©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - MBD

POLYNOMIALS

Example

1. Look at the graph in Fig. IV given below. Each is
the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.
For each of the graph, find the number of zeroes
of $p(x)$

- Watch Video Solution

2. Look at the graph in Fig. IV given below. Each is
the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.
For each of the graph, find the number of zeroes
of $p(x)$

D Watch Video Solution
3. Look at the graph in Fig. IV given below. Each is the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.

For each of the graph, find the number of zeroes of $p(x)$

D Watch Video Solution

4. Look at the graph in Fig. IV given below. Each is
the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.
For each of the graph, find the number of zeroes
of $p(x)$

- Watch Video Solution

5. Look at the graph in Fig. IV given below. Each is
the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.
For each of the graph, find the number of zeroes
of $p(x)$

- Watch Video Solution

6. Look at the graph in Fig. IV given below. Each is
the graph of $\mathrm{y}=\mathrm{p}(\mathrm{x})$. where $\mathrm{p}(\mathrm{x})$ is a polynomial.
For each of the graph, find the number of zeroes
of $p(x)$

- Watch Video Solution

7. The graphs of $y-p(x)$ are given in Fig. below, for some polynomials $p(x)$. Find the number of zeroes
of $p(x)$, in each case.

- Watch Video Solution

8. The graphs of $y-p(x)$ are given in Fig. below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

D Watch Video Solution
9. The graphs of $\mathrm{y}-\mathrm{p}(\mathrm{x}$) are given in Fig. below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

- Watch Video Solution

10. The graphs of $y-p(x)$ are given in Fig. below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

D Watch Video Solution
11. The graphs of $y-p(x)$ are given in Fig. below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

- Watch Video Solution

12. The graphs of $y-p(x)$ are given in Fig. below,
for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

- Watch Video Solution

13. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}-2 x-8$.

D Watch Video Solution

14. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $4 s^{2}-4 s+1$.
15. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $6 x^{2}-3-7 x$.

- Watch Video Solution

16. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $4 u^{2}+8 u$.
17. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $t^{2}-15$.

D Watch Video Solution

18. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $3 x^{2}-x-4$.
19. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : $\frac{1}{4},-1$.

D Watch Video Solution

20. Find a quadratic polynomial each with the
given numbers as the sum and product of its
zeroes respectively. : $\sqrt{2}, \frac{1}{3}$.
21. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : $0, \sqrt{5}$.

- Watch Video Solution

22. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : 1,1
23. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. : -1/4,1/4 .

- Watch Video Solution

24. Find a quadratic polynomial each with the given numbers as the sum and product of its
zeroes respectively. : 4,1 .
25. Apply the division algorithm to find the quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below
$p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$.

- Watch Video Solution

26. Apply the division algorithm to find the quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below
$p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$.
27. Apply the division algorithm to find the quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below
$p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$,

D Watch Video Solution

28. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm : $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.
29. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.

Watch Video Solution

30. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$.
31. Obtain all other zeroes of
$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$ if two of its zeroes
are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

D Watch Video Solution

32. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $\mathrm{g}(\mathrm{x})$, the quotient and remainder were $\mathrm{x}-2$ and $2 x+4$ respectively find $g(x)$.
33. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and : $\operatorname{deg} p(x)=\operatorname{deg} q$.

- Watch Video Solution

34. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and : $\operatorname{deg} r(x)=0$.
35. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and : $\operatorname{deg} p(x)=\operatorname{deg} q(x)$.

- Watch Video Solution

36. Verify that the number given alongside of the
cubic polynomials below are their zeroes. Also
verify the relationship between the zeroes . and
the coefficients in each case :
$2 x^{3}+x^{2}-5 x+2, \frac{1}{2}, 1,-2$.
37. Verify that the number given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes . and the coefficients in each case
$x^{3}+4 x^{2}+5 x-2,2,1,1$.

D Watch Video Solution

38. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.
39. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$, find a and b .

- Watch Video Solution

40. If two zeroes of the polynomial
$x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

- Watch Video Solution

1. The graphs of $y=p(x)$ are given in figure below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

- Watch Video Solution

2. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

- Watch Video Solution

3. The graphs of $y=p(x)$ are given in figure below, for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

- Watch Video Solution

4. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

D Watch Video Solution
5. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

D Watch Video Solution

6. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

- Watch Video Solution

7. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

- Watch Video Solution

8. The graphs of $y=p(x)$ are given in figure below, for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

D Watch Video Solution
9. The graphs of $y=p(x)$ are given in figure below,
for some polynomials $p(x)$. Find the number of
zeroes of $p(x)$, in each case.

D Watch Video Solution
10. The graphs of $y=p(x)$ are given in figure
below, for some polynomials $p(x)$. Find the
number of zeroes of $p(x)$, in each case.

- Watch Video Solution

11. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $2 x^{2}-8 x+6$.
12. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $3 x^{2}+5 x-2$.

- Watch Video Solution

13. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}+7 x+10$.
14. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}-3$.

D Watch Video Solution

15. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{2}+2 \sqrt{2} x-6$.
16. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : 2/3,(-1)/3 .

- Watch Video Solution

17. Find a quadratic polynomial each with the
given number as the sum and product of its
zeroes respectively. : $\frac{-1}{\sqrt{2}}, 2 \sqrt{2}$.
18. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : -a, (-1)/a .

- Watch Video Solution

19. Find a quadratic polynomial each with the
given number as the sum and product of its
zeroes respectively. : $\sqrt{3}, 1$.
20. Find a quadratic polynomial each with the given number as the sum and product of its zeroes respectively. : $\sqrt{2}, 3 \sqrt{2}$.

D Watch Video Solution

21. Find a quadratic polynomial each with the
given number as the sum and product of its
zeroes respectively. : -3,2
22. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. :
$2 x^{3}-5 x^{2}-14 x+8^{\prime}$

- Watch Video Solution

23. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients.
$x^{3}-4 x^{2}+5 x-2$.
24. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. $2 x^{3}+x^{2}-5 x+2$.

- Watch Video Solution

25. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. $x^{3}-2 x^{2}-x+2$.
26. Find the zeroes of the following cubic polynomials and verify the relationship between the zeroes and the coefficients. : $x^{3}-4 x^{2}+x+6$.

- Watch Video Solution

27. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the
$2 x^{3}-3 x^{2}-17 x+30,-3,2, \frac{5}{2}$.

D Watch Video Solution

28. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the
coefficients in each case. : $x^{3}-6 x^{2}+11 x-6$; $1,2,3$.
29. Verify that the numbers given alongside the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficientsin each case. : $x^{3}+13 x^{2}+32 x+20$, $-1,-2,-10$.

D Watch Video Solution

30. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below

$$
p(x)=x^{4}-3 x^{2}+2 x+5, g(x)=x-1
$$

31. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below : $p(x)=y^{3}+y^{2}+2 y+3, g(x)=y+2$.

(D) Watch Video Solution

32. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given
below : $p(x)=2 x^{4}+x^{3}-14 x^{2}-15 x-8$
$g(x)=x^{2}+3 x+2$.
33. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below
$p(x)=x^{3}-6 x^{2}+2 x-4, g(x)=x-1$.

D Watch Video Solution

34. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below: $p(x)=2 x^{2}+3 x+1, g(x)=x+2$.
35. Apply the division algorithm to find quotient and remainder on dividing $\mathrm{p}(\mathrm{x})$ by $\mathrm{g}(\mathrm{x})$ as given below
$p(x)=3 x^{3}+x^{2}+2 x+5, g(x) 1+2 x+x^{2}$.

(D) Watch Video Solution

36. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$g(x)=2 x-1, p(x)=4 x^{3}-12 x^{2}+14 x-3$.
37. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm

$$
g(x)=x^{2}-3 x+2, p(x) 2 x^{4}-6 x^{3}+3 x^{2}+3 x-2
$$

D Watch Video Solution

38. Check whether the first polynomial is a factor of the second polynomial by applying the division
algorithm
$g(x)=3 x-2, p(x)=3 x^{3}+x^{2}-20 x+12$.

D Watch Video Solution

39. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$g(y)=y^{2}-3 y+2, p(y)=y^{3}-6 y^{2}+11 y-6$.

D Watch Video Solution
40. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm
$g(t)=t^{3}+3 t+2, p(t)=2 t^{4}+t^{3}-14 t^{2}-19 t-6$

- Watch Video Solution

41. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm

$$
g(x)=3 x+10, p(x)=9 x^{3}-27 x^{2}-100 x+300
$$

(D) Watch Video Solution

42. Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm

$$
g(x)=x-1-x^{2}, p(x)=3 x^{2}-x^{3}-3 x+5
$$

- Watch Video Solution

43. Obtain all other zeroes of $t^{3}-3 t^{2}-10 t+24$
if twoof its zeroes are 2and-3.

- Watch Video Solution

> 44. Obtain all other zeroes of
> $y^{4}+y^{3}-7 y^{2}-y+6$ if two of its zeroes are 1
and - 1 .
45. Obtain all other zeroes of
$2 z^{4}+z^{3}-14 z^{2}-19 z-6$ if two of its zeroes are -1 and -2 .

- Watch Video Solution

46. Obtain all other zeroes of
$y^{4}+10 y^{3}+35 y^{2}+50 y+24$ if two of its zeroes
are -1 and -3 .

- Watch Video Solution

47. Find all the zeroes of
$2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ if two of its zeroes are
$\sqrt{2}$ and $-\sqrt{2}$.

- Watch Video Solution

48. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $t^{3}+6 t^{2}+11 t+6,-1$.
49. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $y^{4}-7 y^{3}+9 y^{2}+7 y-10,2,5$.

- Watch Video Solution

50. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $x^{3}-2 x^{2}-29 x-42,7$.
51. Find all the zeroes of given polynomial if their other zeroes are given alongside of the polynomials : $2 x^{4}-7 x^{3}-13 x^{2}+63 x-45,1,3$

- Watch Video Solution

