© 'doubtnut

PHYSICS

BOOKS - SUNSTAR PHYSICS

(KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JULY =2015

1. State Ampere's circuital law. Using it, derive
the expression for magnetic field at a point due to a long current carrying conductor .

D Watch Video Solution

2. Define:
(a) Magnetic declination (b)Magnetic dip.

Mention the S.I. unit of magnetisation.
3. Give the expression for energy stored in an inductance coil carrying current.

- Watch Video Solution

4. What is the principle behind the working of
a transformer ? Mention any two sources of energy loss in transformer

D Watch Video Solution

5. Explain Young's double slit-experiment.

D View Text Solution

6. Writer Bohr's postulates for the hydrogen atom model.

- Watch Video Solution

7. Define input resistance, output resistance and current amplification of a transistor.

- Watch Video Solution

Part D

1. Derive an expression for the electric field at
a point due to an infinitely long thin charged straight wire using Gauss Law.
2. Derive $\sigma=\frac{n e^{2} \tau}{m}$
where the symbols have their usual meaning.

D Watch Video Solution

3. Obtain an expression for the force between two straight parallel conductor carrying current. Hence define ampere.
4. Derive th lens maker's formula.

D Watch Video Solution

5. Explain Hallwach's and Lenard's observation
on photoelectric effect.

Define :

a.work function
b. Threshold frequency
c. Stopping potential
6. What is rectification ? With relevant circuit diagram and waveforms, explain the working of $p-n$ junction diode as a full wave rectifier.

D View Text Solution

7. $A B C D$ is a square of side $2 m$. Charges of
$5 n C,+10 n C$ and $-5 n C$ are placed at corners A, B and C respectively. What is the workdone in transferring a charge of 5 nC from
' D ' to the point of intersection of the diagonals?

D Watch Video Solution

8. Two identical cells either in series or in parallel combination, gives the same current of 0.5 A through external resistance of 4Ω.

Find emf and internal resistance of each cell.

D Watch Video Solution

9. A resistor of 100Ω, a pure inductance coil of
$\mathrm{L}=0.5 \mathrm{H}$ and capacitor are in series in a circuit containing an a.c. source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. In
the circuit, current is ahead of the voltage by
30°. Find the value of the capacitance.

D Watch Video Solution

10. A beam of light consisting of two wave lengths $4200 \AA$ and $5600 \AA$ is used to obtain interference fringes in Young's double slit
experiment. The distance between the slits is
0.3 mm and the distance between the slits and the screen is 1.5 m . Compute the least distance of the point from the central maximum, where the bright fringes due to both the wavelengths coincide.

D Watch Video Solution

11. Calculate the half life and mean life of Radium - 226 of activity 1 Ci , Given the mass of

Radium - 226 is 1 gram and 226 gram of radium consists of 6.023×10^{23} atoms.

- Watch Video Solution

