©゙’doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

II PUC MARCH-2018

Part A

1. What is an equipotential surface?

2. Define 'drift velocity' of free electrons .

D Watch Video Solution
3. Write any one application of the cyclotron.

D Watch Video Solution

4. State Faraday's law of electromagnetic induction.
5. If the peak value of a.c. current is $4.24 A$, what is its root mean square value?

- Watch Video Solution

6. What is a transformer ? Mention two sources of energy loss in a transformer
7. Two lenses of power $+1.5 D$ and $-0.5 D$ are kept in contact on their principal axis. What is the effective power of the combination ?

- Watch Video Solution

8. The decay of proton to neutron is possible only inside the nucleus. Why ?
9. What is 'depletion region' in a semiconductor diode?

- Watch Video Solution

10.

What is the output of this combination?

Part B

1. Mention any two factors on which the capacitance of a parallel plate capacitor depends.

D Watch Video Solution

2. State Kirchhoff's laws of Electrical network.

3. Define:

(a) Magnetic declination (b)Magnetic dip.

Mention the S.I. unit of magnetisation.

D Watch Video Solution

4. Write an expression for magnetic potential energy of a magnetic dipole kept in a uniform magnetic field and explain the terms.
5. Give any two applications of X-rays.

D Watch Video Solution

6. What is 'myopia' ? How to rectify it?

D Watch Video Solution

7. Draw the diagram representing the schematic arrangement of Geiger-Marsden experimental alpha particle scattering.
8. What are the characteristics of nuclear forces?

D Watch Video Solution

Part C

1. Mention any three properties of an electric charge.
2. State Ampere's circuital law. Using it, derive the expression for magnetic field at a point due to a long current carrying conductor .

D Watch Video Solution

3. What is hysterisis? Define the terms
'coercivity' and 'retentivity' of a ferromagnetic material.
4. Arrive at Snell's law of refraction, using Huygen's principle for refraction of a plane wave.

- Watch Video Solution

5. Writer Bohr's postulates for the hydrogen atom model.

D Watch Video Solution

6. Write the expression for the half life of a radioactive element.

D Watch Video Solution

7. Distinguish between n-type and p-type semiconductos.

D Watch Video Solution

8. Draw the block diagram of generalised communication system.

Part D

1. Give an expression for the electric potential at a point due to a point charge.

- Watch Video Solution

2. Obtain an expression for the equivalent emf

in parallel.

D Watch Video Solution

3. Derive the expression for magnetic field at a point on the axis of a circular current loop.

D Watch Video Solution

4. Derive an expression for the impedance of a
series LCR, circuit, when an AC voltage is
applied to it.
5. Deduce the relation between n, u, v, Q, R for refraction at a spherical surface, where the symbols have their usual meaning.

- Watch Video Solution

6. What is a rectifier ? With suitable circuit describe the action of a full wave rectifier by drawing input and output waveforms.

Watch Video Solution

7. Three charges each equal to $+4 n C$ are placed at the three comers of a square of side 2 cm . Find the electric field at the fourth corner.

D Watch Video Solution

8. 100 mg mass of nichrome metal is drawn into a wire of area of cross-section 0.05 mm .

Calculate the resistance of this wire. Given
density of nichrome $8.4 \times 10^{3} \mathrm{kgm}^{-3}$ and resistivity of the material as $1.2 \times 10^{-6} \Omega \mathrm{~m}$.

- Watch Video Solution

9. A circular coil of radius 10 cm and 25 turns is rotated about its vertical diameter with an angular speed of $40 \mathrm{rads}^{-1}$, in a uniform horizontal magnetic field of magnitude
$5 \times 10^{-2} T$. Calculate the maximum emf induced in the coil. Also find the maximum
current in the coil if the resistance of the coil is 15Ω.

D Watch Video Solution

10. In Young's double slit experiment the slits are separated by 0.28 mm and the screen is placed at a distance of $1.4 m$ away from the
slits. The distance between the central bright
fringe and the fifth dark fringe is measured to
be 1.35 cm . Calculate the wavelength of the
light used. Also find the fridge width if the
screen is moved towards the slits by $0.4 m$, for the same experimental set up.

D Watch Video Solution

11. Light of frequency $8.41 \times 10^{14} \mathrm{~Hz}$ is incident on a metal surface. Electrons with their maximum speed of $7.5 \times 10^{5} \mathrm{~ms}^{-1}$ are ejected from the surface. Calculate the threshold frequency for photoemission of electrons. Also find the work function of the metal in electron volt $(e V)$. Given Plank's
constant $h=6.625 \times 10^{-34} \mathrm{Js}$ and mass of
the electron $9.1 \times 10^{-31} \mathrm{~kg}$.

- Watch Video Solution

