

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

BINOMIAL THEOREM

Others

1. Prove that

$$\left({}^{2n}C_0
ight)^3-\left({}^{2n}C_1
ight)^3-\left({}^{2n}C_2
ight)^3-.....\ + (-1)^n\left({}^{2n}C_{2n}
ight)^2=(-1)^n.^{\ 2n}C_n$$

- **2.** Find the largest term in the expansion of $\left(3+2x\right)^{50},$ where x=1/5.
 - Watch Video Solution

3. Find the following sum: $\dfrac{1}{n!}+\dfrac{1}{2!(n-2)!}+\dfrac{1}{4!(n-4)!}+\ldots$

4. Find the sum of the last 30 coefficients in the expansion of $\left(1+x\right)^{59}$, when expanded in ascending powers of x

5. If x=1/3, find the greatest tem in the expansion of $\left(1+4x\right)^8$.

6. If the sum of coefficients in the expansion of $(x-2y+3z)^n$ is 128, then find the greatest coefficient in the expansion of $(1+x)^n$.

7. Find the sum of the coefficients in the expansion o $\left(1+2x+3x^2+nx^n\right)^2$.

8. The number of terms in the expansion of ${(1+x)}^{101}ig(1+x^2-xig)^{100}$ in powers of x is

- **9.** Find the sum of coefficients in $\left(1+x-3x^2\right)^{4163}$
 - Watch Video Solution

- **10.** Find the middle term in the expansion of $\left(x^2 + \frac{1}{x^2} + 2\right)^n$
 - Watch Video Solution

11. In the expansion of $\left(1+x\right)^{50},\,\,$ find the sum of coefficients of odd powers of $x\cdot$

12. If $\left(1+x-2x^2\right)^6=1+a_1x+a_2x^2++a_{12}x^{12},$ then find the value of $a_2+a_4+a_6++a_{12}$.

13. If the middle term in the binomial expansion of $\left(\frac{1}{x} + x \sin x\right)^{10}$ is equal to $\frac{63}{8}$, find the value of x.

14. Find the sum $C_0+3C_1+3^2C_2+\ +\ 3^nC_n$.

15. If $(1+x)^n=\sum_{r=0}^n C_r x^r,$ then prove that

$$C_1 + 2C_2 + 3C_3 + \dots + nC_n = n2^{n-1}$$
.

16. If $T_0,T_1,T_2,$, T_n represent the terms in the expansion of $(x+a)^n,$ then find the value of $(T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n\in N$.

17. If $\left(1+x+x^2\right)^n=a_0+a_1x+a_2x^2+ +a_{2n}x^{2n},$ find the value of $a_0+a_3+a_6+ +, n\in N$.

18. Find the sum $C_0-C_2+C_4-C_6+\ldots$,where $C_r=^n C_r$.

19. Prove that
$$\hat{} nC_0 +^n C_3 +^n C_6 + = rac{1}{3} \Bigl(2^n + 2 \cos\Bigl(rac{n\pi}{3}\Bigr) \Bigr)$$
 .

20. Given that the 4th term in the expansion of $\left[2+\left(3x/8\right)\right]^{10}$ has the maximum numerical value. Then find the range of value of x.

21. Find the greatest coefficient in the expansion of $(1+2x/3)^{15}$.

- **22.** Find the greatest term in the expansion of $\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$.
 - Watch Video Solution

23. Find the numerically greatest term in the expansion of $\left(3-5x\right)^{15}whenx=1/5.$

24. Let n be an odd natural number greater than 1. Then , find the number of zeros at the end of the sum $99^n + 1$.

25. Find the remainder when 27^{40} is divided by 12.

26. In the expansion of $\left(1+x\right)^n$, 7th and 8th terms are equal. Find the value of $\left(\left. \frac{7}{x}+6\right)^2\right.$

27. Find the sum
$$\sum_{j=0}^n \left(\ \hat{} \ (4n+1)C_j + ^{4n+1}C_{2n-j}
ight)$$
 .

28. Show that no three consecutive binomial coefficients can be in G.P.

29. Find the sum
$$\sum_{r=1}^n r^n \frac{\hat{} nC_r}{\hat{} nC_{r-1}}$$
 .

30. Show that $9^{n+1} - 8n - 9$ is divisible by 64, where n is a positive integer.

31. If the 3rd, 4th , 5th and 6th term in the expansion of $(x+\alpha)^n$ be, respectively, a,b,c and d, prove that $\frac{b^2-ac}{c^2-bd}=\frac{5a}{3c}$.

32. Find the remainder when 7^{98} is divided by 5.

33. Show that $2^{4n+4}-15n-16, where \, \mathsf{n} \, \in N$ is divisible by 225.

34. If $\left(2+\sqrt{3}\right)^n=I+f,$ where I and n are positive integers and 0< f<1,

show that I is an odd integer and (1-f)(1+f)=1

35. Find the degree of the polynomial
$$\frac{1}{\sqrt{4x+1}} \left\{ \left(\frac{1+\sqrt{4x+1}}{2}\right)^7 - \left(\frac{1+\sqrt{4x+1}}{2}\right)^7 \right\}$$

$$n, wheren \in N$$

36. If $9^7 + 7^9$ is divisible b 2^n , then find the greatest value of

37. Prove that $\sqrt{10}\Big[ig(\sqrt{10}+1ig)^{100}-ig(\sqrt{10}-1ig)^{100}\Big]$ is an even integer .

Watch Video Solution	
----------------------	--

39. Find the remainder when $1690^{2608} + 2608^{1690}$ is divided by 7.

40. Find the value of $\left\{3^{2003}/28\right\}$, $where\{.\}$ denotes the fractional part.

41. Find the remainder when 5^{99} is divided by 13.

42. Find the remainder when 7^{103} is divided by 25.

43. Using binomial theorem, prove that 6^n-5n always leaves remainder 1 when divided by 25.

44. If the coefficient of the middle term in the expansion of $(1+x)^{2n+2}$ is α and the coefficients of middle terms in the expansion of $(1+x)^{2n+1}$ are β and γ then relate α , β and γ .

45. If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42, then find the value of n.

46. In the coefficients of rth, (r+1)th, and(r+2)th terms in the binomial expansion of $\left(1+y\right)^m$ are in A.P., then prove that $m^2 - m(4r + 1) + 4r^2 - 2 = 0.$

Watch Video Solution

47. Prove that

$$(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)......(C_{n-1}+C_n) \ rac{C_0C_1C_2.....C_{n-1}(n+1)^n}{n!}$$

48. If a_1, a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of $(1+x)^n$, then prove that:

$$rac{a_1}{a_1+a_2}+rac{a_3}{a_3+a_4}=rac{2a_2}{a_2+a_3}.$$

49. Find the sum of $\sum_{r=1}^n rac{r^n C_r}{\hat{\ } n C_{r-1}}$.

50. Find the positive integer just greater than $(1+0.0001)^{10000}$.

51. Find (i) the last digit, (ii) the last two digits, and (iii) the last three digits of 17^{256} .

52. If 10^m divides the number $101^{100}-1$ then, find the greatest value of $m\cdot$

divisible by 7 for all $n \in N$

Watch Video Solution

54. If x is very large as compare to y, then prove that $\sqrt{rac{x}{x+y}}\sqrt{rac{x}{x-y}}=1+rac{y^2}{2x^2}\,.$

53. Using the principle of mathematical induction, prove that $(2^{3n}-1)$ is

55. Find the coefficient of x^n in the expansion of $\left(1-9x+20x^2\right)^{-1}$ ·

56. Prove that the coefficient of x^r in the expansion of $(1-2x)^{-\frac{1}{2}}$ is

57. Find the sum: $1 - \frac{1}{8} + \frac{1}{8} \times \frac{3}{16} - \frac{1 \times 3 \times 5}{8 \times 16 \times 24} + \dots$

Watch Video Solution

58. Show that $\sqrt{3} = 1 + \frac{1}{3} + (\frac{1}{3}) \cdot (\frac{3}{6}) + (\frac{1}{3}) \cdot (\frac{3}{6}) \cdot (\frac{$

Watch Video Solution

59. Assuming x to be so small that x^2 and higher power of x can be

neglected, prove that
$$\dfrac{\left(1+rac{3x}{4}
ight)^{-4}(16-3x)^{rac{1}{2}}}{\left(8+x
ight)^{rac{2}{3}}}=1-\left(rac{305}{96}
ight)x$$

Watch Video Solution

60. Find the sum $\sum \sum_{0 \le i \le n-1} j^n C_{i}$.

61. Find the condition for which the formula $(a+b)^m=a^m+ma^{m-1}b+rac{m(m-1)}{1 imes 2}a^{m-2}b^2+ ext{ holds}.$

62. Find the value of x, for which $\frac{1}{\sqrt{5+4x}}$ can be expanded as infinite series.

63. Find the fourth term in the expansion of $\left(1-2x\right)^{3/2}$

64. Prove that $.^n C_0.^{2n} C_n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n \equiv 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-4} C_n = 2^n - ^n C_1.^{2n-2} C_n + ^n C_2.^{2n-2} C_n + ^n C_2.^{$

65. Prove that $\hat{\ } nC_0.^n\,C_0-^{n+1}\,C_1.^n\,C_1+^{n+2}\,C_2.^n\,C_2 \equiv (\,-\,1)^n.$

66. Find the sum of the coefficients of all the integral powers of x in the expansion of $\left(1+2\sqrt{x}\right)^{40}$.

67. If the sum of the coefficient in the expansion of $\left(\alpha^2x^2-2\alpha x+1\right)^{51}$ vanishes, then find the value of lpha

68. Prove that $\sum_{\alpha \in \mathcal{A}} \frac{10!}{\alpha!\beta!\gamma!} = 3^{10}$

69. If $\left(1+x-2x^2\right)^{20}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{40}x^{40},$ then find the value of $a_1+a_3+a_5+...+a_{39}$.

70. Find the sum of the series $.^{15}$ C_0 $+^{15}$ C_1 $+^{15}$ C_2 + $+^{15}$ C_7

h — U

71. Find the sum $\sum_{k=0}^{10} .^{20} C_k$.

72. Find the sum of all the coefficients in the binomial expansion of $\left(x^2+x-3
ight)^{319}$.

73. If the sum of coefficient of first half terms in the expansion of $\left(x+y\right)^n$ is 256, then find the greatest coefficient in the expansion.

- **74.** Find the value of $\sum_{p=1}^n \left(\sum_{m=p}^n .^n C_m.^m C_p\right)$. And hence, find the value of $\lim_{n\to\infty} \frac{1}{3^n} \sum_{n=1}^n \left(\sum_{m=p}^n .^n C_m.^m C_p\right)$.
 - Watch Video Solution

- **75.** Show that the middle term in the expansion of $(1+x)^{2n}is\frac{(1.\ 3.\ 5(2n-1))}{n!}2^nx^n, where n \text{ is a positive integer.}$
 - Watch Video Solution

76. If the middle term in the expansion of $\left(x^2+1/x\right)^n$ is $924\ x^6$, then find the value of n.

77. The first three terms in the expansion of $(1+ax)^n (n \neq 0)$ are $1,6xand16x^2$. Then find the value of aandn.

78. If x^4 occurs in the rth term in the expansion of $\left(x^4+\frac{1}{x^3}\right)^{15}$, then find the value of r.

79. Find the coefficient of x^{-10} in the expansion of $\left(rac{a}{r}+bx
ight)^{12}$.

80. Find the constant term in the expansion of $\left(x-1/x\right)^6$

Watch Video Solution

81. If the coefficients of (r-5)thand(2r-1)th terms in the expansion of $\left(1+x\right)^{34}$ are equal, find $r\cdot$

Watch Video Solution

82. In $\left(2^{\frac{1}{3}}+\frac{1}{3^{\frac{1}{3}}}\right)^n$ if the ratio of 7th term from the beginning to the

7th term from the end is 1/6, then find the value of n.

Watch Video Solution

83. If the coefficient of 4th term in the expansion of $(a+b)^n$ is 56, then n is

84. If pandq are positive, then prove that the coefficients of x^pandx^q in the expansion of $(1+x)^{p+q}$ will be equal.

85. Find the number of irrational terms in the expansion of $\left(5^{1/6}+2^{1/8}\right)^{100}$.

86. If x^p occurs in the expansion of $\left(x^2+1/x\right)^{2n}$, prove that its (2n)!

coefficient is
$$\dfrac{(2n)\,!}{\left\lceil \frac{1}{3}(4n-p) \right\rceil ! \left\lceil \frac{1}{3}(2n+p) \right\rceil !}$$

87. Find the coefficient of $a^3b^4c^5$ in the expansion of $(bc+ca+ab)^6$

88. Find the coefficient of x^7 in the expansion of $\left(1-x-x^2+x^3\right)^6$.

89. If the number of terms in the expansion of $(x+y+z)^n$ are 36, then find the value of n.

90. Find the coefficient of a^3b^4c in the expansion of $\left(1+a+b-c\right)^9$.

91. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.

92. Find the number of terms which are free from radical signs in the expansion of $\left(y^{1/5}+x^{1/10}\right)^{55}$.

93. Find the coefficient of x^5 in the expansion of $\left(1+x^2\right)^5(1+x)^4$.

94. Find the coefficient of x^{13} in the expansion of $(1-x)^5 imes (1+x+x^2+x^3)^4$.

95. Find the sum . 10 C_1 $+^{10}$ C_3 $+^{10}$ C_5 $+^{10}$ C_7 $+^{10}$ C_9

Watch Video Solution

96. Find the sum of $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + ...$

97. If n is an even positive integer, then find the value of x if the greatest term in the expansion of $(1+x)^n$ may have the greatest coefficient also.

98. If |x| < 1, then find the coefficient of x^n in the expansion of $(1+2x+3x^2+4x^3+)^{1/2}$

99. If (r+1)th term is the first negative term in the expansion of $(1+x)^{7/2}$, then find the value of r.

100. If |x|<1, then find the coefficient of x^n in the expansion of $\left(1+x+x^2+\ldots \right)^2$.

101. If |x| > 1, then expand $(1+x)^{-2}$.

102. Find the cube root of 217, correct to two decimal places.

103. Find the coefficient of x^2 in $\left(\frac{a}{a+x}\right)^{1/2}+\left(\frac{a}{a-x}\right)^{1/2}$

104. Prove that

$$\hat{\ \ } 10C_{1}{{(x - 1)}^{2}}\,{{-}^{10}}\,{C_{2}{(x - 2)}^{2}}\,{{+}^{10}}\,{C_{3}{(x - 3)}^{2}}\,{{\pm}^{10}}\,{C_{10}{(x - 10)}^{2}} = x^{2}$$

105. If the third term in the expansion of $(1+x)^m is - \frac{1}{8}x^2$, then find the value of m.

106. Prove that $\sum_{n=0}^{\infty} r(n-r)(\hat{\ } nC_r)^2 = n^2(\hat{\ } (2n-2)C_n)$

Watch Video Solution

 $(a+b+c)^n$, where $n \in N$.

Watch Video Solution

107.

109.

The number of terms in the expansion

Prove

 $1-^{n}C_{1}rac{1+x}{1+nx}+^{n}C_{2}rac{1+2x}{\left(1+nx
ight)^{2}}-^{n}C_{3}rac{1+3x}{\left(1+nx
ight)^{3}}+....\left(n+1
ight)terms=$

that

111. Find the coefficient of x^4 in the expansion of $\left(2-x+3x^2\right)^6$ \cdot

112. Find the coefficient of $x^k \in 1 + (1+x) + (1+x)^2 + + (1+x)^n (0 \leq k \leq n)$.

113. Find the term independent of x in the expansion of $\left(1+x+2x^3\right)\left[\left(3x^2/2\right)-\left(1/3x\right)\right]^9$

114. If aandb are distinct integers, prove that a-b is a factor of a^n-b^n , wherever n is a positive integer.

115. Find the a, b, andn in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290, and 30375, respectively.

Watch Video Solution

116. Find the coefficient of x^{25} in expansion of expression

$$\sum_{r=0}^{50} \hat{} (50) C_r (2x-3)^r (2-x)^{50-r} \, .$$

117. If the sum of the coefficients of the first, second, and third terms of the expansion of $\left(x^2+\frac{1}{x}\right)^m$ is 46, then find the coefficient of the term that does not contain x.

118. If $p+q=1, \,$ then show that $\sum_{r=0}^{n} r^2 \, \hat{\ } \, n C_r p^r q^{n-r} = npq + n^2 p^2 \cdot n$

119. If $\left(18x^2+12x+4\right)^n=a_0+a_{1x}+a2x2++a_{2n}x^{2n},$ prove that $a_r=2^n3^r\Big(\hat{\ }(2n)C_r+^nC_1^{2n-2}C_r+^nC_2^{2n-4}C_r+\Big)$.

120. Prove that $\stackrel{\smallfrown}{n} C_1^n C_m - ^m C_2^{2n} C_m + ^m C_3^{3n} C_m \equiv \left(\begin{array}{c} -1 \end{array} \right)^{m-1} n^m \cdot n^m$

121. Prove that

$$^{n}C_{0}^{2n}C_{n} - ^{n}C_{1}^{2n-1}C_{n} + ^{n}C_{2} imes ^{2n-2}C_{n} + + (-1)^{n} \hat{\ \ } nC_{n}^{n}C_{n} = 1.$$

122. Find the sum $\sum_{r=0}^{n} \hat{\ } (n+r)C_r$.

123. Find the value of
$$\sum \sum_{0 \le i \le j \le n} (i+j) ig(nC_i + nC_j ig)$$

124. Find the value of
$$\sum \sum_{0 \leq i \leq j \leq n} c_i^n c_j^n$$

125. Find the value of $\sum_{0 \le i < j \le n} (.^n C_i + .^n C_j)$.

126. Find the sum $\sum \sum_{0 \le i < j \le n} {}^n C_i{}^n C_j$

Watch Video Solution

127. Prove that $\sum_{r=0}^{s}\sum_{s=1}^{n} \hat{\ } nC_s^nC_r=3^n-1.$

Watch Video Solution

128. Find the sum $\sum \sum_{0 \le i < j \le n} {}^n C_i$

Watch Video Solution

129. Find the coefficient of x^4 in the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$.

130. Find the term in $\left(3\sqrt{\left(\frac{a}{\sqrt{b}}\right)} + \left(\sqrt{\frac{b}{a}}3\sqrt{a}\right)\right)^{21}$ which has the same power of a and b.

131. Using the binomial theorem, evaluate $\left(102\right)^5$.

132. Find the 6th term in expansion of $\left(2x^2-1/3x^2
ight)^{10}$

133. Find a if the 7th and 18th terms of the expansion $\left(2+a\right)^{50}$ are equal.

134. Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}$: 1.

135. Simplify: $x^5 + 10x^4a + 40x^3a^2 + 80x^2a^3 + 80xa^4 + 32a^5$

136. Find the value of
$$\frac{18^3 + 7^3 + 3 \times 18 \times 7 \times 25}{3^6 + 6 \times 243 \times 2 + 15 \times 18 \times 4 + 20 \times 27 \times 8 + 15 \times 9 \times 16}$$

137. Find the approximation of $(0.99)^5$ using the first three terms of its expansion.

138. If for $n\in N,$ $\sum_{k=0}^{2n}\left(-1
ight)^k\left(\hat{}(2n)C_k
ight)^2=A,$ then find the value of

$$\sum_{k=0}^{2n} \left(\, -1
ight)^k (k-2n) (\,\, \hat{}\,\, (2n) C_k)^2 \cdot$$

139. There are two bags each of which contains n balls. A man has to select an equal number of balls from both the bags. Prove that the number of ways in which a man can choose at least one ball from each bag $is^{2n}C_n-1$.

140. Find the sum $\sum_{i=0}^r .^{n_1} C_{r-i}.^{n_2} C_i$.

141. Prove that $\sum_{r=0}^{2n} \left(r.^{2n} \ C_r
ight)^2 = n^{4n} C_{2n}$.

Watch Video Solution

142. If kandn are positive integers and $s_k=1^k+2^k+3^k+{}+n^k, \,$ then prove that $\sum_{r=0}^{\infty} \hat{r}_{r}(m+1)C_{r}s_{r}=(n+1)^{m+1}-(n+1)c_{r}s_{r}$

Watch Video Solution

143. Prove that $\sum_{i=1}^{n} (1-1)^{r-1} \left(1+rac{1}{2}+rac{1}{3}+rac{1}{r}
ight)^{n} C_{r} = rac{1}{n}$.

Watch Video Solution

144. **Prove** that

$$rac{C_1}{1} - rac{C_2}{2} + rac{C_3}{3} - rac{C_4}{4} + + rac{{{(- 1)}^{n - 1}}}{n}{C_n} = 1 + rac{1}{2} + rac{1}{3} + + rac{1}{n}.$$

145. Prove that $\sum_{r=0}^{n} \hat{\ } n C_r \sin rx \cos(n-r) x = 2^{n-1} \sin(nx) \cdot$

146. Find the last two digits of the number $(23)^{14}$.

147. Find the last two digits of the number 27^{27} .

148. Find the number of nonzero terms in the expansion o $\left(1+3\sqrt{2}x\right)^9+\left(1-3\sqrt{2}x\right)^9$.

149. Find the value of $\left(\sqrt{2}+1\right)^6-\left(\sqrt{2}-1\right)^6$

 $.^{n} C_{4} + ^{m} C_{2} - ^{m} C_{1}.^{n} C_{2} = .^{m} C_{4} - ^{m+n} C_{1}.^{m} C_{3} + ^{m+n} C_{2}.^{m} C_{2} - ^{m+n} C_{3}^{m}$

that

$$C_r \cdot (r+1) \cdot C_r - r \cdot C_r + ... + (-1)^r \cdot C_r = (-1)^r \cdot C_r = (-1)^r \cdot C_r$$

Prove

151.

152. Find the sum $\cdot^n C_0 +^n C_4 +^n C_8 + \dots$

153. Find the value of $\stackrel{\hat{}}{} 4nC_0 + ^{4n}C_4 + ^{4n}C_8 + + ^{4n}C_{4n}$.

Watch Video Solution

- Find the coefficient of x^n in the polynomial 154. $(x+^nC_0)(x+3^nC_1) imes (x+5^nC_2)[x+(2n+1)^nC_n]$
 - Watch Video Solution

155. If $\left(1+x\right)^{15}=C_0+C_1x+C_2x^2++C_{15}x^{15},\,\,$ then find the value of $C_2 + 2C_3 + 3C_4 + + 14C_{15}$

156. Prove that
$$\frac{\cdot^n C_0}{1} + \frac{\cdot^n C_2}{3} + \frac{\cdot^n C_4}{5} + \frac{\cdot^n C_6}{7} + \dots = \frac{2^n}{n+1}$$

157. Find the sum $\sum \sum_{0 \leq i < j \leq m}^{n} C_i^n C_j$

Watch Video Solution

158. Find the sum $\sum \sum_{i=l,i}^n \hat{\ } nC_i^nC_j$

Watch Video Solution

159. Show that the integer next above $\left(\sqrt{3}+1\right)^{2m}$ contains 2^{m+1} as a factor.

Watch Video Solution

Prove that $rac{1^2}{3}{}^n C_1 + rac{1^2+2^2}{5^n} C_2 rac{1^1+2^2+3^2}{7^n} C_3 + rac{1^2+2^2}{5^n} C_3 + rac{1^2$ 160. $+rac{1^2+2^2++n^2}{\left(2n+1
ight)^n}C_n=rac{n(n+3)}{62^{n-2}}.$

Prove

that

$$rac{1}{n+1} = rac{\cdot^n \, C_1}{2} - rac{2(\cdot^n \, C_2)}{3} + rac{3(\cdot^n \, C_3)}{4} - \ldots + ig(-1^{n+1}ig)rac{n \cdot (\cdot^n \, C_n)}{n+1}$$

Watch Video Solution

- **162.** Find the sum $2C_0+\frac{2^3}{2}C_1+\frac{2^3}{3}C_2+\frac{2^4}{4}C_3+\frac{2^{11}}{11}C_{10}$
 - Watch Video Solution

163. If in the expansion of $\left(2x+5\right)^{10}$, the numerically greatest tem in equal to the middle term, then find the values of x.

164. Find the value of
$$10^{2}$$
 10^{3} 10^{2n}

$$rac{1}{81^n} - rac{10}{\left(81^n
ight)^{2n}} C_1 + rac{10^2}{\left(81^n
ight)^{2n}} C_2 - rac{10^3}{\left(81^n
ight)^{2n}} C_3 + \ + \ rac{10^{2n}}{81^n} \ .$$

165. Find the value of $5C_3+4C_2$

166. Find the sum $1C_0+2C_1+3C_2++(n+1)C_n$, $where C_r=^n C_r$.

167. If $\left(1+x+x^2++x^p\right)^n=a_0+a_1x+a_2x^2++a_{np}x^{np},$ then find the value of $a_1+2a_2+3a_3+\stackrel{\cdot \cdot }{+}npa_{np}.$

 $\quad \text{ If } \qquad n>2, \qquad \qquad \text{then} \qquad \quad \text{prove} \qquad \quad \text{that} \qquad \quad$ 168.

$$C_1(a-1) - C_2 imes (a-2) + \\ + (-1)^{n-1} C_n(a-n) = a, where C_r =^n C_r$$

169. Find the sum $C_0-C_2+C_4-C_6+\ldots$,where $C_r=^n C_r$.

Watch Video Solution

A.
$$n(n+1)2^n-1$$

B. $n(n+3)2^n-2$

C.
$$2n$$
. 2n C_n

D. none of these

Answer: null

Watch Video Solution

170. If $x+y=1,\,$ prove that $\sum_{r=0}^{n} .^{n} \, C_{r} x^{r} y^{n-r}=1.$

171. Find the sum
$$3C_1+5C_2$$

172. Prove that
$$rac{\cdot^n C_1}{2}+rac{\cdot^n C_3}{4}+rac{\cdot^n C_5}{6}+\ldots=rac{2^n-1}{n+1}.$$

173. If $(1+x)^n = \sum_{r=0}^n \hat{\ } nC_r$

 $C_0 + rac{C_1}{2} + + rac{C_n}{n+1} = rac{2^{n+1}-1}{n+1}$.

174. If
$$\sum_{r=0}^{2n}a_r(x-2)^r=\sum_{r=0}^{2n}b_r(x-3)^randa_k=1$$
 for all $k\geq n,$ then show that $b_n=^{2n+1}C_{n+1}$.

that

Watch Video Solution

175. Statement 1: $3^{2n+2}-8n-9$ is divisible by $64,\ orall\,n\in N$. Statement

terms in expansion $(a_1+a_2+{}+a_m)^n is^{n+m-1} C_{m-1}$

2: $(1+x)^n-nx-1$ is divisible by $x^2,\ \forall\,n\in N$

176. Statement 1: The number of distinct terms in
$$\left(1+x+x^2+x^3+x^4\right)^{1000}is4001$$
. Statement 2: The number of distinct

177. Statement1: if $n\in Nandn$ is not a multiple of 3 and $\left(1+x+x^2\right)^n=\sum_{r=0}^{2n}a_rx^r,$ then the value of $\sum_{r=0}^n\left(-1\right)^rar^nC_r$ is zero Statement 2: The coefficient of x^n in the expansion of $\left(1-x^3\right)^n$ is zero, if n=3k+1 or n=3k+2.

178. Statement 1:Three consecutive binomial coefficients are always in A.P.

Statement 2: Three consecutive binomial coefficients are not in H.P.

179. The value of
$$\binom{30}{0} \binom{30}{10} - \binom{30}{1} \binom{30}{11} + (302)(3012) + + (3020)(3030) = a.$$

 $60C20 \text{ b.} \ \hat{\ } 30C10 \text{ c.} \ \hat{\ } 60C30 \text{ d.} \ \hat{\ } 40C30$

Watch Video Solution

If $f(x) = x^n, f(1) + \frac{f^1(1)}{1} + \frac{f^2(1)}{2!} + \frac{f^n(1)}{n!}, where f^r(x)$ denotes the rth order derivative of f(x) with respect to x, is a. n b. 2^n c.

 2^{n-1} d. none of these

180.

181. The fractional part of $\frac{2^{4n}}{15}$ is $(n \in N)$ (A) $\frac{1}{15}$ (B) $\frac{2}{15}$ (C) $\frac{4}{15}$ (D) none of these

182. The value of $.^{15}$ $C_0^2 - .^{15}$ $C_1^2 + .^{15}$ $C_2^2 - - .^{15}$ C_{15}^2 is a. 15

b. -15

c. 0

d. 51

183. If the sum of the coefficients in the expansion of $\left(1-3x+10x^2\right)^nisa$ and if the sum of the coefficients in the expansion of $\left(1+x^2\right)^nisb$, then a. a=3b b. $a=b^3$ c. $b=a^3$ d. none of these

184. If $\left(1+x-2x^2\right)^6=1+a_1x+a_2x^2++a_{12}x^{12},$ then find the value of $a_2+a_4+a_6++a_{12}$.

185. Maximum sum of coefficient in the expansion of $\left(1-x\sin\theta+x^2\right)^n$ is 1 b, 2^n c, 3^n d, 0

186. If the sum of the coefficients in the expansion of $(a+b)^n$ is 4096, then the greatest coefficient in the expansion is a. 924 b. 792 c. 1594 d. none of these

187. The number of distinct terms in the expansion of $\left(x+rac{1}{x}+x^2+rac{1}{x^2}
ight)^{15}$ is/are (with respect to different power of x) 255

b. 61 c. 127 d. none of these

188. The sum of the coefficients of even power of x in the expansion of $\left(1+x+x^2+x^3\right)^5$ is 256 b. 128 c. 512 d. 64

the expansion of $(1+x)^n$ will be equal, then n can be, p. 9 If 15^n+23^n is divided, by 19, then n can be, q. 10 $^10C_0^{20}C_{10}-^{10}C_1^{18}C_{10}+^{10}C_2^{16}C_{10}-^{10}$ is divisible by 2^n , $the\cap$ can be, r. 11 If the coefficients of T_r, T_{r+1}, T_{r+2} terms of $(1+x)^{14}$ are in A.P.,

189. Column I, Column II The coefficient of the two consecutive terms in

then r is less than, s. 12

190. If the coefficient of $x^7 \in \left[ax^2 - \left(\frac{1}{bx^2}\right)
ight]^{11}$ equal the coefficient of x^{-7} in satisfy the $\left[ax-\left(\frac{1}{hr^2}\right)\right]^{11}$, then and b satisfy the relation a+b=1 b. a-b=1 c. b=1 d. $rac{a}{b}=1$

Watch Video Solution

191. If the coefficients of the (2r+4)th, (r-2)th term in the expansion of $\left(1+x\right)^{18}$ are equal, then the value of r is.

192. If the coefficients of the rth, (r+1)th, (r+2)th terms is the expansion of $\left(1+x\right)^{14}$ are in A.P, then the largest value of r is.

193. If the three consecutive coefficients in the expansion of $\left(1+x
ight)^n$ are 28, 56, and 70, then the value of n is.

of Degree the polynomial 194.

$$\left[\sqrt{x^2+1}+\sqrt{x^2-1}
ight]^8+\left[rac{2}{\sqrt{x^2+1}+\sqrt{x^2-1}}
ight]^8$$
 is.

195. Least positive integer just greater than $(1+0.\ 00002)^{50000}$ is.

If $U_n = \left(\sqrt{3}+1
ight)^{2n} + \left(\sqrt{3}-1
ight)^{2n}$, then prove that

 $U_{n+1} = 8U_n - 4U_{n-1}$

197. Prove that the coefficient of x^n in the expansion of $\frac{1}{(1-x)(1-2x)(1-3x)} \text{ is } \frac{1}{2} \big(3^{n+2}-2^{n+3}+1\big)$

198. The value of
$$(30,0)(30,10)-(30,1)(30,11)+(30,2)(30,12)-\dots+(30,20)(30,10)$$

, where $(n,r)=nC_r$ is a. (30,10) b. (30,15) c. (60,30) d. (31,10)

199. Prove
$$\hat{n}C_1(\hat{n}C_2)(\hat{n}C_3)^3(\hat{n}C_n)^n \leq \left(rac{2^n}{n+1}
ight)^{n+1_C(\hat{n})_2}, \, orall n \in N.$$

that

that

Watch Video Solution

 $n=12m(m\in N),$ 201. $\hat{\ \ }nC_0 - rac{\hat{\ \ }nC_2}{\left(2+\sqrt{3}
ight)^2} + rac{\hat{\ \ }nC_4}{\left(2+\sqrt{3}
ight)^4} - rac{\hat{\ \ }nC_6}{\left(2+\sqrt{3}
ight)^6} + \ =$ $(-1)^m \left(\frac{2\sqrt{2}}{1+\sqrt{3}}\right)^n$

Watch Video Solution

202. In the expansion of $(1+x)^n(1+y)^n(1+z)^n$, the sum of the coefficients of the terms of degree 'r' is (a) $.^{n^3}$ C_r (b) $.^n$ C_{r^3} (c) $.^{3n}$ C_r (d) $3.^{2n} C_r$

Watch Video Solution

203.

204. Prove that $\sum_{r=1}^{m-1} rac{2r^2 - r(m-2) + 1}{\left(m-r
ight)^m C_r} = m - rac{1}{m}$.

Prove

 $\hat{C}_{0}^{100}C_{0}^{100}C_{2}^{100}C_{4}^{100}C_{4}^{100}C_{4}^{100}C_{4}^{100}C_{6}^{100}C_{6}^{100}C_{100}^{100}C_{10$

Find the coefficients of x^{50} in the expression

 $(1+x)^{1000} + 2x(1+x)^{999} + 3x^2(1+x)^{998} + + 1001x^{1000}$.

206. If b_1, b_2b_n are the nth roots of unity, then prove that

that

 $\hat{D}_{1}\hat{b}_{1}+^{n}C_{2}\dot{b}_{2}+\ +^{n}C_{n}\dot{b}_{n}-rac{b_{1}}{b_{2}}ig\{(1+b_{2})^{n}-1ig\}^{n}$

205.

207. If $.^{n+1} \, C_{r+1} : ^n C_r : ^{n-1} C_{r-1} = 11 \colon 6 \colon 3, \,\, \mathsf{then} \,\, nr = \, ? \,\, \mathsf{a.} \,\, 20 \,\, \mathsf{b.} \,\, 30 \,\, \mathsf{c.} \,\, 40$

 $\mathsf{d.}\,50$

208. If the last tem in the binomial expansion of $\left(2^{\frac{1}{3}}-\frac{1}{\sqrt{2}}\right)^n is\left(\frac{1}{3^{\frac{5}{3}}}\right)^{\log_3 8} \text{ , then 5th term from the beginning is } 210 \text{ b.}$

420 c. 105 d. none of these

209. Find the last two digits of the number $(23)^{14}$.

210. The value of \boldsymbol{x} for which the sixth term in the expansion of

$$\left[2^{\log 2}\sqrt{9^{x-1}+7}+rac{1}{2^{rac{1}{5}}(\log)_2ig(3^{(x-1)+1}ig)}
ight]^7$$
 is 84 is a. 4 b. 1 or 2 c.

0 or 1 d. 3

211. If the 6th term in the expansion of $\left(\frac{1}{x^{\frac{8}{3}}} + x^2(\log)_{10}x\right)^s$ is 5600, then x equals 1 b. $(\log)_e 10$ c. 10 d. x does not exist

212. The total number of terms which are dependent on the value of x in the expansion of $\left(x^2-2+\frac{1}{x^2}\right)^n$ is equal to 2n+1 b. 2n c. n d. n+1

213. In the expansion of $\left(3^{-x/4}+3^{5x/4}\right)^n$ the sum of binomial coefficient is 64 and term with the greatest binomial coefficient exceeds the third by (n-1) , the value of x must be 0 b. 1 c. 2 d. 3

Watch Video Solution

214. If n is an integer between 0 and 21, then the minimum value of n!(21-n)! is attained for n=1 b. 10 c. 12 d. 20

215. If R is remainder when $6^{83}+8^{83}$ is divided by 49, then the value of R/5 is.

the coefficients of x^3 216. Let a a n d bbe in $\left(1+x+2x^2+3x^3\right)^4$ and $\left(1+x+2x^2+3x^3+4x^4\right)^4$, then respectively. Then the value of 4a/b is.

Watch Video Solution

217. Let $1+\sum_{r=0}^{10}\left(3^r.^{10}\ C_r+r.^{10}\ C_r
ight)=2^{10}ig(lpha.\ 4^5+etaig)$ where $lpha,eta\in N$ and $f(x)=x^2-2x-k^2+1.$ If lpha,eta lies between the roots of f(x)=0 , then find the smallest positive integral value of k-

218. Let $a = 3^{1/224} + 1$ and for all $n \ge 3$,

let

 $f(n) = {}^nC_0a^{n-1} - {}^nC_1a^{n-2} + {}^nC_2a^{n-3} + ... + (\ _1)^{n-1} \cdot {}^nC_{n-1} \cdot a^0.$

If the value of $f(2016)+f(2017)=3^k$, the value of K is

219. If the constant term in the binomial expansion of $\left(x^2-rac{1}{x}
ight)^n, n\in N$ is 15, then find the value of n.

220. The largest value of x for which the fourth tem in the expansion

$$\left(5^{\left(\frac{2}{5}\right)\,(\log)_{\,5}\sqrt{4^x+44}}+\frac{1}{5^{\log_5}\!\left(2^{\,(\,x\,-\,1\,)\,+\,7}\right)^{\frac{1}{3}}}\right)^8 \text{ is 336 is.}$$

221. The number of values in set of values of \emph{r} for which

$$\hat{\ \ } \ 23C_r + 2.^{23}\ C_{r+1} + ^{23}\ C_{r+2} \geq^{25}\ C_{15}$$
 is

222. If the second term of the expansion $\left[a^{\frac{1}{13}} + \frac{a}{\sqrt{a^{-1}}}\right]^n$ is $14a^{5/2}$,

then the value of $\frac{\hat{\ }nC_3}{\hat{\ }nC_2}$ is.

223. Given $(1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+$ and that $a1^2 = 2a_2$ then the value of n is.

224. Sum of last three digits of the number $N=7^{100}-3^{100}$ is.

Show that $a_{02}-a_{12}+a_{22}+\ldots+a_{2n2}=a_n$

225. Let nbe a positive integer and $(1+x+x^2)^n = a_0 + a_1x + \ldots + a_{2n}x^{2n}$

226.
$$\sum_{r=1}^{k} (-3)^{r-1}.^{3n} C_{2r-1} = 0$$
, where $k = \frac{3n}{2}$ and n is an even integer

227. The coefficient of the middle term in the binomial expansion in powers of x of $(1+lpha x)^4$ and of $(1-lpha x)^6$ is the same, if lpha equals $-rac{5}{2}$ b. $\frac{10}{3}$ c. $-\frac{3}{10}$ d. $\frac{3}{5}$

228. If in the expansion of $(1+x)^n$, a, b, c are three consecutive coefficients, then n= a. $\dfrac{ac+ab+bc}{b^2+ac}$ b. $\dfrac{2ac+ab+bc}{b^2-ac}$ c. $\dfrac{ab+ac}{b^2-ac}$ d. none of these

229. If n and k are positive integers, show that $2^k(.^nC_0)(.^nC_k)-2^{k-1}(.^nC_1)(.^{n-1}C_k-1)+2^{k-2}(.^nC_2)((n-2k-2))$

stands for
$$C_k$$
.

230. Prove that
$$(25)^{n+1} - 24n + 5735$$
 is divisible by $(24)^2$ for all $n = 1, 2, ...$

231. The coefficient of 1/x in the expansion of $(1+x)^n(1+1/x)^n$ is (a).

$$rac{n!}{(n-1)!(n+1)!}$$
 (b). $rac{(2n)!}{(n-1)!(n+1)!}$ (c). $rac{(2n)!}{(2n-1)!(2n+1)!}$ (d). none of these

232. The coefficient x^5 in the expansion of $(1+x)^{21}+(1+x)^{22}++(1+x)^{30}$ is a. $^{51}C_5$ b. 9C_5 c. $^{31}C_6-^{21}C_6$ d.

$$^{30}C_5 + ^{20}C_5$$

Watch Video Solution

233. If x^m occurs in the expansion $\left(x+1/x^2\right)^{2n}$, then the coefficient of x^m is a. $\frac{(2n)!}{(m)!(2n-m)!}$ b. $\frac{(2n)!3!3!}{(2n-m)!}$ c. $\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$ d. none of

these

234. If the coefficients of 5th, 6th , and 7th terms in the expansion of $(1+x)^n$ are in A.P., then $n=\,$ a. 7 only b. 14 only c. 7 or 14 d. none of these

 $.^{2n} C_r d..^{2n} C_{r+1}$

236. In the expansion of
$$\left(x^3-rac{1}{x^2}
ight)^n, n\in N$$
 if sum of the coefficients of x^5 and x^{10} is 0 then n is

235. If $\left(1+2x+x^2
ight)^n=\sum_{r=0}^{2n}a_rx^r$,then a_r is a. $\left(.^n\,C_2
ight)^2$ b. $.^n\,C_r.^n\,C_{r+1}$ c.

237. If the coefficients of rth and
$$(r+1)th$$
 terms in the expansion of

238. In the expansion of
$$\left(1+3x+2x^2\right)^6$$
 , the coefficient of x^{11} is a. 144 b. 288 c. 216 d. 576

 $\left(3+7x
ight)^{29}$ are equal, then r is equals to a. 15 b. 21 c. 14 d. none of these

239. If
$$n-1C_r=\left(k^2-3\right)^nC_{r+1},$$
 then (a) $(-\infty,-2]$ (b) $[2,\infty)$ (c) $[-\sqrt{3},\sqrt{3}]$ (d) $(\sqrt{3},2]$

240. Prove that $\frac{3!}{2(n+3)} = \sum_{r=0}^{n} (-1)^r \left(\frac{\hat{n}C_r}{\hat{r}(r+3)C_r}\right)$

_(..., _)

241. If
$$a_n = \sum_{r=0}^n \frac{1}{nC_r}$$
, then $\sum_{r=0}^n \frac{r}{nC_r}$ equals

242. The expression
$$\left(x+\frac{\left(x^3-1\right)^{\frac{1}{2}}}{2}\right)^5+\left(x-\frac{\left(x^3-1\right)^{\frac{1}{2}}}{2}\right)^5$$
 is a polynomial of degree

a. 5 b. 6 c. 7 d. 8

Watch Video Solution

243. Find $\left(\frac{dy}{dx}\right)$ of $\sin(\cos\theta)$ is

Watch Video Solution

244. In the binomial expansion of $(a-b)^n$, $n \geq 5$, the sum of the 5th and 6th term is zero. Then a/b equals $\left(n-5\right)/6$ b. $\left(n-4\right)/5$ c. n/(n-4) d. 6/(n-5)

Watch Video Solution

245. Coefficient of x^{11} in the expansion of $\left(1+x^2\right)^4 \left(1+x^3\right)^7 \left(1+x^4\right)^{12}$ is 1051 b. 1106 c. 1113 d. 1120

246. Given positive integers r > 1, n > 2 and that the coefficient of (3rd)th and (r+2)th terms in the binomial expansion of $(1+x)^{2n}$ are equal. Then (a) n=2r (b) n=2r+1 (c) n=3r (d) non of these

Watch Video Solution

247. The coefficient of x^4 in $(x/2-3/x^2)^{10}$ is a. $\frac{405}{256}$ b. $\frac{504}{250}$ c. $\frac{450}{262}$ d. none of these

248. If C_r stands for nC_r , then the sum of the series

$$rac{2\left(rac{n}{2}
ight)!\left(rac{n}{2}
ight)!}{n!}ig[C_0^2-2C_1^2+3C_2^2-......+(-1)^n(n+1)C_n^2ig]$$
 ,where n is an even positive integer, is

249. The sum $\sum_{m}^{i=0} \binom{10}{i} \binom{20}{m-i}$, (where $\binom{p}{q} = 0$, if p < q) is maximum when m' is

250. The coefficient of
$$X^{24}$$
in the expansion of $(1+X^2)^{12}(1+X^{12})(1+X^{24})$

251. The term independent of a in the expansion $\left(1+\sqrt{a}+\frac{1}{\sqrt{a}-1}\right)^{-30}$ is (a) $30C_{20}$ (b) 0 (c) $30C_{10}$ (d) non of these

of

252. The coefficient of x^{53} in the expansion

$$\sum_{m=0}^{100} \ \hat{}\ 100 C_m (x-3)^{100-m} 2^m$$
 is (a) $100 C_{47}$ (b.) $100 C_{53}$ (c.) $-100 C_{53}$ (d.)

none of these

253. The coefficient of the term independent of \boldsymbol{x} in the exampansion of

$$\left(rac{x+1}{x^{2/3}-x^{1/3}+1}-rac{x-1}{x-x^{1/2}}
ight)^{10}$$
 is 210 b. 105 c. 70 d. 112

254. In the expansion of $\left(1+x+x^3+x^4\right)^{10}$, the coefficient of x^4 is

 $^{\hat{}}~40C_4$ b. $^{\hat{}}~10C_4$ c. 210 d. 310

255. If coefficient of $a^2b^3c^4\in (a+b+c)^m$ (where $n\in N$) is $L(L\neq 0)$, then in same expansion coefficient of $a^4b^4c^1$ will be (A) L (B) $\frac{L}{3}$ (C) $\frac{mL}{4}$

(D) $\frac{L}{2}$

Watch Video Solution

- **256.** The last two digits of the number 3^{400} are:
- (A) 81 (B) 43 (C) 29 (D) 01
 - **Watch Video Solution**

The

expression

is

$$\left(\sqrt{2x^2+1}+\sqrt{2x^2-1}
ight)^6+\left(rac{2}{\sqrt{2x^2+1}+\sqrt{2x^2-1}}
ight)^6$$
 polynomial of degree

258. The coefficient of $x^r[0\leq r\leq (n-1)]$ in the expansion of $(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+....$

$$(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+....$$
 $+(x+2)^{n-1}$ is $a.^n\,C_r(3^r-2^n)\,\,b.^n\,C_rig(3^{n-r}-2^{n-r}ig)\,\,c.^n\,C_rig(3^r+2^{n-r}ig)$ d. none of these

259. If
$$\left(1+2x+3x^2\right)^{10}=a_0+a_1x+a_2x^2+\ldots\ldots+a_{20}x^{20}$$
 then a_1 = ?

260. In the expansion of $\left(5^{1/2}+7^{1/8}\right)^{1024}$, the number of integral terms is 128 b. 129 c. 130 d. 131

261. For which of the following value of $x,5^{th}$ term is the numerically greatest term in the expansion of $(1+x/3)^{10}$:

262. For natural numbers
$$m,n,$$
 if $(1-y)^m(1+y)^n=1+a_1y+a_2y^2+...,$ and $a_1=a_2=10,t$ a. $m< n$ b. $m>n$ c. $m+n=80$ d. $m-n=20$

263. If the middle term in the expansion of $\left(\frac{x}{2}+2\right)^8$ is 1120, then find

the sum of possible real values of x.

Watch Video Solution

264. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$$
 ,

t h e n $C_0-(C_0+C_1)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+\dots+(-1)^{n-1}(C_0+C_1+C_{n-1})$, where n a) is even integer b) is a positive value c) a negative value d) divisible by 2^{n-1} divisible by 2^n

266. The value of
$$\hat{\ } nC_1+^{n+1}C_2+^{n+2}C_3+ +^{n+m-1}C_m$$
 is equal to

267.

$$(1+x)^n=C_0+C_1x+C2x2+ \ +C_nx^n, n\in N, then C_0-C_1+C_2- \ +$$

If

is equal to (m < n)

Watch Video Solution

268. The 10th term of $\left(3-\sqrt{rac{17}{4}+3\sqrt{2}}
ight)^{20}$ is (a) a irrational number (b) a rational number (c) a positive integer (d) a negative integer

Watch Video Solution

269. For the expansion $\left(x\sin p + x^{-1}\cos p\right)^{10}, (p\in R),$ The greatest value of the term independent of x is $\left(a
ight)10!\left/2^{5}(5!)^{2}\right.$ (b)the least value of sum of coefficient is zero (c)the greatest value of sum of coefficient is 32 (d)the least value of the term independent of x occurs when $p=(2n+1)rac{\pi}{4}, n\in Z$

Watch Video Solution

270. Let
$$(1+x^2)^2(1+x)^n=\sum_{k=0}^{n+4}a_kx^k$$
. If a_1,a_2 and a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

271. The middle term in the expansion of $(x/2+2)^8$ is 1120, then $x\in R$

272. If $ig(1+2x+x^2ig)^n=\sum_{r=0}^{2n}a_rx^r$,then a_r is a. $(.^n\ C_2)^2$ b. $.^n\ C_r.^n\ C_{r+1}$ c.

 $\Big[ig(\ \hat{} \ nC_0 +^n C_3 + ig) - rac{1}{2} ig(\ \hat{} \ nC_1 +^n C_2 +^n C_4 +^n C_5 ig]^2 + rac{3}{4} ig(\ \hat{} \ nC_1 -^n C_2 +^n C_4 +^n C_5 ig)^2 \Big] \Big] \Big]$

is equal to a. -2 b. 3 c. -3 d. 2

$$C_r$$
 d. C_r d. C_{r+1}

Watch Video Solution

274. If $\sum_{r=0}^{n} \left(rac{r+2}{r+1}
ight)$. n $C_{r}=rac{2^{8}-1}{6}$, then n is (A) 8 (B) 4 (C) 6 (D) 5

Watch Video Solution

 $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ 275. Let and $rac{f(x)}{1-x}=b_0+b_1x+b_2x^2+...+b_nx^n$, then a. $b_n+b_{n-1}=a_n$ b.

$$b_n-b_{n-1}=a_n$$
 c. $\dfrac{b_n}{b_{n-1}}=a_n$ d. none of these

Watch Video Solution

276. If $\left(1+x^2\right)^n=\sum_{r=0}^n a_r x^r=\left(1+x+x^2+x^3\right)^{100}$. If $a=\sum_{r=0}^{300} a_r$, then $\sum_{r=0}^{300} ra_r$ is

Watch Video Solution

277. The value of
$$\sum_{r=1}^{n+1} \left(\sum_{k=1}^n {}^kC_{r-1}\right)$$
 (where $r,k,n\in N$) is equal to a.

$$2^{n+1}-2$$
 b. $2^{n+1}-1$ c. 2^{n+1} d. none of these

278. If
$$rac{x^2+x+1}{1-x}=a_0+a_1x+a_2x^2+$$
 , $then\sum_{r=0}^{50}a_r$ is equal to 148 b.

146 c. 149 d. none of these

279. Find
$$\frac{dy}{dt}$$
 , if $y = \frac{1-\cos t}{1+\cos t}$ is

280. The coefficient of
$$x^9$$
 in the expansion of $(1+x)(1+x^2)(1+x^3)....(1+x^{100})$ is

281. The coefficients of three consecutive terms of $\left(1+x\right)^{n+5}$ are in the ratio 5:10:14. Then n =

282. If
$$(1-x)^{-n} = a_0 + a_1 x + a_2 x^2 + ... + a_r x^r + , then a_0 + a_1 + a_2 + ... + a_r x^r + a_1 x^2 + ... + a_n x^n + a_n$$

If

is equal to
$$\dfrac{n(n+1)(n+2)(n+r)}{r!}$$
 $\dfrac{(n+1)(n+2)(n+r)}{r!}$ $\dfrac{n(n+1)(n+2)(n+r-1)}{r!}$ none of these

283. The value of $\sum_{r=0}^{20} r(20-r) \left(.^{20} C_r\right)^2$ is equal to

- a. $400^{39}C_{20}$ b. $400^{40}C_{19}$ c. $400^{39}C_{19}$ d. $400^{38}C_{20}$
 - Watch Video Solution

284. The coefficient of x^{10} in the expansion of $\left(1+x^2-x^3\right)^8$ is 476 b.

496 c. 506 d. 528

285. If the term independent of x in the $\left(\sqrt{x}-\frac{k}{x^2}\right)^{10}$ is 405, then k equals 2,-2 b. 3,-3 c. 4,-4 d. 1,-1

286. The coefficient of x^2y^3 in the expansion of $(1-x+y)^{20}$ is $\frac{20!}{213!}$ b.

$$-rac{20!}{213!}$$
 c. $rac{20!}{5!2!3!}$ d. none of these

287. The coefficient of x^5 in the expansion of $\left(x^2-x-2\right)^5$ is -83 b.

$$-82 \text{ c.} -86 \text{ d.} -81$$

288. The coefficient of $a^8b^4c^9d^9$ in $(abc+abd+acd+bcd)^{10}$ is 10! b.

$$\frac{10!}{8!4!9!9!}$$
 c. $2520\,\mathrm{d}.$ none of these

289. If the coefficient of $x^7 \in \left[ax^2 - \left(\frac{1}{bx^2}\right)\right]^{11}$ equal the coefficient of x^{-7} in satisfy the $\left[ax - \left(\frac{1}{bx^2}\right)\right]^{11}$, thena and b satisfy the relation a.

$$a+b=1$$
 b. $a-b=1$ c. $ab=1$ d. $rac{a}{b}=1$

290. If $(1+x)^5=a_0+a_1x+a2x^2+a_3x^3+a_4x^4+a_5x^5,$ then the value of $(a_0-a_2+a_4)^2+(a_1-a_3+a_5)^2$ is equal to 243 b. 32 c. 1 d.

 2^{10}

291. The coefficient of x^n in the expansion of $(1+x)(1-x)^n$ is

292. The coefficient of x^{28} in the expansion of $\left(1+x^3-x^6\right)^{30}$ is a 1 b. 0 c. $30^C _06$ d. 30C_3

293. The coefficient of x^n in $(1+x)^{101} (1-x+x^2)^{100}$ is non zero, then n cannot be of the form a. 3r+1 b. 3r c. 3r+2 d. none of these

$$\sum_{r=0}^{n} \left(-1
ight)^{r} \, \hat{} \, \, n C_r igg[rac{1}{2^r} + rac{3}{2^{2r}} + rac{7}{2^{3r}} + rac{15}{2^{4r}} + up
ightarrow mterms igg] = rac{2^{mn} - 1}{2^{mn} (2^n - 1)^n} \, .$$

$$\sum_{r=1}^{\infty}$$

- - Watch Video Solution

- **295.** In the expansion of $\left(7^{1/3}+11^{1/9}\right)^{6561}$, (a)there are exactly 730

- - Watch Video Solution

296.

(a)

 $\left(1+z^2+z^4
ight)^8=C_0+C1z2+C2z4++C_{16}z^{32}then$

involves greatest binomial coefficients is rational

z as

- (b) (c)

complex,

 $C_0 - C_1 + C_2 - C_3 + + C_{16} = 1$ $C_0 + C_3 + C_6 + C_9 + C_{12} + C_{15} = 3^7$

If for

rational term (b)there are exactly 5831 irrational terms (c)the term which

involves greatest binomial coefficients is irrational (d)the term which

or

is

297.

 $C_2 + C_5 + C_6 + C_{11} + C_{14} = 3^6$

Watch Video Solution

 $C_1 + C_4 + C_7 + C_{10} + C_{13} + C_{16} = 3^7$

maximum value of $f(m)is^{50}C_{25}$ (b) $f(0)+f(1)+...f(50)=2^{50}$ (c)f(m)always divisible by $50(1 \le m \le 49)$ (d)The value

 $\sum_{m=0}^{30} \left(f(m)
ight)^2 = ^{100} C_{50}$

(a)positive, when $a < 1 and n = 2k, k \in N$ (b)negative, a < 1 and $n = 2k + 1, k \in N$ (c)positive, when a < 1 and $n \in N$ (d)zero, when a=1

298. The sum of coefficient in the expansion of $\left(1+ax-2x^2
ight)^n$ is

 $f(m) = \sum_{i=1}^{m} (30(\hat{\ })30 - i)(20(\hat{\ })m - i)where(pq) =^{p} C_{q}, then$

(d)

If

of

299. If the 4th term in the expansion of $\left(ax+1/x\right)^n$ is 5/2, then a.

$$a=rac{1}{2}$$
 b. $n=8$ c. $a=rac{2}{3}$ d. $n=6$

300. The number of values of r satisfying the equation 69 C 3r-1 - 69 C r 2

301. If $\left(4+\sqrt{15}\right)^n=I+f$, where n is an odd natural number, I is an integer and ,then a.Iis an odd integer b. Iis an even integer c.

$$(I+f)(1-f)=1$$
 d. $1-f=\left(4-\sqrt{15}
ight)^n$

302. In the expansion of $\left(x+a\right)^n$ if the sum of odd terms is P and the

sum of even terms is Q, then (a) $P^2-Q^2=\left(x^2-a^2
ight)^n$ (b)

$$4PQ = (x+a)^{2n} - (x-a)^{2n}$$
 (c)

- $2ig(P^2+Q^2ig)=(x+a)^{2n}+(x-a)^{2n}$ (d)none of these
 - Watch Video Solution

303. If the coefficients of rth, (r+1)th, and(r+2)th terms in the expansion of $(1+x)^{14}$ are in A.P., then r is/are a. 5 b. 11 c. $10 ext{ d. } 9$

304. The value of x in the expression $\left(x+x^{(\log)_{10}x}\right)^5$ if third term in the expansion is 10,00,000 is/are

a. 10 b. 100 c. $10^{-5/2}$ d. $10^{-3/2}$

305. Let $R=\left(5\sqrt{5}+11\right)^{2n+1}$ and f=R-[R]where[] denotes the greatest integer function, prove that $Rf=4^{2n+1}$

306. If |x|<1, then the coefficient of x^n in expansion of $(1+x+x^2+x^3+)^2$ is a. n b. n-1 c. n+2 d. n+1

307. The coefficient of $x^5 \in \left(1+2x+3x^2+
ight)^{-3/2} is(|x|<1)$ 21 b. 25 c. 26 d. none of these

308. If x is so small that x^3 and higher powers of x may be neglectd, then $\frac{(1+x)^{3/2}-\left(1+\frac{1}{2}x\right)^3}{\left(1-x\right)^{1/2}} \quad \text{may be approximated as a. } 3x+\frac{3}{8}x^2 \quad \text{b.}$

$$1-rac{3}{8}x^2$$
 c. $rac{x}{2}-rac{3}{ imes^2}$ d. $-rac{3}{8}x^2$

309. If x is positive, the first negative term in the expansion of $(1+x)^{27/5}is(|x|<1)$ a.5thterm b. 8thterm c. 6thterm d. 7thterm

310. Value of $\sum_{k=1}^{\infty} \sum_{r=0}^{k} \frac{1}{3^k} (kC_r)$ is $\frac{2}{3}$ b. $\frac{4}{3}$ c. 2 d. 1

311. If the expansion in powers of x of the function 1/[(1-ax)(1-bx)] is $aa_0+a_1x+a_2x^2+a_3x^3+, thena_nis$ a. $\frac{b^n-a^n}{b-a}$ b. $\frac{a^n-b^n}{b-a}$ c.

$$rac{b^{n+1}-a^{n+1}}{b-a}$$
 d. $rac{a^{n+1}-b^{n+1}}{b-a}$

312. If $f(x)=1-x+x^2-x^3++^{15}+x^{16}-x^{17}$, then the coefficient of $x^2\in f(x-1)$ is 826 b. 816 c. 822 d. none of these

313. The sum of rational term in $\left(\sqrt{2}+\sqrt[3]{3}+\sqrt[6]{5}\right)^{10}$ is equal to 12632 b.

1260 c. 126 d. none of these

314. The value of
$$\sum_{r=0}^{10} (r)^{20}C_r$$
 is equal to: a. $20(2^{18}+^{19}C_{10})$ b. $10(2^{18}+^{19}C_{10})$ c. $20(2^{18}+^{19}C_{11})$ d. $10(2^{18}+^{19}C_{11})$

315. If $p=\left(8+3\sqrt{7}\right)^n and f=p-[p], where [.]$ denotes the greatest integer function, then the value of p(1-f) is equal to

318. the value of x , for which the 6th term in the expansions of

$$\left[2^{\log_2\left(\sqrt{9^{(x-1)+7}}\right)}+\frac{1}{2^{\frac{1}{5}}(\log_2\left(3^{x-1}+1\right)}\right]^7is84 \text{ , is equal to a. 4 b. 3}$$

c. 2 d. 1

correct. Each question contains STATEMENT 1 and STATEMENT 2. Both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT1. Both the statements are TRUE but STATEMENT 2 is NOT the correct explanation of STATEMENT 1. STATEMENT 1 is TRUE and STATEMENT 2 is FALSE. STATEMENT 1 is FALSE and STATEMENT 2 is TRUE. Statement 1:

319. Each question has four choices a, b, c and d, out of which only one is

The value of

$$\Big(\ \hat{\ } \ (10)^C \ _- \ 0 \Big) + (\ \hat{\ } \ (10)C_0 + (10)C_1) + (\ \hat{\ } \ (10)C_0 + (10)C_1 + (10)C_2)$$

is 102^9 . Statement 2: $\stackrel{ ext{ iny }}{n}C_1+2^nC_2+3^nC_3+n^nC_n=n2^{n-1}$.

320. The number $51^{49} + 51^{48} + 51^{47} + \dots + 51 + 1$ is divisible by a.

321. If
$$\sum_{r=0}^{n} rac{r}{^{n}C_{r}} = \sum_{r=0}^{n} rac{n^{2} - 3n + 3}{2.\ ^{n}C_{r}}$$
, then

322. If $(1+x)^n=C_0+C_1x+C_2x^2+\ldots +C_nx^n$, then show that the sum of the products of the coefficients taken two at a time, represented by $\sum\sum_{0\leq i< j\leq n}{}^nc_i{}^nc_j$ is equal to $2^{2n-1}-\frac{(2n)!}{2(n!)^2}$

323. For any positive integer (m,n) (with $n \geq m$), Let $\binom{n}{m} = .^n C_m$

$$\binom{n}{m} + 2\binom{n-1}{m} + 3\binom{n-2}{m} + \dots + (n-m+1)\binom{m}{m} = \binom{n+2}{m+2}$$
Watch Video Solution

324. If
$$\sum_{r=0}^{\infty}\left\{a_r(x-lpha+2)^r-b_r(lpha-x-1)^r
ight\}=0$$
, then prove that $b_n-(-1)^na_n=0$.

 $n\geq 2, letb_n=^n C_1+^n C_2\dot{a}+^n C_3a^2+.....+^n C_n\cdot a^{n-1}$. Find the

and for each

325.

value of
$$(b_{2006}-b_{2005})$$
.

Let $a = \left(2^{1/401} - 1\right)$

$$\sum_{r=0}^{n} \ \hat{} \ n C_r (\,-1)^r ig[i^r + i^{2r} + i^{3r} + i^{4r} ig] = 2^n + 2^{rac{n}{2}+1} \cos(n\pi/4),$$

where $i = \sqrt{-1}$

Watch Video Solution

327. Find the coefficient of x^n in $\left(1+\frac{x}{1!}+\frac{x^2}{2!}+\dots + \frac{x^n}{n!}\right)^2$.

Watch Video Solution

that 328.

$$rac{\hat{\ } nC_0}{x} - rac{\hat{\ } nC_0}{x+1} + rac{\hat{\ } nC_1}{x+2} - + (-1)^n rac{\hat{\ } nC_n}{x+n} = rac{n!}{x(x+1)(x-n)},$$

where n is any positive integer and x is not a negative integer.

Watch Video Solution

$$1-2n+rac{2n(2n-1)}{2!}-rac{2n(2n-1)(2n-2)}{3!}+ + (-1)^{n-1}rac{2n(2n-1)(2n-2)}{(n-1)!}$$

329. If n is a positive integer, prove that

Given.

Water video Soldtion

$$s_n=1+q+q^2+.....+q^n, S_n=1+rac{q+1}{2}+\left(rac{q+1}{2}
ight)^2+...+\left(rac{q+1}{2}
ight)^2$$
 prove that $^{n+1}C_1+^{n+1}C_2s_1+^{n+1}C_3s_2+.....+^{n+1}C_{n+1}s_n=2^nS_n$.

331. The sum of $1+n\Big(1-rac{1}{x}\Big)+rac{n(n+1)}{2!}\Big(1-rac{1}{x}\Big)^2+\infty$ will be a.

$$x^n$$
 b. x^{-n} c. $\left(1 - \frac{1}{x}\right)^n$ d. none of these

332.
$$\sum_{k=1}^{\infty} k \left(1 - \frac{1}{n}\right)^{k-1} \Rightarrow ?a. \text{ n(n-1)}b. \text{ n(n+1)}c. \text{ n^2}d. \text{ (n+1)^2}$$

333. The coefficient of
$$x^4$$
 in the expansion of $\left\{\sqrt{1+x^2}-x\right\}^{-1}$ in ascending powers of x , when $|x|<1,$ is a. 0 b. $\frac{1}{2}$ c. $-\frac{1}{2}$ d. $-\frac{1}{8}$

334.
$$1+\frac{1}{3}x+\frac{1\times 4}{3\times 6}x^2+\frac{1\times 4\times 7}{3\times 6\times 9}x^3+ ext{ ---- is equal to a. }x$$
 b. $(1+x)^{1/3}\operatorname{c.}(1-x)^{1/3}\operatorname{d.}(1-x)^{-1/3}$

335. The value of
$$\sum_{r=1}^{15} \frac{r2^r}{(r+2)!}$$
 is (a). $\frac{(17)!-2^{16}}{(17)!}$ (b). $\frac{(18)!-2^{17}}{(18)!}$ (c). $\frac{(16)!-2^{15}}{(16)!}$ (d). $\frac{(15)!-2^{14}}{(15)!}$

Watch Video Solution

336.
$$(n+2)C_0ig(2^{n+1}ig)-(n+1)C_1(2^n)+(n)C_2ig(2^{n-1}ig)-....$$
 is equal

to

337. The value of
$$\sum_{r=0}^{50}{(-1)^r\frac{(50)C_r}{r+2}}$$
 is equal to $a.$ $\frac{1}{50\times51}$ b. $\frac{1}{52\times50}$ c. $\frac{1}{52\times51}$ d. none of these

338. In the expansion of $[(1+x)/(1-x)]^2$, the coefficient of x^n will be a.4n b. 4n-3 c. 4n+1 d. none of these

339. Statement : The sum of coefficient in the expansion of $\left(3^{-x/4}+3^{5x/4}
ight)^n is 2^n$.

340. Let n be a positive integer and k be a whole number, $k \leq 2n$

Statement 1: The maximum value of
$$2nC_kis^{2n}C_n$$
. Statement 2:
$$\frac{\hat{}(2n)C_{k+1}}{\hat{}(2n)C_k} \bigg\langle 1,f \text{ or } k=0,1,2,,n-1 \\ and \frac{\hat{}(2n)C_k}{\hat{}(2n)C_{k-1}} \bigg\rangle 1,f \text{ or } k=n$$

341.
$$Statement1$$
: $\sum \sum_{0 \leq i < j \leq n} \left(\frac{i}{\cdot^n c_i} + \frac{j}{\cdot^n c_j} \right)$ is equal to $\frac{n^2}{2}a$, where a , $\sum_{r=0}^n \frac{1}{\cdot^n c_r} = a$ $Statement2$: $\sum_{r=0}^n \frac{r}{\cdot^n c_r} = \sum_{r=0}^n \frac{n-r}{\cdot^n c_r}$

$$m+n < r$$

 $\hat{D} = mC_r + mC_{r-1}(\hat{D}_1) + mC_{r-2}(\hat{D}_2) + + nC_r = 0,$ if

Statement 2: $\hat{n}C_r = 0$, if n < r

Watch Video Solution

343.
$$1 + \left(\frac{1}{4}\right) + \left(\frac{1 \cdot 3}{4 \cdot 8}\right) + \left(\frac{1 \cdot 4 \cdot 7}{4 \cdot 8 \cdot 12}\right) + \dots =$$

345. Statement 1: If p is a prime number $(p \neq 2)$, then $\left[\left(2+\sqrt{5}\right)^p\right]-2^{p+1}$ is always divisible by p(where[.]] denotes the greatest integer function). Statement 2: if n prime, then ${}^{\hat{}} nC_1, {}^{n}C_2, {}^{n}C_2, {}^{n}C_{n-1}$ must be divisible by n.

346. Statement 1: The total number of dissimilar terms in the expansion of $(x_1+x_2+\ +x_n)^3israc{n(n+1)(n+2)}{6}.$

347. Statement 1: In the expansion of $(1+x)^{41} (1-x+x^2)^{40}$, the coefficient of x^{85} is zero. Statement 2: In the expansion of $(1+x)^{41} and (1-x+x^2)^{40}$, x^{85} term does not occur.

348.

Statement 1: The coefficient of x^n

in

 $\left(1+x+rac{x^2}{2!}+rac{x^3}{3!}+rac{x^n}{n!}
ight)^3$ is $rac{3^n}{n!}$. Statement 2: The coefficient of x^n in e^{3x} is $\frac{3^n}{n!}$

Watch Video Solution

349. Evaluate $3C_2$

Watch Video Solution

350. Evaluate $5C_2$

Watch Video Solution

351. Find $\sum_{r=0}^{10} r^{10} C_r . 3^r . (-2)^{10-r}$

Watch Video Solution

352. Find n if $nP_1 = 2$

Watch Video Solution

353. Evaluate $5P_2$

Watch Video Solution

354. The value of $\frac{{}^{n}C_{0}}{n} + \frac{{}^{n}C_{1}}{n+1} + \frac{{}^{n}C_{2}}{n+2} + \dots + \frac{{}^{n}C_{n}}{2n}$ is equal to a. $\int_{1}^{1}x^{n-1}(1-x)^{n}dx$ b. $\int_{1}^{2}x^{n}(x-1)^{n-1}dx$ c. $\int_{1}^{2}x^{n-1}(1+x)^{n}dx$ d. $\int_{0}^{1} (1-x)^{n-1} dx$

Watch Video Solution

value 355. The of $^{20}C_0 + ^{20}C_1 + ^{20}C_2 + ^{20}C_3 + ^{20}C_4 + ^{20}C_{12} + ^{20}C_{13} + ^{20}C_{14} + ^{20}C_{15}$

357.

 2^{2010} d. none of these Watch Video Solution

Watch Video Solution

 $2^{19}-rac{\hat{}(20)C10}{2}$ d. none of these

value of $a_0-rac{1}{2}a_1-rac{1}{2}a_2+a_3-rac{1}{2}a_4-rac{1}{2}a_5+a_6$ is a.3 2010 b. 1 c.

356. If $\left(3+x^{2008}+x^{2009}\right)^{2010}=a_0+a_1x+a_2x^2+{}+a_nx^n,$ then the

 $\widehat{A}\widehat{A}404C4\widehat{A}\widehat{a}'\widehat{A}\widehat{A}4C1\widehat{A}\widehat{A}\widehat{A}303C4\widehat{A}+\widehat{A}\widehat{A}4C2\widehat{A}\widehat{A}\widehat{A}202C4\widehat{A}\widehat{a}'\widehat{A}\widehat{A}4C3\widehat{A}\widehat{A}\widehat{A}$

a. $2^{19}-rac{\left(\hat{\ }(20) ext{C}_{10}+rac{20}{C_{9}}
ight)}{2}$ b. $2^{19}-rac{\left(\hat{\ }(20)C10+2 imes^{20}C9
ight)}{2}$ c.

is equal to a. (401)4 b. (101)4 c. 0 d. (201)4

Watch Video Solution

359. If
$$(1+x)^n=C_0+C_1x+C_2x^2+...+C_nx^n,$$
 $C_0C_2+C_1C_3+C_2C_4+...+C_{n-2}C_n=$ a. $\dfrac{(2n)\,!}{(n\,!)^2}$

$$^{20}C_0 - ^{20}C_1 + ^{20}C_2 - ^{20}C_3 + + ^{20}C_{10}$$
 is a. $rac{1}{2}{}^{20}C10$

360. The value of $\lim_{n\to\infty}\sum_{r=0}^n\left(\sum_{t=0}^{r-1}\frac{1}{5^n}\cdot {}^nC_r\cdot {}^rC_t.\left(3^t\right)\right)$ is equal to

sum

of

series

then

b.

d.
$$^{20}C10$$

Watch Video Solution

The

358.

b. 0

c. $^{20}C10$

a. $\frac{1}{2}^{20}C10$

$$rac{(2n)\,!}{(n-1)\,!(n+1)\,!}$$
 c. $rac{(2n)\,!}{(n-2)\,!(n+2)\,!}$ d. none of these

361. that Prove $C_0 - 2^2 C_1 + 3^2 C_2 - 4^2 C_3 + \\ + \left(-1
ight)^n (n+1)^2 imes C_n = 0 where C_r =^n C_r$

362. The remainder, if $1 + 2 + 2^2 + \dots + 2^{1999}$ is divided by 5 is.

363. Find the largest real value of x such

that

Watch Video Solution

Watch Video Solution

Watch Video Solution

 $\sum_{k=0}^{4} \left(\frac{3^{4-k}}{(4-k)!} \right) \left(\frac{x^k}{k!} \right) = \frac{32}{3}.$

364. If in the expansion of $\left(a-2b\right)^n$, the sum of 5th and 6th terms is 0,

then the values of $\frac{a}{b}$ a. $\frac{n-4}{5}$ b. $\frac{2(n-4)}{5}$ c. $\frac{5}{n-4}$ d. $\frac{5}{2(n-4)}$

365. The number of real negavitve terms in the binomial

expansion of $\left(1+ix
ight)^{4n-2}, n\in N, n>0, I=\sqrt{-1}, ext{ is }$

