

PHYSICS

BOOKS - SUNSTAR PHYSICS (KANNADA ENGLISH)

K-CET-PHYSICS-2015

Multiple Choice Questions

1. Core of electromagnets are made of ferromagnetic material which has

- A. Low permeability and low retentivity
- B. Low permeability and high retentivity
- C. High permeability and high retentivity
- D. High permeability and low retentivity

Answer: D

Watch Video Solution

2. If there is no torsion in the suspension thread, then the time period of a magnet executing SHM is

A.
$$T=2\pi\sqrt{rac{MB}{I}}$$

B.
$$T=2\pi\sqrt{rac{I}{MB}}$$

C.
$$T=rac{1}{2\pi}\sqrt{rac{I}{MB}}$$

D.
$$T=rac{1}{2\pi}\sqrt{rac{M}{I}}$$

Answer: B

Watch Video Solution

3. Two parallel wires 1 m apart carry currents of 1 A and 3 A respectively in opposite directions. The force per unit length acting

between these two wires is

A.
$$6 imes 10^{-5} Nm^{-1}$$
 attractive

B.
$$6 imes 10^{-5} Nm^{-1}$$
 repulsive

C.
$$6 imes 10^{-7} Nm^{-1}$$
 attractive

D.
$$6 imes 10^{-7} Nm^{-1}$$
 repulsive

Answer: D

4. A galvanometer of resistance 50Ω gives a full scale deflection for a current $5\times 10^{-4}A$.

A. The resistance that should be connected in series with the galvanometer to read 3 V is

A. 5950Ω

 $\mathrm{B.}\ 5059\Omega$

 $\mathsf{C.}\ 5050\Omega$

 $\mathsf{D.}\ 595\Omega$

Answer: A

Watch video Solution

5. A cyclotron is used to accelerate

A. both positively and negatively charged particles

B. only negative charged particles

C. only positively charged particles

D. neutron

Answer: A

6. A transformer is used to light 100 W - 110 lamp from 220 V mains. If the main current is 0.5 A, the efficiency of the transformer is

A. 0.9

B. 0.96

C. 0.95

D. 0.9

Answer: D

7. In an LCR circuit, at resonance

A. the current leads the voltage by $\pi/2$

B. the current is minimum

C. the impedance is maximum

D. the current and voltage are in phase

Answer: D

8. An aircraft with a wingspan of 40 m flies with a speed of 1080 km/hr in the eastward direction at a constant altitude in the northern hemisphere, where the vertical component of the earth's magnetic field 1.75×10^{-5} . Then the emf developed between the tips of the wings is

A. 2.1V

B. 0.21V

C. 0.34V

D. 0.5V

Answer: B

Watch Video Solution

9. Two colis have a mutual inductance 0.005 H. The current changes in the first coil according to the equation where A and The maximum value of the emf induced in the second coil is

- A. 2π
- $B. \pi$
- $\mathsf{C.}\ 5\pi$

D. 2π

Answer: C

Watch Video Solution

10. The magnetic susceptibility of a paramagnetic material at is 0.0075 and its value at will be

A. 0.0075

B. 0.015

C.0.0030

D. 0.0045

Answer: B

Watch Video Solution

11. In a Young.s doubles slit experiment the slit separation is 0.5m from the slits. For a monochromatic light of wavelength 500nm, the distance of 3^{rd} maxima from 2^{nd} minima on the other side is

- A. 2.25mm
- B. 22.5mm
- C. 2.5mm
- D. 2.75mm

Answer:

Watch Video Solution

12. Calculate the focal length of a reading glass of a person if his distance of distinct vision is 75 cm.

- A. 100.4cm
- B. 75.2cm
- C. 37.5cm
- D. 25.6cm

Answer: C

Watch Video Solution

13. A person wants a real image of his own, 3 times enlarged. Where should he stand infront

of a concave mirror of radius of curvature 30 cm?

A. 20cm

B. 90cm

C. 30cm

D. 10cm

Answer: A

14. If ε_0 and μ_0 are the permittivity and permeability of free space and are the corresponding quantities for a medium, then refractive index of the medium is

A. Insufficient information

C.
$$\sqrt{rac{\mu arepsilon}{\mu_0 arepsilon_0}}$$

C.
$$\sqrt{rac{\mu arepsilon}{\mu_0 arepsilon_0}}$$
D. $\sqrt{rac{\mu_0 arepsilon_0}{\mu arepsilon}}$

Answer: C

Watch video Solution

15. The average power dissipated in a pure inductor

A. zero

B.
$$rac{VI^2}{4}$$

 $\mathsf{C}.\,VI^2$

D.
$$\frac{1}{2}VI$$

Answer: A

16. An particle of energy 5 MeV is scattered through 180° by gold nucleus. The distance of closest approach is of the order of

A.
$$10^{-16} cm$$

B.
$$10^{-14} cm$$

$$\mathsf{C.}\,10^{-12}cm$$

D.
$$10^{-10} cm$$

Answer: C

17. Find the de-Broglie wavelength of an electron with kinetic energy of 120 eV.

A. 124pm

B. 112pm

C. 102pm

D. 95pm

Answer: B

18. Light of two different frequencies whose photons have energies 1 eV and 2.5 eV respectively, successively illuminate a metallic surface whose work function is 0.5 eV. Ratio of maximum speeds of emitted electrons will be

- A. 1:1
- B. 1:2
- C. 1: 4
- D. 1:5

Answer: B

19. The polarizing angle of glass is 57°. A ray of light which is incident at this angle will have an angle of refraction as

- A. 38°
- B. 43°
- C. 33°
- D. 25°

20. To observe diffraction, the size of the obstacle

A. should be of the order of wavelength

B. should be much larger than the

wavelength

C. should be $\lambda/2$, where λ is the

wavelength

D. has no relation to wavelength

Answer: A

Watch Video Solution

21. A radioactive decay can form an isotope of the original nucleus with the emission of particles

A. four lpha and one eta

B. one α and one β

C. one α and two β

D. one α and four β

Answer: C

- 22. The half life of a radioactive substance is 20 minutes. The time taken between 50% decay and 87.5% decay of the substance will be
 - A. 10 minutes
 - B. 25 minutes
 - C. 40 minutes
 - D. 30 minutes

Answer: C

Watch Video Solution

23. A nucleus at rest splits into two nuclear parts having radii in the ratio 1 : 2. Their velocities are in the ratio

A. 2:1

B. 4:1

C. 6:1

D. 8:1

Answer: D

Watch Video Solution

24. What is the wavelength of light for the least energetic photon emitted in the Lyman series of the hydrogen spectrum?

A. 150nm

B. 122nm

C. 102nm

D. 82nm

Answer: B

Watch Video Solution

25. If an electron in hydrogen atom jumbs from an orbit of level n = 3 to an orbit of level n = 2, the emitted radiation has a frequency

A.
$$\frac{5RC}{36}$$

$$\text{B. } \frac{8RC}{9}$$

$$\mathsf{C.}\;\frac{RC}{25}$$

D.
$$\frac{3RC}{27}$$

Answer: A

Watch Video Solution

26. The circuit has two oppositely connected ideal diodes in parallel. What is the current flowing in the circuit?

A. 1.33A

B. 2.31A

C. 2.0A

D. 1.71A

Answer: D

View Text Solution

27. Amplitude modulation has

A. one carrier with high frequency

B. one carrier with infinite frequencies

C. one carrier

D. one carrier with two side band frequencies

Answer: D

Watch Video Solution

28. An LED is constructed from a pn junction based on a certain semi-conducting material whose energy gap is 1.9 eV. Then the wavelength of the emitted light is

A.
$$9.1 imes10^{-5}m$$

B.
$$6.5 imes10^{-7}m$$

C.
$$1.6 imes10^{-8}m$$

D.
$$2.9 imes 10^{-9} m$$

Answer: B

Watch Video Solution

29. The waves used for the line - of - sight (LOS) communication is

- A. sky waves
- B. sound waves
- C. space waves
- D. ground waves

Answer: C

30. The given truth table is for

Input		Output
A	В	Y
0	0	- 1
0	1	. 1
10	0	1
1	1	0 *-

- A. NOR gate
- B. NAND gate
- C. OR gate
- D. AND gate

Answer: B

31. The input characteristics of a transistor in CE mode is the graph obtanied by plotting

- A. I_B against I_C at constant V_{BE}
- B. I_B against I_C at constant V_{CE}
- C. I_B against V_{CE} at constant V_{BE}
- D. I_B against V_{BE} at constant V_{CE}

Answer: D

32. A particle is projected with a velocity v so that its horizontal range twice the greatest height attained. The horizontal range is

A.
$$rac{v^{2}}{2g}$$

B.
$$\frac{4v^2}{5a}$$

C.
$$\frac{2v^2}{3a}$$

D.
$$\frac{v^2}{a}$$

Answer: D

33. The velocity -time graph for two bodies A and B shown. Then the acceleration of A and B are in the ratio

A. $\cos 25^{\circ}$ to $\cos 50^{\circ}$

B. $\sin 25^{\circ}$ to $\sin 50^{\circ}$

C. $\tan 25^{\circ}$ to $\tan 50^{\circ}$

D. $\tan 25^{\circ}$ to $\tan 40^{\circ}$

Answer: C

View Text Solution

34. The ratio of the dimensions of Planck constant and that of moment of inertia has the dimensions of

A. velocity

B. angular momentum

C. frequency

D. time

Answer: C

Watch Video Solution

35. Moment of interia of a thin uniform rod rotating about the perpendicular axis passing through its center is I. If the same rod is bent into a ring and its moment of inertia about its diameter is

A.
$$5/3\pi^2$$

B.
$$2/3\pi^2$$

C.
$$8/3\pi^2$$

D.
$$3/2\pi^2$$

Answer: B

Watch Video Solution

36. If the mass of a body is M on the surface of the earth, the mass of the same body on the surface of the moon is

A. zero

B. 6M

C. M

D. M/6

Answer: C

Watch Video Solution

37. The ratio of angular speed of a second-hand to the hour-hand of a watch is

A. 72:1

B. 3600:1

C.60:1

D. 720:1

Answer: D

Watch Video Solution

38. The kinetic energy of a body of mass 4 kg and momentum 6 N s will be

A. 5.5J

B. 4.5J

C. 3.5J

D. 2.5J

Answer: B

Watch Video Solution

39. A stone of mass 0.05 kg is thrown vertically upwards. What is the direction and magnitude of net force on the stone during its upward motion?

- A. 9.8 N vertically downwards
- B. 0.98N vertically downwards
- C. 0.49N vertically downwards

D. 0.49N vertically downwards

Answer: C

Watch Video Solution

40. The ratio of kinetic energy to the potential energy of a particle executing SHM at a distance equal to half its amplitude, the distance being measured from its equilibrium position is

A. 8:1

- B.2:1
- C. 4:1
- D. 3:1

Answer: D

Watch Video Solution

41. 1 gram of ice is mixed with 1 gram of steam.

At thermal equilibrium, the temperature of the mixture is

- A. $55\,^{\circ}\,C$
- B. $50^{\circ}C$
- C. $100^{\circ} C$
- D. $0^{\circ}C$

Answer: C

Watch Video Solution

42. What is heated from 0°C to 10°C, then its volume

A. first decreases and then increases

B. does not change

C. increases

D. decreases

Answer: A

Watch Video Solution

43. The efficiency of a Carnot engine which operates between the two temperatures

 $T_1=500K$ and $T_2=300K$ is

- A. 0.4
- B. 0.75
- C. 0.25
- D. 0.5

Answer: A

Watch Video Solution

44. The ratio of hydraulic stress to the corresponding strain is known as

- A. Rigidity modulus
- B. Young.s modulus
- C. Bulk modulus
- D. Compressibility

Answer: C

Watch Video Solution

45. The angle between the dipole moment and electric field at any point on the equatorial plane is

- A. $45^{\,\circ}$
- B. 180°
- C. 90°
- D. 0°

Answer: B

Watch Video Solution

46. Pick out the statement which is incorrect

A. Field lines never intersect

B. A negative test charge experiences a force opposite to the direction of the field

C. The electric field forms closed loop

D. The tangent drawn to a line of force represents the direction of electric field

Answer: C

Watch Video Solution

47. Two spheres carrying charges $+6\mu C$ and $9\mu C$, seperated by a distance d , experience a force of repulsion F . When a charge of $-3\mu C$ is given to both the sphere and kept at the same distance as before , the new force of repulsion is

A. F/9

B. F/3

C. 3F

D. F

Answer: B

Watch Video Solution

48. A streched string is vibrating in the second overtone, then the number of nodes and antinodes between the ends of the string are respectively

- A. 2 and 3
- B. 3 and 4
- C. 3 and 2

D. 4 and 3

Answer: D

Watch Video Solution

49. When two tunning forks A and B are sounded together, 4 beats per second are heard. The frequency of the fork B is 384 Hz. When one of the prongs of the fork A is filled and sounded with B, the beat frequency increases, then the frequency of the fork A is

A. 389Hz

B. 379Hz

C. 388Hz

D. 380Hz

Answer: C

Watch Video Solution

50. Three resistances $2\Omega, 3\Omega$ and 4Ω are connected in parallel . The ratio of currents

passing through them when a potential differences is applied across its ends will be

- A. 4:3:2
- B. 5:4:3
- C. 6:4:3
- D. 6:3:2

Answer: C

Watch Video Solution

51. Four identical cells of emf E and and internal resistance r are to be connected in series . Suppose if one of the cell is connected wrongly , the equivalent emf and effective internal resistance of the combination is

- A. 2E and 2r
- B. 2E and 4r
- C. 4E and 2r
- D. 4E and 4r

Answer: B

52. A parallel plate capacitor is charged and then isolated . The effect if increasing the plate separation on charge , potential and capacitance respectively are

- A. constant, increase, decrease
- B. constant, decrease, increase
- C. increases, decreases
- D. constant, decreases, decreases

Answer: A

Watch Video Solution

53. A spherical shell of radius 10 cm is carrying a charge q . If the electric potential at distances of the spherical shell is $V_1,\,V_2\,\,{
m and}\,\,V_3$ respectively , then

A.
$$V_1=V_2< V_3$$

B.
$$V_1 = V_2 > V_3$$

C.
$$V_1 < V_2 < V_3$$

D.
$$V_1 > V_2 > V_3$$

Answer: B

Watch Video Solution

54. Three point charges 3 nC , 6 nC and 9 nC are placed at the corners of an equilateral triangle of side $0.1\ m$. The potential energy of the system is

A. 8910J

- B. 89100J
- C. 9910J
- D. 99100J

Answer:

Watch Video Solution

55. In the circuit shown below, the ammeter and the voltmeter readings are 3A and 6V respectively, Then the value of the resistance R

is

- A. $\geq 2\Omega$
- B. $< 2\Omega$
- C. $> 2\Omega$
- $\mathsf{D.}\,2\Omega$

Answer: B

View Text Solution

56. Two cells of emf E_1 and E_2 are joined in opposition (such that $E_1 > E_2$). If r_1 and r_2 be the internal resistance and R be the external resistance , then the terminal potential difference is

A.
$$rac{E_1-E_2}{r_1+r_2+R} imes R$$

B.
$$rac{E_1-E_2}{r_1+r_2} imes R$$

C.
$$rac{E_1-E_2}{r_1+r_2+R} imes R$$

D.
$$rac{E_1+E_2}{r_1+r_2} imes R$$

Answer: A

Watch Video Solution

57. A proton beam enters a magnetic field of $10^{-4}~{
m Wb}~m^{-2}~{
m Wb}$ normally. If the specific charge of the proton is $10^{11}~{
m C}~kg^{-1}$ and its velocity is $10^9~{
m m}~s^{-1}$ then the radius of the circle described will be

A. 1m

B. 100m

C. 10m

D. 0.1m

Answer: B

Watch Video Solution

58. Two concentric coils each of radius equal to 2π cm are placed right angles to each other. If 3 A and 4 A are the currents flowing through the two coils respectively. The magnetic

induction (in $Wbm^{\,-\,2}$) at the center of the coils will be

A.
$$7 imes10^{-5}$$

B.
$$5 imes 10^{-5}$$

$$c. 10^{-5}$$

D.
$$12 imes 10^{-5}$$

Answer: B

Watch Video Solution

59. The resistance of the bulb filament is 100 at a temperature of $100^{\circ} C$. If its temperature coefficient of resistance be $0.005 per^{\circ} C$, its resistance will become 200Ω at a temperature

- A. $200\,^{\circ}\,C$
- B. $500^{\circ}C$
- C. $400^{\circ} C$
- D. $300^{\circ}C$

Answer: C

Vatch Video Solution

Water video Solution

60. In Wheatstone's network P = $2\Omega,\,Q=2\Omega,\,R=2\Omega$ and $S=3\Omega$ The resistance with which S is to shunted in order that the bridge may be balanced is

A. 6Ω

B. 4Ω

 $\mathsf{C.}\ 2\Omega$

D. 1Ω

Answer: A

Watch Video Solution