

MATHS

BOOKS - MBD

REAL NUMBERS

Example

1. Use Euclid's division algorithm to find the HCF of: 135 and 225

Watch Video Solution

2. Use Euclid's division algorithm to find the HCF of: 196 and

38220

Watch Video Solution

3. Use Euclid's division algorithm to find the HCF of: 867 and 255.

4. Show that any positive odd integer is of the form 6q + 1 or 6q + 3 or 6q + 5, where q is some integer.

5. An army contingent of 616 members is to march behind an army band of 32members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

6. Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

7. Use Euclid's division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.

8. Express each number as a product of its prime factors: 140

9. Express each number as a product of its prime factors : 156
Watch Video Solution
10. Express each number as a product of its prime factors : 3825
Watch Video Solution
11. Express each number as a product of its prime factors : 5005
Watch Video Solution
12. Express each number as a product of its prime factors : 7429
Watch Video Solution

13. Find the LCM and HCF of the following pairs of integers and verify that LCM x HCF = Product of the two numbers:: 26 and 91.

14. Find the LCM and HCF of the following pairs of integers and verify that LCM x HCF = Product of the two numbers.: 510 and 92.

15. Find the LCM and HCF of the following pairs of integers and verify that LCM x HCF = Product of the two numbers.: 336 and 54.

16. Find the LCM and HCF of the following integers by applying the prime factorisation method.: 12, 15 and 21.

17. Find the LCM and HCF of the following integers by applying the prime factorisation method.: 17,23 and 29.

18. Find the LCM and HCF of the following integers by applying the prime factorisation method.: 8, 9 and 25.

19. Given that HCF (306, 657) = 9, find LCM (306, 657).

20. Check whether 6^n can end with the digit 0 for any natural number n.

21. Explain why $7 \times 11 \times 13 + 13 \; ext{and} \; 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$ are

composite numbers.

22. There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?

23. Prove that $\sqrt{5}$ irrational.

24. Prove that $3+2\sqrt{5}$ irrational.

25. Prove that the following are irrationals: $\frac{1}{\sqrt{2}}$

26. Prove that the following are irrationals : $7\sqrt{5}$

27. Prove that the following are irrationals : $6+\sqrt{2}$

3125

28. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

29. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

30. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 64/455

31. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 15/1600

343

32. Without actually performing the long division , state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion : 29

33. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal

expansion or a non-terminating repeating decimal expansion :

 $\frac{23}{2^35^2}$

Watch Video Solution

34. Without actually performing the long division , state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

 $2^55^77^5$

Watch Video Solution

35. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 6/15

Watch Video Solution

36. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion : 35/50

37. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion : 77/210

Watch Video Solution

38. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 13/3125.

39. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 17/8.

40. Write down the decimal expansions of those rational numbers which have terminating decimal expansions.: 64/455.

41. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 15/1600.

42. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 29/343.

43. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : $\frac{23}{2^3 \pi^2}$.

44. Write down the decimal expansions of those rational numbers which have terminating decimal expansions.: $\frac{129}{2^55^77^5}$.

45. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 6/15 .

46. Write down the decimal expansions of those rational numbers which have terminating decimal expansions.: 35/50.

47. Write down the decimal expansions of those rational numbers which have terminating decimal expansions. : 77/210.

48. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$, what can you say about the prime factors of q ? :- 43.123456789 .

49. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$, what can you say about the prime factors of q?:- 0.120120001200001200000

50. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$, what can you say about the prime factors of q?:-43. $\overline{123456789}$

Exercise

1. Use Euclid's division algorithm to find HCF of: 36,84

Watch Video Solution

2. Use Euclid's division algorithm to find HCF of: 34,102
Watch Video Solution
3. Use Euclid's division algorithm to find HCF of : 45,75
Watch Video Solution
4. Use Euclid's division algorithm to find HCF of : 112,49
Watch Video Solution
5. Use Euclid's division algorithm to find HCF of : 4052,12576
Watch Video Solution

6. Show that every positive even integer is of the form 2q, for some integer q.

7. Show that every positive odd integer is of the form 2q + 1, for some integer q.

8. Show that every positive odd integer is of the form 4q + 1 or 4q+ 3, where q is some integer.

9. A sweet seller has 420 kaju baths and 130 badam barfis. She wants to stack them in such a way that each stack has the same number and they take up the least area of the tray. What is the number that can be placed in each stack for this purpose?

10. Show that one and only one out of p, p + 2 or p + 4 is divisible by 3.

11. Renu purchases two bags of fertiliser of weights 75 kg and 69 kg. Find the maximum value of weight which can measure the weight of the fertiliser exact number of times.

Water video Solution

12. Two tankers contain 434l and 465 litres of diesel respectively. Find the maximum capacity of a container that can measure the diesel of two tankers exact number of times.

13. Hotel 'A' has 560 tables. Hotel `B' has 400 tables. In each Hotel, the tables are arranged in rows with the same number of tables in each row. What is the greatest possible number of tables in each row in the two hotels?

14. Use Euclid's division algorithm to find the HCF of 420 and 130.

U	Watch '	Video S	olution	

15. Express each number as a product of its prime factors : 32760

16. Express each number as a product of its prime factors : 404

17. Express each number as a product of its prime factors : 120

18. Express each number as a product of its prime factors : 825

watch video Solution

19. Express each number as a product of its prime factors: 2658

20. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers. : 96 and 404

21. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers. : 625 and 1025

22. Find the LCM and HCF of the following pairs of integers and verify that LCM x HCF = Product of the two numbers. : 441 and 539

23. Find the LCM and HCF of the following pairs of integers and verify that LCM \times HCF = Product of the two numbers. : 385 and 2275.

24. Find the LCM and HCF of the following integers by applying the prime factorisation method: 15, 25 and 30

25. Find the LCM and HCF of the following integers by applying the prime factorisation method: 12, 16 and 28

26. Find the LCM and HCF of the following integers by applying the prime factorisation method: 70, 105 and 175

27. Find the LCM and HCF of the following integers by applying the prime factorisation method: 91, 112 and 49

28. Find the LCM and HCF of the following integers by applying the prime factorisation method: 12, 45 and 75

29. Find the LCM and HCF of the following integers by applying the prime factorisation method: 6, 72 and 120

30. Find HCF (96, 404) if LCM (96, 404) = 9696.

31. If HCF (6, 20) is 2, then find LCM (6, 20).

• watch video Solution

32. Check whether 4^n can end with the digit 0 for any natural number n.

33. The Traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively, If they change simultaneously at 7 am at what time will they change simultaneously again?

34. Three boys step off together from the same spot. Their steps measure 63 cm, 70 cm and 77 cm respectively. What is the

minimum distance each should cover so that all can over the distance in complete steps ?

35. Find the least number which when divided by 6, 15 and 18 leave remainder 5 in each case.

Watch Video Solution

36. Check whether 3^n can end with the digit 0 for any natural number n.

37.

are composite numbers.

Watch Video Solution

 $5 \times 4 \times 2 \times 1 + 5$ and $17 \times 15 \times 13 \times 11 \times 9 \times 7 \times 5 \times 3 \times 1 + 7$

38. Every composite number can be expressed (factorized) as a

product of primes.

Watch Video Solution

Watch Video Solution

39. Prove that $5 - \sqrt{3}$ is irrational.

45. Prove that $5+\sqrt{2}$ is irrational.

46. Prove that $\frac{2\sqrt{3}}{3}$ is irrational.

47. Prove that $\frac{2\sqrt{7}}{\sqrt{11}}$ is irrational.

- **48.** Prove that $\frac{\sqrt{5}}{3\sqrt{3}}$ is irrational.
 - Watch Video Solution

- **49.** Prove that $\frac{2}{\sqrt{12}}$ is irrational.
 - Watch Video Solution

- **50.** Prove that $2-\sqrt{3}$ is irrational.
 - Watch Video Solution

- **51.** Prove that $\sqrt{5}+1$ is irrational.
 - Watch Video Solution

52. Prove that $5 - \sqrt{3}$ is irrational.

53. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 2/7.

54. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 14/11.

55. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 27/8.

56. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 35/16.

57. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 47/9.

58. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion: 6/11.

59. Write down the decimal expansion of those rational numbers which have terminating decimal expansions : 43/20 .

60. Write down the decimal expansion of those rational numbers which have terminating decimal expansions : $\frac{411}{(2)^4}$.

61. Write down the decimal expansion of those rational numbers which have terminating decimal expansions : $\frac{35}{(3)^2(11)}$.

62. Write down the decimal expansion of those rational numbers which have terminating decimal expansions : $\frac{2157}{4}$.

63. Write down the decimal expansion of those rational numbers which have terminating decimal expansions : $\frac{349}{{(3)}^2{(10)}^3{(11)}} \ .$

Watch Video Solution

64. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not.If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q ? : 58.567823 .

Watch Video Solution

65. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not.If they

are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q ? : $0.003\overline{352}$.

66. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not.If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q?: 15712121212......

67. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not.If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q?: 8.652365236523 .

Watch Video Solution

68. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q ? : $0.\overline{54}$

Watch Video Solution

69. The following real numbers have decimal expansions as given below. In each case decide whether they are rational or not. If they are rational, and of the form $\frac{p}{q}$ what can you say about the prime factors of q?: 0.00026.

Watch Video Solution

70. Complete the prime factor tree :

71. Complete the prime factorization tree :

72. Complete the prime factorization tree :

Watch Video Solution

73. Complete the prime factorization tree:

74. Every composite number can be (factorised) as a product of primes. True or False

75. $\sqrt{5}$ is an irrational number.

0	Watch Video Solution	

76.
$$2\sqrt{3}$$
 is an irrational number.

Watch Video Solution

77. 3 is a rational number.

78. $3\sqrt{2}$ is an ____ number.

79. $\sqrt{14}$ is an ____ number .

Watch Video Solution
80. HCF of 64 and 96 will be
Watch Video Solution
81. HCF of 56 and 98 will be .
Chiller of 30 and 30 will be
Watch Video Solution
82. 140 is written as the product of factors in the form
Watch Video Solution
83. 150 is written as the product of factors in the form
Watch Video Salution
Watch Video Colution

