©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNSTAR PHYSICS

 (KANNADA ENGLISH)$$
\text { K-CET-PHYSICS - } 2016
$$

Mcqs

1. A body falls freely for 10 sec Its average
velocity during this journey (take $=10 m s^{-2}$)
A. $100 m s^{-1}$
B. $10 m s^{-1}$
C. $50 m s^{-1}$
D. $5 m s^{-1}$

Answer: C

D Watch Video Solution

2. Three projecties A, B and C are projected at an angle of $30^{\circ}, 60^{\circ}$ respectively, if R_{A}, R_{B} and R_{C} are ranges of A, B and C respectively
then (velocity of projection is same for A, B and C

$$
\text { A. } R_{A}=R_{B}=R_{C}
$$

B. $R_{A}=R_{C}>R_{B}$
C. $R_{A}<R_{B}<R_{C}$
D. $R_{A}=R_{C}<R_{B}$

Answer: D
(Watch Video Solution
3. The component of a vector \vec{r} along x - axis
will have a maximum value if
A. \vec{r} is along $+v e \mathrm{x}$-axis
B. \vec{r} is along + ve y -axis
C. \vec{r} is along $-v e \mathrm{y}$-axis
D. \vec{r} makes an angle of 45° with the x axis

Answer: A
4. maximum acceleration of the train in which
a 50 Kg bx lying on its florr will remain
stationary (Given : Co - efficient f static friction
between the box and the trains floor is 0.3 and

$$
g=10 m s^{-2}
$$

A. $5.0 m s^{-2}$
B. $3.0 m s^{-2}$
C. $1.5 m s^{-2}$
D. $15 m s^{-2}$

Answer: B

D Watch Video Solution

5. A 12 kg bomb at rest explodes into two piece of 4 kg and 8 kg . If the momentum of 4 kg piece is 20 Ns , the kinetic energy of the 8 kg piece I
A. 25 J
B. 20 J
C. 50 J

D. 40 J

Answer: A

D Watch Video Solution

6. Three bodies a ring (R), a solid cylinder (C)
and a solid sphere (S) having same mass and
same radius roll down the inclined plane
without slipping . They start from rest , if
V_{R}, V_{C} ans V_{S} are velocities of respective
bodies on reaching the bottom of the plane
then

$$
\begin{aligned}
& \text { A. } v_{R}=v_{C}=v_{S} \\
& \text { B. } v_{R}>v_{C}>v_{S} \\
& \text { C. } v_{R}<v_{C}<v_{S} \\
& \text { D. } v_{R}=v_{C}>v_{S}
\end{aligned}
$$

Answer: C

- Watch Video Solution

7. Variation of acceleration due to gravity (g)

with distance x from the centre of the earth is
best represented by ($R \rightarrow$ Radius of the earth)
A.
B.
c.
D.

Answer: D

8. A spring is stretched by applying a load to
its free end. The strain produced in the spring
is
A. Volumetric
B. Shear
C. Longitudinal \& Shear
D. Longtitudinal

Answer: C
9. An ideal fluid flows through a pipe of circular cross section with diameters 5 cm and

10 cm as shown. The ratio of velocities of fluid at A and B is
A. $4: 1$
B. 1:4
C. 2:1
D. 1:2

D View Text Solution

10. A pan filled with hot food cools form $94^{\circ} C$
to $86^{\circ} C$ in 2 minutes. When the roo
temperature is $20^{\circ} \mathrm{C}$. How long will it cool from $74^{\circ} C$ to $66^{\circ} C$?
A. 2 minutes
B. 2.8 minutes
C. 2.5 minutes

D. 1.8 minutes

Answer: B

D Watch Video Solution

11. Four rods with different raddi r and length I
are used to connect two heat reservoirs at
different temperatures . Which one will conduct most heat ?

$$
\text { A. } r=1 \mathrm{~cm}, l=1 m
$$

> B. $r=1 c m, l=\frac{1}{2} m$
> C. $r=2 c m, l=2 m$
> D. $r=2 c m, l=\frac{1}{2} m$

Answer: D

D Watch Video Solution

12. A carnot engine working between 300 K and

400 K has 800 j of useful work. The amount of
heat enegy supplied to the engine from the
A. 2400 J
B. 3200 J
C. 1200 J
D. 3600 J

Answer: B

D Watch Video Solution

13. A particle executive SHM has maximum speed of $0.5 m s^{-1}$ and maximum acceleration
of $1.0 \mathrm{~ms}^{-2}$. The angular freqyency of

Oscillation is

A. $2 \mathrm{rad} \mathrm{s}^{-1}$
B. $0.5 \mathrm{rad} \mathrm{s}^{-1}$
C. $2 \pi \mathrm{rad}^{-1}$
D. $0.5 \pi \mathrm{rad} \mathrm{s}^{-1}$

Answer: A
(Watch Video Solution
14. A source of sound is moving with a velocity
of $50 \mathrm{~ms}^{-1}$ towards a stationary observer.
The Observer measure the frequency of sound as 500 Hz . The appartment frequency of sound
as heard by the observer when source is moving away from hom with the same speed is
(Speed of sound at room temperature $350 m s^{-1}$
A. 400 Hz
B. 666 Hz
C. 375 Hz

D. 177.5 Hz

Answer: C

D Watch Video Solution

15. If there is only one type of charge in the universe, then $\vec{E} \rightarrow$ Electric field, $\overrightarrow{d s} \rightarrow$

Area vector
A. $\oint \vec{E} \cdot \overrightarrow{d s} \neq 0$ on any surface
B. $\oint \vec{E} \cdot \overrightarrow{d s}$ could not be defined
C. $\oint \vec{E} \cdot \overrightarrow{d s}=\infty$ if charge is inside
D. $\oint \vec{E} \cdot \overrightarrow{d s}=0$ if charge is outside, $=\frac{q}{\epsilon_{0}}$

if charge is inside

Answer:

D Watch Video Solution

16. An electron of mass m, Charge e falls
through a distance h meter in a unfirom electric field E. Then time of fall
A. $t=\sqrt{\frac{2 h m}{e E}}$
B. $t=\frac{2 h m}{e E}$
C. $t=\sqrt{\frac{2 e E}{h m}}$
D. $t=\frac{2 e E}{h m}$

Answer: A

D Watch Video Solution

17. $\vec{E}_{a x}$ and $\vec{E}_{e q}$ represent electric field at a point on the axial and equatorial line of a
centre of the dipole, for $r \gg a$

$$
\begin{aligned}
& \text { A. } \vec{E}_{a x}=\vec{E}_{e q} \\
& \text { B. } \vec{E}_{a x}=-\vec{E}_{e q} \\
& \text { C. } \vec{E}_{a x}=-2 \vec{E}_{e q} \\
& \text { D. } \vec{E}_{e q}=2 \vec{E}_{a x}
\end{aligned}
$$

Answer: C

D Watch Video Solution

18. Nature of equipotential surface for a point charge is
A. Ellipsoid with charge at foci
B. Sphere with charge at the centre of the
sphere
C. Sphere with charge on the surface of the
sphere
D. Plane with charge on the surface

Answer: B
19. A particle of mass 1 gm and charge $1 \mu C$ is
held at rest on a frictionaless horizontal
surface at distance 1 m from the fixed charge
2 mc . If the particleis released, it will be repelled. The spedd of the particle when it is at a distance of 10 m from the fixed charge is
A. $60 m s^{-1}$
B. $100 m s^{-1}$
C. $90 m s^{-1}$

D. $180 m s^{-1}$

Answer: D

D Watch Video Solution

20. A capacitor of 8 F is connected as shown.

Charge on the plates of the capacitor.
A. 32 C
B. 40 C

C. 0 C

D. 80 C

Answer: A

D View Text Solution

21. Four metal plates are arranged as shown.

Capacitance between X and $\mathrm{U}(\mathrm{A} \rightarrow$ Area of each plate, $\mathrm{d} \rightarrow$ distance between the plates)
A. $\frac{3}{2} \frac{\varepsilon_{0} A}{d}$
B. $\frac{2 \varepsilon_{0} A}{d}$
C. $\frac{2}{3} \frac{\varepsilon_{0} A}{d}$
D. $\frac{3 \varepsilon_{0} A}{d}$

Answer: C

D View Text Solution

22. Mobility of free electrons in a conductor is
A. directly proportional to electron density

B. directly proportional to relaxation time

C.inversely proportional to electron density
D. inversely proportional to relaxation time

Answer: B

D Watch Video Solution

23. Variation of resistance of the conductor with temperature is as shown

The temperature co-efficient (α) of the

conductor is

A. $\frac{R_{0}}{m}$
B. $m R_{0}$
C. $m^{2} R_{0}$
D. $\frac{m}{R_{0}}$

Answer: D

D View Text Solution

24. Potential difference between A and B in the

following circuit

A. 4 V
B. 5.6 V
C. 2.8 V
D. 6 V

Answer: B

D View Text Solution

25. In the following network potential at .O.

A. 4 V
B. 3 V
C. 6 V
D. 4.8 V

Answer: D
26. Effective resistance between A and B in the
following circuit

A. 10Ω
B. 20Ω
C. 5Ω
D. $20 / 3 \Omega$

Answer: A
27. Two heating coils of resistance 10Ω and 20Ω are connected in parallel and connected to a battery of emf 12 V and internal resistance
1Ω. The power consumed by them are in the ratio
A. $1: 4$
B. 1:3
C. 2:1
D. $4: 1$

Answer: C

- Watch Video Solution

28. A Proton is projected with a uniform velcoity v long the axis of a current carrying solenoid, then
A. the proton will be accelerated along the axis
B. the proton path will be circular about the axis
C. the proton move along helical path
D. the proton will continue to move with
velocity V along the axis

Answer: D

D Watch Video Solution

29. In the cylotron, as radius of the circular path of the charged particle increases ($\omega=$ angular velocity, $\mathrm{v}=$ linear velocity)
A. both ω and v increases
B. ω only increases, v remains constant
C. v increases, ω remains constant
D. v increases, ω decreases

Answer: C

D Watch Video Solution
30. A conducting wire carrying current is arranged as shown. The magnetic field at .O.
A. $\frac{\mu_{0} i}{12}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
B. $\frac{\mu_{0} i}{12}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$
C. $\frac{\mu_{0} i}{6}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
D. $\frac{\mu_{0} i}{6}\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$

Answer: A

D View Text Solution
31. The quantity of a charge that will be transferrred bya current flow of 20 A over 1 hour 30 minutes period is
A. $10.8 \times 10^{3} C$
B. $10.8 \times 10^{4} C$
C. $5.4 \times 10^{3} C$
D. $1.8 \times 10^{4} C$

Answer: B

D Watch Video Solution

32. A galvanometer coil has a resistance of
50Ω and the meter shows full scale deflection
for a current of 5 mA . This galvanometer is
converted into voltmeter of range $0-20 \mathrm{~V}$ by connecting
A. 3950Ω in series with galvanometer
B. 4050Ω in series with galvanometer
C. 3950Ω in parallel with galvanometer
D. 4050Ω in parallel with galvanometer

Answer: A

D Watch Video Solution

33. X_{1} and X_{2} are susceptbiltity of a paramagnetic material at temperature $T_{1} \mathrm{~K}$ and $T_{2} K$ respectively, then
A. $\chi_{1}=\chi_{2}$
B. $\chi_{1} T_{1}=\chi_{2} T_{2}$
C. $\chi_{1} T_{2}=\chi_{2} T_{1}$
D. $\chi_{1} \sqrt{ } T_{1}=\chi_{2} \sqrt{ } T_{2}$

Answer: B

D Watch Video Solution
34. At certain place, the horizontal component of earth.s magnetic field is 3.0 G and the angle dip at that place is 30°. The magnetic field of earth at that location
A. $4.5 G$
B. $5.1 G$
C. $3.5 G$
D. $6.0 G$

Answer: C

35. The Process of superimposing message signal on high frequency wave is called
A. Amplification
B. Demodulation
C. Transmission
D. Modulation

Answer: D
36. A long solenoid with 40 turns per cm carries a current of 1A. The magnetic energy stored per unit volume is \qquad
A. 3.2π
B. 32π
C. 1.6π
D. 64π

Answer: A
37. A wheel with 10 spokes each of length L m
is rotated with a uniform angular velocity ω in
a plane normal ti the magnetic field B. The emf
induced between the axle and the rim of the wheel
A. $\frac{1}{2} N \omega B L^{2}$
B. $\frac{1}{2} \omega B L^{2}$
C. $\omega b L^{2}$
D. $N \omega B L^{2}$

Answer: B

D Watch Video Solution

38. The rms value of current in a 50 Hz AC circuit is 6A. The average value of AC current over a cycle is
A. $6 \sqrt{2}$
B. $\frac{3}{\pi \sqrt{2}}$
C. Zero
D. $\frac{6}{\pi \sqrt{2}}$

Answer: C

- Watch Video Solution

39. A capcacitor of capacitance $10 \mu F$ is connected to an AC source and an AC ammeter . If the source voltage varies as
$V=50 \sqrt{2} \sin 100 \mathrm{t}$, the reading of the ammeter is
A. 50 mA
B. $70.7 \mathrm{~m} A$

C. 5.0 mA

D. 7.07 mA

Answer: A

D Watch Video Solution

40. In a series LCR circuit, the potential drop across L, C and R respectively are $40 \mathrm{~V}, 120 \mathrm{~V}$ and 60 V . Then the source voltage is
A. 220 V

B. 160 V

C. 180 V

D. 100 V

Answer: D

D Watch Video Solution

41. In a series LCR circuit, and alternating emf
(v) and current (i) are given by the equation
$v=v_{0} \sin \omega t, i=i_{0} \sin \left(\omega t+\frac{\pi}{3}\right)$.
The
average power dissipated in the circuit over a
cycle of $A C$ is
A. $\frac{v_{0} i_{0}}{2}$
B. $\frac{v_{0} i_{0}}{4}$
C. $\frac{\sqrt{3}}{2} v_{0} i_{0}$
D. Zero

Answer: B
(Watch Video Solution
42. Electromagnetic radiation used to sterilise milk is
A. X-ray
B. γ-ray
C. UV rays
D. Radiowaves

Answer: C
(Watch Video Solution
43. A plane glass plate is placed over a various coloured letters (violet, green, yellow, red). The letter which appears to raised more is
A. Red
B. Yellow
C. Green
D. Violet

Answer: D

44. A ray of light passes through four transparent media with refractive index n_{1}, n_{2}, n_{3} and n_{4} as shown. The surface of all media are parallel

If the emergent ray $D E$ is parallel to incident ray $A B$, then

$$
\text { A. } n_{1}=n_{4}
$$

B. $n_{2}=n_{4}$

$$
\begin{aligned}
& \text { C. } n_{3}=n_{4} \\
& \text { D. } n_{1}=\frac{n_{2}+n_{3}+n_{4}}{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

45. Focal length of a convex lens is 20 cm and
its RI is 1.5 . it prodcued an erect, enlarged image if the distance of the object from the lens is
A. 40 cm
B. 30 cm
C. 15 cm
D. 20 cm

Answer: C

D Watch Video Solution
46. A ray of light suffers a minimum deviation when incident on a equilateral prism of refractive index $\sqrt{2}$. The angle of incidence is
A. 30°
B. 45°
C. 60°
D. 50°

Answer: B

D Watch Video Solution

47. In Young.s double slit experiment the source is white light. One slit is covered with
red filter and the other with blue filter. There shall be
A. Alternate red \& blue fringes
B. Alternate drk \& pink fringes
C. Alternate dark \& yellow fringes
D. No interference

Answer: D

D Watch Video Solution

48. Light of wavelength 600 nm is incident normally on a slit of width 0.2 mm . The anuglular width of central maxima in the diffraction pattern is (measured from miminum to minimum)
A. $6 \times 10^{-3} \mathrm{rad}$
B. $4 \times 10^{-3} \mathrm{rad}$
C. $2.4 \times 10^{-3} \mathrm{rad}$
D. $4.5 \times 10^{-3} \mathrm{rad}$

Answer: A
49. for what distance is ray optics os good approximation when the aperture is 4 mm and the wavelength of light is 400 nm ?
A. 24 m
B. 40 m
C. 18 m
D. 30 m
50. The variation of photo-current with collector potential for different frequencies of incident radiation $v_{1} v_{2}$ and v_{3} is as shown in the graph, then
A. $v_{1}=v_{2}=v_{3}$
B. $v_{1}>v_{2}>v_{3}$
C. $v_{1}<v_{2}<v_{3}$

D. $v_{3}=\frac{v_{1}+v_{2}}{2}$

Answer: C

D View Text Solution

51. The de Brogle wavelength of an electron
accelrated to a potential of 400 V is
approximately
A. 0.03 nm
B. 0.04 nm
C. 0.12 nm

D. 0.06 nm

Answer: D

D Watch Video Solution

52. Total energy of electron in an excited state
of hydrogen atom is -3.4 eV . The kinetic and potential energy of electron on this state

$$
\text { A. } K=-3.4 e V U=-6.8 e V
$$

$$
\text { B. } K=3.4 e V U=-6.8 e V
$$

C. $K=-6.8 e V U=+3.4 e V$

$$
\text { D. } K=+10.2 e V U=-13.6 e V
$$

Answer: B

D Watch Video Solution

53. When electron jumps from $\mathrm{n}=4$ level to $\mathrm{n}=$

1 level, the angular momentum of electron changes
A. $\frac{h}{2 \pi}$
B. $\frac{2 h}{2 \pi}$
C. $\frac{3 h}{2 \pi}$
D. $\frac{4 h}{2 \pi}$

Answer: C

D Watch Video Solution
54. A radio - active sample of half- life 10 days
contains $1000 \times$ nuclei . Number of original nuclie present after 5 days is
A. $707 x$
B. 750 x
C. 500x
D. 250 x

Answer: A

D Watch Video Solution

55. An element X decays into element Z by twostep process.
$X \rightarrow Y+{ }_{2}^{4} \mathrm{He}$
$Y \rightarrow Z+2 \bar{e}$ then
A. $X \& Z$ are isobars
B. $X \& Y$ are isotopes
C. $X \& Z$ are isotones
D. $X \& Z$ are isotopes

Answer: D
(Watch Video Solution
56. A nucleus of amss 20 u emits a γ photon of energy 6 MeV . If the emission assume to occur when nuclues is free and at rest then the nulceus will have kintetic energy nearest to
(take $1 u=1.6 \times 10^{-27} \mathrm{Kg}$)
A. 10 KeV
B. 1 KeV
C. 0.1 KeV
D. 100 KeV

Answer: B

- Watch Video Solution

57. Cosntant DC voltage is required from a variable AC voltage. Which of the following is correct order of operation ?
A. Regulator, filter, rectifier
B. Rectifier, regulator, filter
C. Rectifier, filter, regulator
D. Filter, regulator, rectifier
58. In a transistor , the collector current varies
by 0.49 mA and emitter current varies by
0.50 mA current gain β measured is
A. 49
B. 150
C. 99
D. 100
59. Identify the logic operation carried out by
the following circuit.

A. AND
B. NAND
C. NOR
D. OR

Answer: D

D Watch Video Solution

