© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNSTAR PHYSICS

(KANNADA ENGLISH)

SUPPLEMENTARY EXAM QUESTION PAPER JUNE-2019

1. How does the resistance of a conductor depend on its length?

D Watch Video Solution
2. State Ampere.s Circuital Law

- Watch Video Solution

3. When does the force acting on a charged
particle moving in a uniform magnetic field is

- Watch Video Solution

4. What is ment by magnetic declination ?

D Watch Video Solution
5. What is hysterisis? Define the terms
'coercivity' and 'retentivity' of a ferromagnetic material.
6. Mention any three application of eddy currents.

D Watch Video Solution

7. What the is rest mass energy of a photon?

D Watch Video Solution
8. Which of the following spectral series of hydrogen atom is lying in visible range of electromagnetic wave?

D Watch Video Solution

9. What is isotopes?

D Watch Video Solution
10. Why there is a need for modulation ?

- Watch Video Solution

Part B

1. Give any two practical limitations of Ohm's law.

- Watch Video Solution

2. Draw a neat Labelled diagram of Cyclotron.

D View Text Solution
3. Mention an expression for the magnetic field produced at the centre on the axis of a current carrying Solenoid and Explain the terms

- Watch Video Solution

4. State and explain Gauss's law in magnetism.
5. What is a transformer ? Mention two sources of energy loss in a transformer

D Watch Video Solution
6. Give two uses of UV rays.

D Watch Video Solution

7. Give the two differences between Collector region and Emitter region of a Transistor
8. Draw the block diagram of a generalised communication system.

D Watch Video Solution

Part C

1. Mention and five properties of electric field
lines.
2. Obtain an expression for effective

Capacitance of two Capacitors Connected in series.
(Watch Video Solution
3. How is galvanometer converted into an ammeter?

- Watch Video Solution

4. Write three properties of diamagnetic and ferromagnetic materials

- Watch Video Solution

5. Obtain the relation between radius of curvature and focal length of a concave mirror with necessary ray diagram.
6. Using Huygens principle, show that the angle of incidence is equal to angle of reflection during a plane wave front reflected by a plane surface.

D Watch Video Solution

7. Mention the different methods of electron emission .
8. Give the logic symbol, Boolean expression and truth table of a NAND gate?

D Watch Video Solution

9. Obtain an expression for the electric field intenstiy at a point on the equatorial line of an electric dipole.

D Watch Video Solution

10. Deduce the condition for balance of a wheatstone's bridge using Kirchoffs rules .

- Watch Video Solution

11. Derive an Expression for instantaneous induced emf in an A.C generator

- Watch Video Solution

12. Obtain an expression for the total energy of an electron in the $n^{t h}$ orbit of hydrogen atom in terms of absolute constants.

D Watch Video Solution

13. What is Rectification? Describe with a circuit diagram the working of a p-n junction diode as half wave rectifier with input and output waveforms.
14. $A B C D$ is a square of side 1 m . Charges of $+3 n C,-5 n C$ and $+3 n C$ are placed at the comers A, B and C respectively. Calculate the work done in transferring a charge of $12 \mu c$ from D to the point of intersection of the diagonals?

D Watch Video Solution

15. A network of Resistors is Connected to a

16 V battery with internal resistance 1Ω as
shown in Figure below.
(a) Compute the equivalent resistance of the network
(b) Calculate the total current in the circuit

- Watch Video Solution

16. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR
$R=3 \Omega, L=25.48 \mathrm{mH}$, and $C=796 \mu F$.

Find (a) the impedance of the circuit, (b) the phase difference between the voltage across
the source and the current, (c) the power dissipated in the circuit, and (d) the power factor.

- Watch Video Solution

17. An object of size 3.0 cm is placed 14 cm in
front of a concave lens of focal length 21 cm .

Describe the image produced by the lens.

What happens if the object is moved further away from the lens?

D Watch Video Solution

18. Calculate the binding Energy of an alpha
(α) particle in Mev from the following data.

Mass of Hlium Nucleus $=4.00260$ u

Mass of neutron $=1.008662 u$

Mass of proton $=1.007825 u$
\square

