

MATHS

BOOKS - MBD

POLYNOMIALS

1. Look at the graph in Fig. IV given below. Each is the graph of y = p(x). where p(x) is a polynomial. For each of the graph, find the number of zeroes

Watch Video Solution

2. Look at the graph in Fig. IV given below. Each is the graph of y = p (x). where p (x) is a polynomial.
For each of the graph, find the number of zeroes

Watch Video Solution

3. Look at the graph in Fig. IV given below. Each is the graph of y = p(x). where p(x) is a polynomial.

For each of the graph, find the number of zeroes

of p (x)

4. Look at the graph in Fig. IV given below. Each is the graph of y = p(x). where p(x) is a polynomial. For each of the graph, find the number of zeroes

Watch Video Solution

5. Look at the graph in Fig. IV given below. Each is the graph of y = p (x). where p (x) is a polynomial.For each of the graph, find the number of zeroes

Watch Video Solution

6. Look at the graph in Fig. IV given below. Each is the graph of y = p(x). where p(x) is a polynomial. For each of the graph, find the number of zeroes

7. The graphs of y - p(x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes

of p (x), in each case.

Watch Video Solution

8. The graphs of y - p (x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p (x), in each case.

9. The graphs of y - p(x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

10. The graphs of y - p(x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

11. The graphs of y - p (x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p (x), in each case.

12. The graphs of y - p (x) are given in Fig. below, for some polynomials p(x). Find the number of zeroes of p (x), in each case.

13. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^2 - 2x - 8$.

Watch Video Solution

14. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $:4s^2 - 4s + 1$.

15. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $:6x^2 - 3 - 7x$.

Watch Video Solution

16. Find the zeroes of the following quadratic polynomials and verify the relationship between

the zeroes and the coefficients. : $4u^2 + 8u$.

17. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $t^2 - 15$.

18. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $: 3x^2 - x - 4$.

19. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : $\frac{1}{4}$, -1.

Watch Video Solution

20. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : $\sqrt{2}$, $\frac{1}{3}$.

21. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : $0, \sqrt{5}$.

22. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : 1,1

23. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : -1/4,1/4.

24. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : 4,1.

25. Apply the division algorithm to find the quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2.$

26. Apply the division algorithm to find the quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$.

27. Apply the division algorithm to find the quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = x^4 - 5x + 6, g(x) = 2 - x^2$, **Vatch Video Solution**

28. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm : $t^2 - 3$, $2t^4 + 3t^3 - 2t^2 - 9t - 12$.

29. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm :

 $x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$.

$$x^3 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$
 .

31. Obtain all other zeroes of
$$3x^4 + 6x^3 - 2x^2 - 10x - 5$$
 if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Watch Video Solution

32. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial

g (x), the quotient and remainder were x - 2 and -

2x + 4 respectively find g (x).

33. Give examples of polynomials p (x), g (x), q (x) and r (x), which satisfy the division algorithm and : deg p (x) = deg q .

34. Give examples of polynomials p(x), g(x), q(x)and r(x), which satisfy the division algorithm and : deg r(x) = 0.

35. Give examples of polynomials p (x), g (x), q (x) and r (x), which satisfy the division algorithm and : deg p (x) = deg q (x) .

36. Verify that the number given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes . and the coefficients in each case : $2x^3 + x^2 - 5x + 2, \frac{1}{2}, 1, -2.$

37. Verify that the number given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes . and the coefficients in each case : $x^3 + 4x^2 + 5x - 2, 2, 1, 1$.

38. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, - 7, - 14 respectively.

40. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find

other zeroes.

1. The graphs of y = p(x) are given in figure below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

2. The graphs of y = p(x) are given in figure below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

3. The graphs of y = p(x) are given in figure below, for some polynomials p(x). Find the number of

4. The graphs of y = p (x) are given in figure below,

5. The graphs of y = p (x) are given in figure below,

6. The graphs of y = p (x) are given in figure below,

7. The graphs of y = p(x) are given in figure below,

zeroes of p (x), in each case.

8. The graphs of y = p(x) are given in figure below,

9. The graphs of y = p (x) are given in figure below,

Watch Video Solution

10. The graphs of y = p (x) are given in figure below, for some polynomials p (x). Find the

number of zeroes of p (x), in each case.

11. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $:2x^2 - 8x + 6$.

12. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $: 3x^2 + 5x - 2$.

Watch Video Solution

13. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^2 + 7x + 10$.

14. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $:x^2 - 3$.

Watch Video Solution

15. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^2 + 2\sqrt{2}x - 6$.

16. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : 2/3,(-1)/3.

Watch Video Solution

17. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : $\frac{-1}{\sqrt{2}}$, $2\sqrt{2}$.

18. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : -a, (-1)/a .

19. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : $\sqrt{3}$, 1.

20. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : $\sqrt{2}$, $3\sqrt{2}$.

Watch Video Solution

21. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : -3,2

22. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $2x^3 - 5x^2 - 14x + 8$

Watch Video Solution

23. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $x^3 - 4x^2 + 5x - 2$.

24. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $2x^3 + x^2 - 5x + 2$.

Watch Video Solution

25. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $x^3 - 2x^2 - x + 2$.

Match Mideo Colution

26. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $x^3 - 4x^2 + x + 6$.

Watch Video Solution

27. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the

coefficientsin

$$2x^3-3x^2-17x+30,\;-3,2,\,{5\over 2}$$
 .

28. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case. : $x^3 - 6x^2 + 11x - 6$, ; 1, 2, 3.

29. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case. : $x^3 + 13x^2 + 32x + 20$, -1, -2, -10.

Watch Video Solution

30. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below :

$$p(x)=x^4-3x^2+2x+5, g(x)=x-1\,.$$

31. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = y^3 + y^2 + 2y + 3$, g(x) = y + 2.

Watch Video Solution

Match Mideo Colution

32. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = 2x^4 + x^3 - 14x^2 - 15x - 8$, $g(x) = x^2 + 3x + 2$.

33. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below :

$$p(x)=x^3-6x^2+2x-4, g(x)=x-1\,.$$

Watch Video Solution

34. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below : $p(x) = 2x^2 + 3x + 1$, g(x) = x + 2.

35. Apply the division algorithm to find quotient and remainder on dividing p (x) by g (x) as given below :

$$p(x)=3x^3+x^2+2x+5, g(x)1+2x+x^2\,.$$

Watch Video Solution

$$g(x)=2x-1, p(x)=4x^3-12x^2+14x-3$$
 .

37. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm :

 $g(x)=x^2-3x+2, p(x)2x^4-6x^3+3x^2+3x-2$

Watch Video Solution

algorithm

$$g(x)=3x-2, p(x)=3x^3+x^2-20x+12\,.$$

$$g(y)=y^2-3y+2, p(y)=y^3-6y^2+11y-6\,.$$

40. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm :

 $g(t) = t^3 + 3t + 2, p(t) = 2t^4 + t^3 - 14t^2 - 19t - 6$

Watch Video Solution

$$g(x)=3x+10, p(x)=9x^3-27x^2-100x+300$$

$$g(x)=x-1-x^2, p(x)=3x^2-x^3-3x+5\,.$$

43. Obtain all other zeroes of $t^3 - 3t^2 - 10t + 24$

if twoof its zeroes are 2and-3.

45. Obtain all other zeroes of $2z^4 + z^3 - 14z^2 - 19z - 6$ if two of its zeroes are -1 and -2 .

46. Obtain all other zeroes of $y^4 + 10y^3 + 35y^2 + 50y + 24$ if two of its zeroes are -1 and -3.

47. Find all the zeroes of $2x^4 - 3x^3 - 3x^2 + 6x - 2$ if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Watch Video Solution

48. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $t^3 + 6t^2 + 11t + 6$, -1.

49. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $y^4 - 7y^3 + 9y^2 + 7y - 10, 2, 5$.

50. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $x^3 - 2x^2 - 29x - 42, 7$.

51. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $2x^4 - 7x^3 - 13x^2 + 63x - 45, 1, 3$

