

MATHS

BOOKS - MBD

Some Applications Of Trignometry

258

1. A circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the

rope with the ground level is 30° (see fig.).

2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The

distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

Watch Video Solution

259

1. A contractor plants to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at a height of 3 m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case ?

Watch Video Solution

2. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower, is 30° . Find the height of the tower.

Watch Video Solution

260

1. A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60° . Find the length of the string, assuming that there is no slack in the string

2. A 1.5 m tall boy is standing at some distance from a 30 m tall budding. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Watch Video Solution

261

1. From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Watch Video Solution

262

1. A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45° . Find the height of the pedestal.

Watch Video Solution

263

1. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60° . If the tower is 50 m high, find the height of the building.

Watch Video Solution

 Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road the angles of elevation of the top of the poles are 60° and 30° , respectively. Find the height of the poles and the distances of the point from the poles.

Watch Video Solution

264

1. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly

opposite the tower, the angle of elevation of the top of the tower is 60° . From a point 20maway from this point on the same bank, the angle of elevation of the top of the tower is 30° (see fig.). Find the height of the tower and the width of the canal.

1. From the top of a 7m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45° . Determine the height of the tower.

2. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45° . If

one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

266

1. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60° . After some time, the angle of elevation reduces to 30° (see fig.). Find the distance travelled by the balloon during the interval.

1. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30° , which is approaching the foot of the tower with a uniform speed. Six secondslater, the angle of depression of the car is found to be 60° . Find the further time taken by the car to reach the foot of the tower.

2. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

Watch Video Solution

270

1. In the given figure, ABCD is a trapezium in which *ABIICD*. Line-segments RS and LM are drawn parallel to AB such that AJ = JK = KP. If AB = 0.5 m and AP = BQ = 1.8 m, find the length of AC, BD, RS and LM.

Watch Video Solution

2. A man is standing on the deck of a ship, which is 8 m above water level. He observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30° . Calculate the distance of the hill,from the ship and the height of the hill.

O Watch Video Solution

3. The angle of elevation of a jet plane from a point A on the ground is 60° . After a flight of 15 secondsthe angle of elevation changes to

 30° . If the jet plane is flying at a constant height of $1500\sqrt{3}m$, find the speed of the jet plane.

Watch Video Solution

4. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on theopposite bank is 60° . When he moves 40 m away from the bank, he finds the angle of elevation to be 30° . Find the height of the tree and the width of the river.

5. Determine the height of a mountain if the elevation of its top at an unknown distance from the base is 30° and at a distance 10 km further off from the mountain, along the same line, the angle of elevation is 15° . (Use tan $15^{\circ} = 0.27$).

Watch Video Solution

6. The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60° . At a point Y, 40 m vertically above X, the angle of elevation is 45° . Find the height of the tower PQ and the distance XQ.

Watch Video Solution

7. A man on the deck of a ship is 16 m above water level. He observes that the angle of elevation of the top of a cliff is 45° and the

angle of depression of the base is 30° . Calculate the distance of the cliff from the ship and the height of the cliff.

Watch Video Solution

8. From a window (h metres high above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and ϕ respectively. Show that

the height of theopposite house is

 $h(1 + an heta \cot \phi).$

Watch Video Solution

1. An aeroplane, when 3000 m high, passes vertically above another aeroplane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. Find the

vertical distance between the two aeroplanes.

2. A man on the deck of a ship is 12 m above water level. He observes that the angle of elevation of the top of a cliff is 45° , and the angle of depression of the base is 30° . Calculate the distance of the cliff from the ship and the height of the cliff.

3. A pole 5 m high is fixed on the top of a tower. The angle of elevation of the top of the pole observed from a point 'A' on the ground is 60° and the angle of depression of the point 'A' from the top of the tower is 45° . Find the height of the tower

Watch Video Solution

4. From the top of a tower, the angles of depression of two objects on the same side of

the tower are found to be α and β ($\alpha > \beta$). If the distance between the objects is 'p' metres, show that the height 'h' of the tower is given by $h = \frac{p \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$ also determine the height of the tower, if p=50 m, $\alpha = 60^{\circ}$, $\beta = 30^{\circ}$

Watch Video Solution

5. The angle of elevation of the top of a tower from a point A on the ground is 30° . On moving a distance of 20 metres towards the

foot of the tower to a point B, the angle of elevation increases to 60° . Find the height of the tower and distance of the tower from the point A.

Watch Video Solution

6. From the top of a building 15 m high, the angle of elevation of the top of a tower is found to be 30° . From the bottom of the same building, the angle of elevation of the top of the tower is found to be 60°. Find the

height of the tower and the distance between

the tower and the building.

7. The angle of elevation of a jet plane from a point A on the ground is 60° . After a flight of 15 secondsthe angle of elevation changes to 30° . If the jet plane is flying at a constant height of $1500\sqrt{3}m$, find the speed of the jet plane.

8. The angle of elevation θ , of a vertical tower from a point on ground is such that its tangent is $\frac{5}{12}$. On walking 192 metres towards the tower in the same straight line, the tangent of the angle of elevation ϕ is found to be $\frac{3}{4}$. Find the height of the tower

Watch Video Solution

9. The angle of elevation θ of the top of a light house, as seen by a person on the ground, is

such that $an heta = rac{5}{2}$, When the person moves a distance of 240 m. towards the light house, the angle of elevation becomes ϕ such that $an heta = rac{3}{4}$.

Find the height of the light house.

Watch Video Solution

10. The angles of elevation and depression of the top and bottom of a light-house from the top of a building 60 m high are 30° and 60° respectively. Find the difference between the

heights of the light-house and the building

11. The angles of elevation and depression of the top and bottom of a light-house from the top of a building 60 m high are 30° and 60° respectively. Find difference between the lighthouse and the building.

12. From a point on the ground 40 m away from the foot of a tower, the angle of elevation of the top of the tower is 30° . The angle of elevation to the top of a water tank (On the top of the tower) is 45° . Find the height of the tower and the depth of the tank.

13. A tree stands vertically on the bank of a river. From a point on the other bank directly opposite the tree, the angle of elevation of the

top of the tree is 60° . From a point 20 m behind this point on the same bank, the angle of elevation of the top of the tree is 30° . Find the height of the tree and the width of the river.

Watch Video Solution

14. As observed from the top of a light house, 100 m high above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30° to 45° . Determine the distance travelled by the ship during the

period of observation.

15. The angle of elevation of a cloud from a point 200 m above the lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60° . Find the height of the cloud.

16. On a horizontal plane there is a vertical tower with a flag on the top of the tower. At a point 9 metres away from the foot of the tower the angle of elevation of the top and bottom of the flag pole are 60° and 30° respectively. Find the height of the tower and flag pole mounted on it.

Watch Video Solution

17. From a building 60 metres high the angle of depression of the top and bottom of

lamppost are 30° and 60° respectively. Find the distance between lamp post and building. Also find the difference of height between building and lamp post.

Watch Video Solution

18. Two pillars of equal heightstand on either side of a roadway which is 150 m wide. From a point on the roadway between the pillars, the elevations of the top of the pillars are 60° and

 $30^{\,\circ}$. Find the height of the pillars and the

position of the point

19. From the top of a hill 200 m high, the angles of depression of the top and the bottom of a pillar are 30° and 60° respectively. Find the height of the pillar and its distance from the hill.

Watch Video Solution

20. From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30° . A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45° . Find the length of the flagstaff.

Watch Video Solution