© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - MBD

TRIANGLES

Example

1. Fill in the blanks using the correct word given in brackets :- All circles are (congruent,similar)

- Watch Video Solution

2. Fill in the blanks using the correct word given in brackets :- All

- Watch Video Solution

3. Fill in the blanks using the correct word given in brackets :- All Triangles are similar . (isosceles,equilateral).

- Watch Video Solution

4. Fill in the blanks using the correct word given in brackets :- Two polygons of the same number of sides are similar, if :- their corresponding angles are........ (equal , proportional).

- Watch Video Solution

5. Fill in the blanks using the correct word given in brackets :- Two polygons of the same number of sides are similar, if :- their corresponding sides are........ (equal , proportional).

- Watch Video Solution

6. Give two different examples of pair of ,- similar figures.

- Watch Video Solution

7. Give two different examples of pair of ,- non-similar figures.

- Watch Video Solution

8. State whether the following quadrilaterals are similar or not :-

(Watch Video Solution

9. In fig. (i) and (ii), $D E \| B C$. Find $E C$ in (i) and $A D$ in (ii).

- Watch Video Solution

10. E and F are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || OR : $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$.
11. E and F are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || OR : $P E=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$.

- Watch Video Solution

12. E and F are points on the sides $P Q$ and $P R$ respectively of a $\angle P Q R$. For each of the following cases, state whether EF || QR : $P Q=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$.

- Watch Video Solution

13. In fig., $\mathrm{LM} \| \mathrm{CB}$, and $\mathrm{LN} \| \mathrm{CD}$. Prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

- Watch Video Solution

14. In fig. DE \|AC, and DF \|AE prove that $\frac{B F}{E F}=\frac{B E}{E C}$.

15. In fig., A, B and C are points on OP, OQ and OR respectively such that $A B \| P Q$ and $A C \| P R$. Show that $B C \| Q R$.

- Watch Video Solution

16. Using Basic Proportionality theorem, prove thata line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in class IX).

- Watch Video Solution

17. Using converse of Basic Proportionality theorem prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

- Watch Video Solution

18. $A B C D$ is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. show that $\frac{A O}{B O}=\frac{C O}{D O}$.

- Watch Video Solution

19. The diagonals of a quadrilateral $A B C D$ intersect each other at the point o Such that $\frac{A O}{B O}=\frac{C O}{D O}$, show that ABCD is trapezium.

- Watch Video Solution

20. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

21. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

22. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

23. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

24. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and
also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

25. State which pairs of triangles in Fig. are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form :

- Watch Video Solution

26. In fig., $\triangle O D C-\triangle O B A, \angle B O C=125 \circ 0$ and $\angle C D O=70 \circ 0$. Find $\angle D O C, \angle D C O$ and $\angle O A B$.

- Watch Video Solution

27. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point \mathbf{O}. Using a similarity criterion for
two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

- Watch Video Solution

28. In fig., $\frac{Q R}{Q S}=\frac{Q T}{P R}$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \triangle T Q R$.

- Watch Video Solution

29. S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \triangle R T S$.

- Watch Video Solution

30. In figure $\triangle A B E=\triangle A C D$ show that
$\triangle A D E \sim \triangle A B C$.

31. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :- $\triangle A E P \sim \triangle C D P$.

- Watch Video Solution

32. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at
the point P. Show that :- $\triangle A B D \sim \triangle C B E$.

- Watch Video Solution

33. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P. Show that :- $\triangle A E P \sim \triangle A D B$.

- Watch Video Solution

34. In Fig., altitudes AD and CE of $\triangle A B C$ intersect each other at the point P . Show that :- $\triangle P D C \sim \triangle B E C$.

- Watch Video Solution

35. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and BE intersects CD at F . Show that $\triangle A B E \sim \triangle C F B$.

- Watch Video Solution

36. In Fig., ABC and AMP are two right triangles, right angled at B and M respectively. Prove that :- $\triangle A B C \sim \triangle A M P$.

- Watch Video Solution

37. In Fig., $A B C$ and $A M P$ are two right triangles, right angled at B and M respectively. Prove that :- $\frac{C A}{P A}=\frac{B C}{M P}$.

- Watch Video Solution

38. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\frac{C D}{G H}=\frac{A C}{F G}$.
39. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\triangle D C B \sim \triangle H G E$.

- Watch Video Solution

40. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and
$\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, show that :$\triangle D C A \sim \triangle H G F$.

- Watch Video Solution

41. In Fig., E is a point on side CB produced of an isosceles triangle
$A B C$ with $A B=A C$. If $A D \perp B C$ and $E F \perp A C$, prove that
$\triangle A B D \sim \triangle E C F$.

- Watch Video Solution

42. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median $P M$ of
$\triangle P Q R$ (see Fig.). Show that $\triangle A B C \sim \triangle P Q R$.

- Watch Video Solution

43. D is a point on the side BC of a triangle ABC such that $\angle A D C$
$=\angle B A C$. Show that $C A^{2}=\mathrm{CB} . \mathrm{CD}$.

- Watch Video Solution

44. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are proportional to sides $P Q$ and $P R$ and median $P M$ of another
triangle PQR. Prove that $\triangle A B C-\triangle P Q R$.

- Watch Video Solution

45. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long.

Find the height of the tower.
46. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$, Prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

- Watch Video Solution

47. If the areas of two similar triangles are equal, prove that they are congruent.
48. D, E and F are respectively the mid points of the sides $B C$, CA and AB of $\triangle A B C$. Determine the ratio of the areas of triangles DEF and $A B C$.

D Watch Video Solution

49. Prove that the ratio of the areas of two similar triangles is
equal to the square of the ratio of their corresponding medians.

- Watch Video Solution

50. Prove that the areas of the equilateral triangle described on the side of a square is equal to half the area of the equilateral triangle described on one of its diagonal.
51. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$

- Watch Video Solution

52. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$.

- Watch Video Solution

53. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$.
54. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse. :- $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$.

- Watch Video Solution

55. $P Q R$ is a triangle right angled at P and M is a point on $Q R$ such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $P M^{2}=\mathrm{QM} . \mathrm{MR}^{2}$.

- Watch Video Solution

56. In fig., ABD is a triangle right angled at A and $A C \perp B D$. Show that:- $A B^{2}=\mathrm{BC} . \mathrm{BD}$.

- Watch Video Solution

57. In fig., $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that:- $A C^{2}=B C . D C$.

- Watch Video Solution

58. In fig., $A B D$ is a triangle right angled at A and $A C \perp B D$. Show that:- $A D^{2}=\mathrm{BD} . \mathrm{CD}$.

- Watch Video Solution

59. ABC is an isosceles triangle right angled at C . Prove that $A B^{2}$
$=2 A C^{2}$.

- Watch Video Solution

60. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$,
prove that $A B C$ is right triangle.

- Watch Video Solution

61. $A B C$ is an equilateral triangle ofside 2a. Find each of its altitudes.

(Watch Video Solution

62. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

- Watch Video Solution

63. In fig., O is a point in the interior of a triangle $A B C, O D \perp B C$, $\mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp$ AB. Show that:$O A^{2}+O B^{2}+O C^{2}-O D^{2}-O E^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$

- Watch Video Solution

64. In fig., O is a point in the interior of a triangle $A B C, O D \perp B C$, $\mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp$ AB. Show that:-

$$
A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}
$$

D Watch Video Solution

65. A ladder 10 m long reaches a window 8 m above the ground.

Find the distance of the foot of the ladder from base of the wall.

- Watch Video Solution

66. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

- Watch Video Solution

67. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1 \frac{1}{2}$ hours ?

D Watch Video Solution

68. Two poles of heights 6 m and 11 m stand on a plane ground. If
the distance between the feet of the poles is 12 m , find the
distance between their tops.

- Watch Video Solution

69. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

- Watch Video Solution

70. In fig., ABC is triangle in which $\angle A B C>90 \circ 0$ and $\mathrm{AD} \perp \mathrm{BC}$ produced, prove that $A C^{2}=A B^{2}+B C^{2}+2 B C . B D$.

Watch Video Solution
71. In fig., $A B C$ is a triangle in which $\angle A B C<90 \circ 0$, and $A D^{\prime} \perp \quad \mathrm{BC}$ produced, prove that

$A C^{2}=A B^{2}+B C^{2}-2 B C . B D$.

- Watch Video Solution

72. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove that :- $A C^{2}=A D^{2}+B C . D M+\left(\frac{B C}{2}\right)^{2}$.

- Watch Video Solution

73. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove that :- $A B^{2}=A D^{2}-B C . D M+\left(\frac{B C}{2}\right)^{2}$.

- Watch Video Solution

74. In fig., $A D$ is a median of a triangle $A B C$ and $A M \perp B C$.Prove that :- $A C^{2}+A B^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$.

- Watch Video Solution

75. Prove that sum of squares of the diagonals of a parallelogram is equal to sum of squares of its sides.

- Watch Video Solution

76. In fig., two chords AB and CD intersect each other at the point Pprove that :- $\triangle A P C \sim \triangle D P B$.

- Watch Video Solution

77. In fig., two chords $A B$ and $C D$ intersect each other at the point P prove that :- AP.PB=CP.DP.

- Watch Video Solution

78. In fig., two chords $A B$ and $C D$ of a circle intersect each other at point P (when produced) outside the circle prove :-

D Watch Video Solution

79. In fig., two chords $A B$ and CD of a circle intersect each other at point P (when produced) outside the circle prove :- $\mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$

80. In fig., D is a point on side BC of $\triangle A B C$ such that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove that, AD is bisector of $\angle B A C$.

81. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out ? If she pulls in the string at the rate of 5 cm per second, what will the horizontal distance of the fly from her after 12
seconds?

82. Fill in the blank ,- The polygons of same number of sides are similar:- \qquad

- Watch Video Solution

2. Fill in the blank,- The polygons of same number of sides are similar:-

- Watch Video Solution

3. Fill in the blank,- All regular polygons of same number of sides are.

- Watch Video Solution

4. Fill in the blank, ,- A polygon of 10 sides is to a polygon of 11 sides.

D Watch Video Solution

5. In figure, DE is parallel to BC . If $\frac{A D}{D B}=\frac{2}{3}$ and $\mathrm{AC}:=18 \mathrm{~cm}$ find AE.

- Watch Video Solution

6. Given $\angle A B C$ and $\mathrm{DE} \| \mathrm{BC} \mathrm{AD}=4 \mathrm{x}-3, \mathrm{DB}=3 \mathrm{x}-1 \mathrm{AE}=8 \mathrm{x}-7, \mathrm{EC}=$ $5 x-3$ Find the value of x.

- Watch Video Solution

7. M and N are points on the sides $P Q$ and $P R$ respectively of $\angle P Q R$. If $\mathrm{PQ}=1.28 \mathrm{PR}=2.56, \mathrm{PM}=0.16$ and $\mathrm{PN}=0.32$, prove that MN || QR.
8. In figure $A B=6 \mathrm{~cm}, A H=8 \mathrm{~cm}, C K=2.4 \mathrm{~cm}, B C \| H K$, calculate $A K$.

- Watch Video Solution

9. Points P, Q and R lie on sides $B C, C A$ and $A B$ respectively of triangle $A B C$ such that $P Q \| A B$ and $Q R \| B C$, prove that $R P$ || $C A$.

- Watch Video Solution

10. Infigure, if $A B$ II $D C$,find the value of x.

- Watch Video Solution

11. In the given figure, $D E \| B C$. If $A D=3.6 \mathrm{~cm}, A B=9 \mathrm{~cm}$ and $A E=$ 2.4 cm , find EC.

- Watch Video Solution

12. In the given figure, $\mathrm{DE}\left|\mid \mathrm{BC}\right.$. If $\frac{A D}{D B}=\frac{3}{5} \mathrm{AC}=5.6 \mathrm{~cm}$, find AE .

D Watch Video Solution

13. In the given figure, $D E \| B C$. If $A D=x c m, D B=(x-2) c m, A E=(x$ $+2) \mathrm{cm}$ and $\mathrm{EC}=(x-1) \mathrm{cm}$, Find the value of x.

- Watch Video Solution

14. In the given figure, $A B|\mid P Q$ and $A C| \mid P R$. Prove that $B C|\mid Q R$.

- Watch Video Solution

15. Examine each pair of triangles in figures and state which pair of triangles are similar. Also,state thatsimilarity criterion used by
you for confirmation of your answer and write it in symbolic form.

- Watch Video Solution

16. Examine each pair of triangles in figures and state which pair of triangles are similar. Also,state thatsimilarity criterion used by
you for confirmation of your answer and write it in symbolic form.

17. Examine each pair of triangles in figures and state which pair of triangles are similar. Also,state thatsimilarity criterion used by you for confirmation of your answer and write it in symbolic form.

- Watch Video Solution

18. In fig., $\angle A=\angle 1$ Prove that $\triangle B D E \sim \triangle B C A$.

- Watch Video Solution

19. In figure $A B \perp B C$ and $D E \perp A C$. Prove that $\triangle A B C \sim \triangle A E D$.

- Watch Video Solution

20. A vertical stick 20 cm long casts a shadow 6 cm long on the ground. At the same time, a tower casts a shadow 15 m long on the ground, find the height of the tower.

- Watch Video Solution

