass 64 mg will remain undecayed after 50 years ?
A. 32 mg
B. 8 mg
C. 16 mg
D. 4 mg

Answer: D

D Watch Video Solution

3. In a CE amplifier, the input ac signal to be amplified is applied across
A. Forward biased emitter-base junction
B. Reverse biased collector-base junction
C. Reverse biased emitter-base junction
D. Forward biased collector-base junction

Answer: A

D Watch Video Solution
4. If $A=1$ and $B=0$, then in terms of Boolean
algebra, $A+B$ is equal to
A. B
B. \bar{B}
C. A
D. \bar{A}

Answer: C

D Watch Video Solution
5. The density of an electron - hole pair in a pure germanium is $3 \times 10^{-16} m^{-3}$ at room temperature. On doping with aluminium, the
hole density increase to $4.5 \times 10^{22} m^{-3}$ Now
the electron density (in m) in doped germanium will be
A. 1×10^{10}
B. 2×10^{10}
C. 0.5×10^{10}
D. 4×10^{10}

Answer: B

D Watch Video Solution
6. The dc common emitter current gain of a n -$\mathrm{p}-\mathrm{n}$ transistor is 50 . The potential difference applied across the collector and emitter of a transistor used in CE configuration is $V_{C E}=2$

V . If the collector resistance $R_{C}=4 K \Omega$, the base current and the collection current $\left(I_{B}\right)$ and the collector current $\left(I_{C}\right)$ are

$$
\begin{aligned}
& \text { A. } I_{B}=10 \mu A, I_{C}=0.5 m A \\
& \text { B. } I_{B}=0.5 \mu A, I_{C}=10 m A \\
& \text { C. } I_{B}=5 \mu A, I_{C}=1 m A \\
& \text { D. } I_{B}=1 \mu A, I_{C}=0.5 m A
\end{aligned}
$$

D Watch Video Solution

7. The radius of Earth is 6400 km . If the height

 of an antenna is 500 m , then its range isA. 800 km
B. 100 km
C. 80 km
D. 10 km

Answer: C

D Watch Video Solution

8. A space station is at a height equal to the radius of the Earth. If v_{E} is the escape velocity on the surface of the Earth, the same the spastation v_{E}
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

- Watch Video Solution

9. A particle shows distance - time curve as
shown in the figure. The maximum
instantaneous velocity of the particle is
around the point .

A. P
B. S
C. R
D. Q
10. Which of the following graphs correctly represents the variation of g on the - Earth?
A.
B.
c.
D.

Answer: B
11. A cup of tea cools from
$65.5^{\circ} \mathrm{C}$ to $62.5^{\circ} \mathrm{C}$ in 1 minute in a room at
$22.5^{\circ} \mathrm{C}$ How long will it take to cool from
$46.5^{\circ} \mathrm{C}$ to $40.5^{\circ} \mathrm{C} \mathrm{C}$ in the same
A. 4 minutes
B. 2 minutes
C. 1 minutes
D. 3 minutes

D Watch Video Solution

12. The dimensions of the ratio of magnetic
flux (ϕ) and permeability. (μ) are

$$
\begin{aligned}
& \text { A. }\left[M^{0} L^{1} T^{0} A^{1}\right] \\
& \text { B. }\left[M^{0} L^{-3} T^{0} A^{1}\right] \\
& \text { C. }\left[M^{0} L^{1} T^{1} A^{-1}\right] \\
& \text { D. }\left[M^{0} L^{2} T^{0} A^{1}\right]
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. A mass m on the surface of the Earth is shifted to a target equal to the radius of the

Earth. If R is the radius and M is the mass of
the Earth, then work done in this process is
A. $\frac{m g R}{2}$
B. mgR
C. 2 mgR
D. $\frac{m g R}{4}$

Answer: A

D Watch Video Solution

14. First overtone frequency of a closed pipe of
length l_{1} is equal to the $2^{n d}$ harmonic
frequency of an l_{2} open pipe of length. The ratio $\frac{l_{1}}{l_{2}}=$
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{2}{3}$

Answer: A

D Watch Video Solution

15. The resistance $R=\frac{V}{I} \quad$ Where
$V=(100 p 5) V$ and $I=(10 \pm 0.2) \quad . \quad$ The
percentage error in R is
A. 5.2%
B. 4.8%
C. 7%
D. 3%

Answer: C

D Watch Video Solution

16. A block rests on a rough inclined plane making an angle of 30° with the horizontal.

The coefficient of static friction between the
block and the plane is 0.8 If the frictional force
on the block is 10 N the mass of the block is

$$
\left(g=10 m s^{-2}\right)
$$

A. 1 kg
B. 2 kg
C. 3 kg
D. 4 kg

Answer: B

D Watch Video Solution
17. Two particle of masses m_{1} and m_{2} have equal kinetic energies . The ratio of their momenta is
A. $m_{1}: m_{2}$
B. $m_{2}: m_{1}$
C. $\sqrt{m}_{1}: \sqrt{m}_{2}$
D. $m_{1}^{2}: m_{2}^{2}$

Answer: C
(Watch Video Solution
18. The pressure at the bottom of a liquid tank is not proportional to the
A. Acceleration due to gravity
B. Density of the liquid
C. Height of the liquid
D. Area of the liquid surface

Answer: D

D Watch Video Solution
19. A Carnot engine takes 300 calories of heat from a source at 500 K and rejects 150 calories of heat to the sink. The temperature of the sink is
A. 125 K
B. 250 K
C. 750 K
D. 1000 K

Answer: B
20. The pressure of an ideal gas is Increased by keeping temperature constant . The kinetic energy of molecules
A. Decreases
B. Increases
C. Remains same

D. Increases or decreases depending on the

nature of gas
21. A man weighing 60 kg is a lift moving down with an acceleration of $1.8 \mathrm{~m} \mathrm{~s}^{-2}$. The force exerted by the floor on him is
A. 588 N
B. 480 N
C. Zero
D. 696 N

- Watch Video Solution

22. Moment of inertia of a body about two perpendicular axes X and Y in the plane of lamina are $\quad 20 \mathrm{~kg} \mathrm{~m}^{2}$ and $25 \mathrm{~kg} \mathrm{~m}^{2}$ respectively. Its moment of inertia about an axis perpendicular to the plane of the lamina and passing through the point of intersection of X and Y axes is
A. $5 \mathrm{kgm}^{2}$
B. $45 \mathrm{kgm}^{2}$
C. $12-5 \mathrm{kgm}^{2}$
D. $500 \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution

23. Two wires A and B are stretched by the same load. If the areas of cross - section of wire A is double that of B. then the stress in B is
A. Equal to that on A
B. Twice that on A
C. Half that on A
D. Pour times that on A

Answer: B

D Watch Video Solution
24. The magnitude of point charge due to
which the electric field 30 c away has the magnitude $2 \mathrm{~N} \mathrm{C}^{-1}$ will be
A. $2 \times 10^{-11} C$
B. $3 \times 10^{-11} C$
C. $5 \times 10^{-11} C$
D. $9 \times 10^{-11} C$

Answer: A

D Watch Video Solution
25. A mass of 1 kg carrying a change of 2 C is
accelerated through a potential of 1 V . The
velocity acquired by it is
A. $\sqrt{2} m s^{-1}$
B. $2 m s^{-1}$

$$
\begin{aligned}
& \text { C. } \frac{1}{\sqrt{2}} m s^{-1} \\
& \text { D. } \frac{1}{2} m s^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

26. The force of repulsion between two identical positive charge when kept with a separation r in air is F. Half the gap between
the two charges is filled by a dielectric slab of dielectric constant $=4$ Then the new force of repulsion between those two charges become

> A. $\frac{F}{3}$
> B. $\frac{F}{2}$
> C. $\frac{F}{4}$
> D. $\frac{4 F}{9}$

Answer: D

D Watch Video Solution
27. For the arrangement of capacitors as shown in the circuit, the effective capacitance between the points A and B is (capacitance of each capacitor is $4 \mu F$)
A. $4 \mu F$
B. $2 \mu F$
C. $1 \mu F$
D. $8 \mu F$
28. The work done to move a charge on an equipotenital surface is
A. Infinity

B. Less than 1

C. Greater than 1
D. Zero

Answer: D

D Watch Video Solution
29. Two capacitors of $3 \mu F$ and $6 \mu F$ are connected in series and a potential difference of 900 V is applied across the combination.

They are then disconnected and reconnected in parallel. The potential difference across the combination is
A. Zero
B. 100 V
C. 200 V

D. 400 V

Answer: D

D Watch Video Solution

30. Ohm's law is applicable to
A. Diode
B. Transistor
C. Electrolyte
D. Conductor

Answer: D

D Watch Video Solution

31. If the last band on the carbon resistor is absent, then the tolerance is
A. 0.05
B. 0.2
C. 0.1
D. 0.15

Answer: B

D Watch Video Solution

32. The effective resistance between P and Q
for the following network is

A. $\frac{1}{12} \Omega$
B. 21Ω
C. 12Ω
D. $\frac{1}{21} \Omega$

Answer: C

D Watch Video Solution

33. Five identical resistors each of resistance R
$=1500 \Omega$ are connected to a 300 V battery as
shown in the circuit. The reading of the ideal
ammeter A is
A. $\frac{1}{5} A$
B. $\frac{3}{5} A$
C. $\frac{2}{5} A$
D. $\frac{4}{5} A$

Answer: B

D View Text Solution

34. Two cells of internal resistance r_{1} and r_{2}
and of same emf are connected in series
across a resistor of resistance R. If the terminal potential difference across the call of internal resistance r_{1} is zero, then the value of R is

$$
\begin{aligned}
& \text { A. } R=2\left(r_{1}+r_{2}\right) \\
& \text { B. } R=r_{2}-r_{1} \\
& \text { C. } R=r_{1}-r_{2} \\
& \text { D. } R=2\left(r_{1}-r_{2}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

35. The I - V graphs for two different electrical appliances P and Q are shown in the diagram.

If R_{P} and R_{Q} be the resistances of the devices, then
A. $R_{P}=R_{Q}$
B. $R_{P}>R_{Q}$
C. $R_{P}<R_{Q}$
D. $R_{P}=\frac{R_{Q}}{2}$

Answer: B

D View Text Solution

36. Give Biot - Savart formula in vector form.
A. $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I(d \vec{l} \times \vec{r})}{r^{2}}$
B. $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I(d \vec{l} \times \vec{r})}{r^{3}}$

$$
\begin{aligned}
& \text { C. } d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l}}{r^{2}} \\
& \text { D. } d \vec{B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{I d \vec{l}}{r^{3}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

37. An electron is moving in a circle of radius r in a uniform magnetic field B. Suddenly the field is reduced to $\frac{B}{2}$. The radius of the circular path now becomes.
A. $\frac{r}{2}$
B. $2 r$
C. $\frac{r}{4}$
D. $4 r$

Answer: B

D Watch Video Solution

38. A charge q is accelerated through a potential difference V . It is then passed normally through a uniform magnetic field,
where it moves in a circle of radius r. Then potential difference required to move it in a circle of radius $2 r$ is
A. 2 V
B. 4 V
C. 1V
D. 3 V

Answer: B

D Watch Video Solution
39. A cyclotron.s oscillator frequency is 10 MHz and the operating magnetic field is 0.66 T . If the radius of its dees is 60 cm , then the kinetic energy of the proton beam produced by the accelerator is
A. 9 MeV
B. 10 MeV
C. 7 MeV
D. 11 MeV

- Watch Video Solution

40. Needle N_{1}, N_{2} and N_{3} are made of ferromagnetic , a paramagnetic and a diamagnetic substance respectively. A magnet when brought close to them will
A. Attract all three of them
B. Attract N_{1} strongly, N_{2} weakly and repel
N_{3} weakly
C. Attract N_{1} strongly but repel
N_{2} and N_{3} weakly
D. Attract N_{1} and N_{2} strongly but repel
N_{3}

Answer: B

D Watch Video Solution
41. The strength of the Earth's magnetic field is
A. Constant everywhere
B. Zero everywhere
C. Having very high value
D. Varying from place to place on the

Earth.s surface

Answer: D

- Watch Video Solution

42. A jet plane having a wing - span of 25 m is travelling horizontally towards east with a speed of 3600 km /hour. If the the Earth's magnetic field at the location is $4 \times 10^{-4} \mathrm{~T}$ and the angle of dip is 30°, then the potential difference between the ends of the wing is
A. 4 V
B. 5 V
C. 2 V
D. 2.5 V

Answer: B

- Watch Video Solution

43. Which of the following represents the
variation of inductive reactance $\left(X_{L}\right)$ with the
frequency of voltage source (v) ?
A.
B.
C.
D.

Answer: A

D Watch Video Solution

44. The magnetic flux linked with a coil varies
as $\phi=3 t^{2}+4 t+9$. Find the magnitude of the emf induced at $t=2 S$.
A. 8 V
B. 16 V
C. 32 V
D. 64 V

Answer: B

D Watch Video Solution

45. A 100 W bulb is connected to an AC source
of $220 \mathrm{~V}, 50 \mathrm{HZ}$. Then the current flowing
through the bulb is
A. $\frac{5}{11} A$
B. $\frac{1}{2} A$
C. 2A
D. $\frac{3}{4} A$

Answer: A

D Watch Video Solution

46. In the series $L C R$ circuit, the power dissipation is through
A. R
B. L
C. C
D. Both L and C

Answer: A

D Watch Video Solution

47. In Karnatake, the normal domestic power
supply AC is 220 V , 50 Hz . Here 220 V and 50

Hz refer to
A. Peak value of voltage and frequency
B. rms value of voltage and frequency
C. Mean value of voltage and frequency

D. Peak value of voltage and angular

frequency

Answer: B

D Watch Video Solution

48. A step - up transformer operates on a 230

V line and a load current of 2 A . The ratio of
primary and secondary windings is $1: 25$. Then
te current in the primary is
A. 25 A
B. 50 A
C. 15 A
D. 12.5 A

Answer: B

D Watch Video Solution
49. The number of photons falling per second on a completely darkened plate to produce force of $6.62 \times 10^{-5} N$ is n . If the wavelength
of the light falling is $5 \times 10^{-7} \mathrm{~m}$ then $\mathrm{n}=$ $\ldots \times 10^{22}$.
$\left(h=6.62 \times 10^{-34} J s\right)$
A. 1
B. 5
C. 0.2
D. 3.3

Answer: B

- Watch Video Solution

50. An objected is placed at the principle focus of a convex mirror. The image will be at
A. Centre of curvature
B. Principal focus
C. Infinity
D. No image will be formed

Answer: D

D Watch Video Solution

51. An object is placed at a distance of 20 cm
from the pole of a concave mirror of focal
length 10 cm . The distance of the image formed is
A. +20 cm
B. +10 cm
C. -20 cm
D. -10 cm

Answer: C

52. A candle placed 25 cm from a lens forms an

 image on a screen placed 75 cm on the other side of the lens. The focal length and type of the lens should beA. +18.75 cm and convex lens
B. -18.75 cm and concave lens
C. +20.25 cm and convex lens
D. -20.25 cm and concave lens

D Watch Video Solution

53. A plane wavefront of wavelength λ is
incident on a single slit of width a. The angular
width of principal maximum is
A. $\frac{\lambda}{a}$
B. $\frac{2 \lambda}{a}$
C. $\frac{a}{\lambda}$
D. $\frac{a}{2 \lambda}$

Answer: B

D Watch Video Solution

54. How will the diffraction pattern of single
slit change when yellow light is replaced by blue light? The fringes will be:
A. Remain unchanged
B. Become wider
C. Disappear
D. Become narrower

Answer: D

D Watch Video Solution

55. In Young's double slit experiment , two wavelengths $\lambda_{1}=780 \mathrm{~nm}$ and $\lambda_{2}=520 \mathrm{~nm}$ are used to obtain interference fringes. If the $n^{t h}$ bright band due to λ_{1} coincides with $(n+1)^{t h}$ bright band due to λ_{2}, then the value of n is
A. 4
B. 3
C. 2
D. 6

Answer: C

D Watch Video Solution

56. In Young.s double slit experiment, slits are separated by 2 mm and the screen is placed at a distance of 1.2 m from the slits. Light consisting of two wavelengths $6500 \AA$ and
$5200 A ̊$ are used to obtain interference fringes.
Then the separation between the fourth bright fringes of two different patterns produced by the two wavelengths is
A. 0.312 mm
B. 0.123 mm
C. 0.213 mm
D. 0.412 mm

Answer: A

57. The maximum kinetic energy of emitted photoelectrons depends on
A. Intensity of incident radiation
B. Frequency of incident radiation
C. Speed of incident radiation
D. Number of photons in the incident
radiation

Answer: B

58. A proton and an α particle are accelerated through the same potential difference V . The ratio of their de Broglie wavelengths is
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: B

D Watch Video Solution
59. The total energy of an electron revolving in the second orbit of hydrogen atom is
A. -13.6 eV
B. -1.51 eV
C. -3.4 eV
D. Zero

Answer: C
60. The period of revolution of an electron in
the ground state of hydrogen atom is T. The period of revolution of the electron in the first excited state is
A. 2 T
B. 4 T
C. $6 T$
D. 8 T

Watch Video Solution

