びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Exercises

1. If $\left|\begin{array}{ccc}(a-x)^{2} & (a-y)^{2} & (a-z)^{2} \\ (b-x)^{2} & (b-y)^{2} & (b-z)^{2} \\ (c-x)^{2} & (c-y)^{2} & (c-a)^{2}\end{array}\right|=0$ and vectors \vec{A}, \vec{B} and \vec{C},
where $\vec{A}=a^{2} \hat{i}=a \hat{j}+\hat{k}$ etc. are non-coplanar, then prove that vectors \vec{X}, \vec{Y} and \vec{Z} where $\vec{X}=x^{2} \hat{i}+x \hat{j}+\hat{k}$. etc.may be coplanar.
2. $O A B C$ is a tetrahedron where O is the origin and A, B, C have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively prove that circumcentre of tetrahedron OABC is $\frac{a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

3. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angel between any edge and a face not containing the edge is $\cos ^{-1}(1 / \sqrt{3})$.

- Watch Video Solution

4. In $A B C$, a point P is taken on $A B$ such that $A P / B P=1 / 3$ and point Q is taken on $B C$ such that $C Q / B Q=3 / 1$. If R is the point of
intersection of the lines $A Q a n d C P$, ising vedctor method, find the are of $A B C$ if the area of $B R C$ is 1 unit

- Watch Video Solution

5. Let O be an interior point of $\triangle A B C$ such that $\overline{O A}+2 \overline{O B}+3 \overline{O C}=0$
. Then the ratio of a $\triangle A B C$ to area of $\triangle A O C$ is

- Watch Video Solution

6. The lengths of two opposite edges of a tetrahedron of aandb; the shortest distane between these edgesis d, and the angel between them if θ. Prove using vector4s that the volume of the tetrahedron is $\frac{a b d i s n \theta}{6}$.

- Watch Video Solution

7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude $|a|$ and equal inclination θ with each other.
8. Let \vec{p} and \vec{q} any two othogonal vectors of equal magnitude 4 each. Let \vec{a}, \vec{b} and \vec{c} be any three vectors of lengths $7 \sqrt{15}$ and $2 \sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector $(\vec{a} \cdot \vec{p}) \vec{p}+(\vec{a} \cdot \vec{q}) \vec{q}+(\vec{a} \cdot(\vec{p} \times \vec{q}))(\vec{p} \times \vec{q})+(\vec{b} \cdot \vec{p}) \vec{p}+$
$(\vec{b} \cdot(\vec{b} \cdot \vec{q}))(\vec{p} \times \vec{q})+(\vec{c} \cdot \vec{p}) \vec{p}+(\vec{c} \cdot \vec{q}) \vec{q}+(\vec{c} \cdot(\vec{p} \times \vec{q})$ from the origin.

- Watch Video Solution

9. Given that $\vec{A}, \vec{B}, \vec{C}$ form triangle such that $\vec{A}=\vec{B}+\vec{C}$. Find a,b,c,d such that area of the triangle is $5 \sqrt{6}$ where $\vec{A}=a \vec{i}+b \vec{i}+c \vec{k} \cdot \vec{B}=d \vec{i}+3 \vec{j}+4 \vec{k}$ and $\vec{C}=3 \vec{i}+\vec{j}-2 \vec{k}$

- Watch Video Solution

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c}. Determine the distance of point $A(\vec{a})$ from the line 1 in from $\left|\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}\right|$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$

(Watch Video Solution

11. If $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ and $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ are two sets of vectors such that $\vec{e}_{i} \vec{E}_{j}=1$, if $i=j a n d \vec{e}_{i} \vec{E}_{j}=0$ and if $i \neq j$, then prove that $\left[\vec{e}_{1} \vec{e}_{2} \vec{e}_{3}\right]\left[\vec{E}_{1} \vec{E}_{2} \vec{E}_{3}\right]=1$.

- Watch Video Solution

12. In a quadrilateral ABCD , it is given that $A B|\mid C D$ and the diagonals $A C$ and $B D$ are perpendicular to each other. Show that $A D . B C \geq A B . C D$.

- Watch Video Solution

13. $O A B C$ is regular tetrahedron in which D is the circumcentre of $O A B$ and E is the midpoint of edge $A C$. Prove that $D E$ is equal to half the edge of tetrahedron.

- Watch Video Solution

14. If $A(\vec{a}), B(\vec{b}) \operatorname{and} C(\vec{c})$ are three non-collinear points and origin does not lie in the plane of the points $A, B a n d C$, then point $P(\vec{p})$ in the plane of the $A B C$ such that vector $\vec{O} P$ is \perp to planeof $A B C$ show
that
$\vec{O} P=\frac{[\vec{a} \vec{b} \vec{c}](\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a})}{4^{2}}$, where is the area of the $A B C$.

- Watch Video Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are three given non-coplanar vectors and any arbitrary vector

$$
\vec{r}
$$

$$
\begin{aligned}
& \Delta_{1}=\left|\begin{array}{lll}
\vec{r} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\
\vec{r} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\
\vec{r} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}
\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{r} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\
\vec{a} \cdot \vec{b} & \vec{r} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\
\vec{a} \cdot \vec{c} & \vec{r} \cdot \vec{c} & \vec{c} \cdot \vec{c}
\end{array}\right| \\
& \Delta_{3}=\left|\begin{array}{llll}
\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{r} \cdot \vec{b} \\
\vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{r} \cdot \vec{c}
\end{array}\right|, \Delta=\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{b} \cdot \vec{a} & \vec{c} \cdot \vec{a} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} & \vec{c} \cdot \vec{b} \\
\vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} & \vec{c} \cdot \vec{c}
\end{array}\right|,
\end{aligned}
$$

then prove that $\vec{r}=\frac{\Delta_{1}}{\Delta} \vec{a}+\frac{\Delta_{2}}{\Delta} \vec{b}+\frac{\Delta_{3}}{\Delta} \vec{c}$

- Watch Video Solution

Exercises MCQ

1. Two vectors in space are equal only if they have equal component in a. a given direction b. two given directions c. three given directions d. in any arbitrary direction
A. a given direction
B. two given directions
C. three given direction
D. in any arbitrary direaction

Answer: c

- Watch Video Solution

2. Let \vec{a}, \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3 , respectively, such that the angle between
\vec{a} and \vec{b} is θ and $\vec{a} \times(\vec{a} \times \vec{b})=\vec{c}$. Then $\tan \theta$ is equal to
A. 0
B. $\frac{2}{3}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: d

- Watch Video Solution

3. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of equal magnitude such that the angle between each pair is $\frac{\pi}{3}$. If $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$, then $|\vec{a}|=$
A. 2
B. -1
C. 1
D. $\sqrt{6} / 3$

Answer: c

- Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is (A) $\vec{a}+\vec{b}+\vec{c}$

$$
\begin{equation*}
\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\overrightarrow{/}|\vec{c}| \tag{B}
\end{equation*}
$$

(C) $\quad \frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
$|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$
A. $\vec{a}+\vec{b}+\vec{c}$
B. $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{c}}{|\vec{c}|}$
C. $\frac{\vec{a}}{|\vec{a}|^{2}}+\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{c}}{|\vec{c}|^{2}}$
D. $|\vec{a}| \vec{a}-|\vec{b}| \vec{b}+|\vec{c}| \vec{c}$

Answer: b

- Watch Video Solution

5. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) $(3,-1,10$
(B) $(3,1,-1)$ (C) $(-3,1,1)$ (D) $(-3,-1,-1)$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $3 \hat{i}-\hat{j}+\hat{k}$
C. $3 \hat{i}+\hat{j}-\hat{k}$
D. $\hat{i}-\hat{j}-\hat{k}$

Answer: c

- Watch Video Solution

6. If \vec{a} and \vec{b} are two vectors, such that
$\vec{a} \cdot \vec{b}<0$ and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ then the angle between the vectors
\vec{a} and \vec{b} is (a) π (b) $\frac{7 \pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{3 \pi}{4}$
A. π
B. $7 \pi / 4$
C. $\pi / 4$
D. $3 \pi / 4$

Answer: d

7. If \hat{a}, \hat{b} and \hat{c} are three unit vectors such that $\hat{a}+\hat{b}+\hat{c}$ is also a unit vector and θ_{1}, θ_{2} and θ_{3} are angles between the vectors $\widehat{a}, \hat{b}, \hat{b}, \hat{c}$ and \hat{c}, \widehat{a}, respectively m then among θ_{1}, θ_{2} and θ_{3}
A. all are acute angles
B. all are right angles
C. at least one is obtuse angle
D. none of these

Answer: c

- Watch Video Solution

8. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$ and the angle between \vec{b} and $\vec{c} i s \frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$
A. $1 / 2$
B. 1
C. 2
D. none of these

Answer: b

- Watch Video Solution

9. P (\vec{p}) and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the postion vector of a variable point. If R moves such that $(\vec{r}-\vec{p}) \times(\vec{r}-\vec{q})=\overrightarrow{0}$ then the locus of R is
A. a plane containing the origian O and parallel to two non-collinear vectors $\overrightarrow{O P}$ and $\overrightarrow{O Q}$
B. the surface of a sphere described on PQ as its diameter
C. a line passing through points P and Q
D. a set of lines parallel to line PQ

Answer: c

- Watch Video Solution

10. Two adjacent sides of a parallelogram $A B C D$ are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Then the value of $|\overrightarrow{A C} \times \overrightarrow{B D}|$ is
A. $20 \sqrt{5}$
B. $22 \sqrt{5}$
C. $24 \sqrt{5}$
D. $26 \sqrt{5}$

Answer: b

- Watch Video Solution

11. If \widehat{a}, \hat{b}, and \hat{c} are three unit vectors inclined to each other at angle θ, then the maximum value of θ is $\frac{\pi}{3}$ b. $\frac{\pi}{4}$ c. $\frac{2 \pi}{3}$ d. $\frac{5 \pi}{6}$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{5}$

Answer: c

- Watch Video Solution

12. Let the pair of vector \vec{a}, \vec{b} and $\vec{c}, \vec{c} d$ each determine a plane. Then the planes are parallel if
A. $(\vec{a} \times \vec{c}) \times(\vec{b} \times \vec{d})=\overrightarrow{0}$
B. $(\vec{a} \times \vec{c}) \cdot(\vec{b} \times \vec{d})=\overrightarrow{0}$
c. $(\vec{a} \times \vec{c}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$
D. $(\vec{a} \times \vec{c}) \cdot(\vec{c} \times \vec{d})=\overrightarrow{0}$
13. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ where \vec{a}, \vec{b} and \vec{c} are noncoplanar, then
A. $\vec{r} \perp(\vec{c} \times \vec{a})$
B. $\vec{r} \perp(\vec{a} \times \vec{b})$
C. $\vec{r} \perp(\vec{b} \times \vec{c})$
D. $\vec{r}=\overrightarrow{0}$

Answer: d

- Watch Video Solution

14. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to
A. a) $\lambda \hat{i}+(2 \lambda-1) \hat{j}+\lambda \hat{k}, \lambda \in R$
B. b) $\lambda \hat{i}+(1-2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$
c. c) $\lambda \hat{i}+(2 \lambda+1) \hat{j}+\lambda \hat{k}, \lambda \in R$
D. d) $\lambda \hat{i}+(1+2 \lambda) \hat{j}+\lambda \hat{k}, \lambda \in R$

Answer: c

- Watch Video Solution

15. Vectors $3 \vec{a}-5 \vec{b}$ and $2 \vec{a}+\vec{b}$ are mutually perpendicular. If $\vec{a}+4 \vec{b}$ and $\vec{b}-\vec{a}$ are also mutually perpendicular, then the cosine of the angle between \vec{a} and \vec{b} is (a) $\frac{19}{5 \sqrt{43}}$ (b) $\frac{19}{3 \sqrt{43}}$ (c) $\frac{19}{\sqrt{45}}$
$\frac{19}{6 \sqrt{43}}$
A. $\frac{19}{5 \sqrt{43}}$
B. $\frac{19}{3 \sqrt{43}}$
C. $\frac{19}{\sqrt{45}}$
D. $\frac{19}{6 \sqrt{43}}$

Answer: a

16. The units vectors orthogonal to the vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ and making equal angles with the X and Y axes islare) :
A. $\pm \frac{1}{3}(2 \hat{i}+2 \hat{j}-\hat{k})$
B. $\frac{19}{5 \sqrt{43}}$
C. $\pm \frac{1}{3}(\hat{i}+\hat{j}-\hat{k})$
D. none of these

Answer: a

- Watch Video Solution

17. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}=\hat{k}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}=x \hat{k}$, is obtuse and the angle between \vec{b} and the z-axis is acute and less than $\pi / 6$, are

$$
\text { A. } a<x<1 / 2
$$

B. $1 / 2<x<15$
C. $x<1 / 2$ or $x<0$
D. none of these

Answer: d

- Watch Video Solution

18. If vectors \vec{a} and \vec{b} are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is
(D)
$\frac{\vec{a} \times(\vec{b} \times \vec{a})}{\left.\vec{b}\right|^{20}}$
A. $\vec{b}+\frac{\vec{b} \times \vec{a}}{|\vec{a}|^{2}}$
B. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$
C. $\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}$
D. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

Answer: c

- Watch Video Solution

19.

A parallelogram is constructed
$3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$ and \vec{a} and \vec{b} are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C)

32 (D) 48
A. 40
B. 64
C. 32
D. 48

- Watch Video Solution

20. Let $\vec{a} \cdot \vec{b}=0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both
\vec{a} and $\vec{b} \cdot \operatorname{If} \vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$ then
A. $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$
B. $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$
C. $0 \leq \theta \leq \frac{\pi}{4}$
D. $0 \leq \theta \leq \frac{3 \pi}{4}$

Answer: a

- Watch Video Solution

21. \vec{a} and \vec{c} are unit vectors and $|\vec{b}|=4$ the angle between \vec{a} and \vec{c} is $\cos ^{-1}(1 / 4)$ and $\vec{b}-2 \vec{c}=\lambda \vec{a}$ the value of λ is
A. 3,-4
B. 1/4,3/4
C. $-3,4$
D. $-1 / 4, \frac{3}{4}$

Answer: a

- Watch Video Solution

22. Let the position vectors of the points PandQ be $4 \hat{i}+\hat{j}+\lambda \hat{k}$ and $2 \hat{i}-\hat{j}+\lambda \hat{k}, \quad$ respectively. Vector $\hat{i}-\hat{j}+6 \hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals a $-1 / 2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
A. $-1 / 2$
B. $1 / 2$
C. 1
D. none of these

Answer: a

- Watch Video Solution

23. A vector of magnitude $\sqrt{2}$ coplanar with the vectors $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$, and perpendicular to the vector $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ is
A. $-\hat{j}+\hat{k}$
B. \hat{i} and \hat{k}
C. $\hat{i}-\hat{k}$
D. hati- hatj'

Answer: a

24. Let P be a point interior to the acute triangle $A B C$. If $P A+P B+P C$ is a null vector, then w.r.t traingel $A B C$, point P is its a. centroid b. orthocentre c. incentre d. circumcentre
A. centroid
B. orthocentre
C. incentre
D. circumcentre

Answer: a

- Watch Video Solution

25. G is the centroid of triangle ABC and A_{1} and B_{1} are the midpoints of sides AB and AC , respectively. If Δ_{1} is the area of quadrilateral $G A_{1} A B_{1}$ and Δ is the area of triangle $A B C$, then $\frac{\Delta}{\Delta_{1}}$ is equal to
A. $\frac{3}{2}$
B. 3
C. $\frac{1}{3}$
D. none of these

Answer: b

- Watch Video Solution

26. Points $\vec{a}, \vec{b} \vec{c}$ and \vec{d} are coplanar and $(\sin \alpha) \vec{a}+(2 \sin 2 \beta) \vec{b}+(3 \sin 3 \gamma) \vec{c}-\vec{d}=\overrightarrow{0}$. Then the least value of $\sin ^{2} \alpha+\sin ^{2} 2 \beta+\sin ^{2} 3 \gamma$ is
A. $1 / 14$
B. 14
C. 6
D. $1 / \sqrt{6}$

- Watch Video Solution

27. If \vec{a} and \vec{b} are any two vectors of magnitudes 1and 2 . respectively, and $(1-3 \vec{a} \cdot \vec{b})^{2}+|2 \vec{a}+\vec{b}+3(\vec{a} \times \vec{b})|^{2}=47$ then the angle between \vec{a} and \vec{b} is
A. $\pi / 3$
B. $\pi-\cos ^{-1}(1 / 4)$
C. $\frac{2 \pi}{3}$
D. $\cos ^{-1}(1 / 4)$

Answer: c

28. If \vec{a} and \vec{b} are any two vectors of magnitude 2 and 3 respectively such that $|2(\vec{a} \times \vec{b})|+|3(\vec{a} \cdot \vec{b})|=k$ then the maximum value of k is (a) $\sqrt{13}$ (b) $2 \sqrt{13}$ (c) $6 \sqrt{13}$ (d) $10 \sqrt{13}$
A. $\sqrt{13}$
B. $2 \sqrt{13}$
C. $6 \sqrt{13}$
D. $10 \sqrt{13}$

Answer: c

- Watch Video Solution

29. \vec{a}, \vec{b} and \vec{c} are unit vectors such that $|\vec{a}+\vec{b}+3 \vec{c}|=4$ Angle between \vec{a} and $\vec{b} i s \theta_{1}$, between \vec{b} and $\vec{c} i s \theta_{2}$ and between \vec{a} and \vec{b} varies $[\pi / 6,2 \pi / 3]$. Then the maximum value of $\cos \theta_{1}+3 \cos \theta_{2}$ is
A. 3
B. 4
C. $2 \sqrt{2}$
D. 6

Answer: b

- Watch Video Solution

30. If the vector product of a constant vector $\vec{O} A$ with a variable vector $\vec{O} B$ in a fixed plane $O A B$ be a constant vector, then the locus of B is (a).a straight line perpendicular to $\vec{O} A$ (b). a circle with centre O and radius equal to $|\vec{O} A|$ (c). a straight line parallel to $\vec{O} A$ (d). none of these
A. a straight line perpendicular to $\overrightarrow{O A}$
B. a circle with centre O and radius equal to $|\overrightarrow{O A}|$
C. a striaght line parallel to $\overrightarrow{O A}$
D. none of these

Answer: c

D Watch Video Solution

31. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$ if the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals

- Watch Video Solution

32. If the two adjacent sides of two rectangles are reprresented by

vectors

$\vec{p}=5 \vec{a}-3 \vec{b}, \vec{q}=-\vec{a}-2 \vec{b}$ and $\vec{r}=-4 \vec{a}-\vec{b}, \vec{s}=-\vec{a}+$ respectively, then the angle between the vectors $\vec{x}=\frac{1}{3}(\vec{p}+\vec{r}+\vec{s})$ and $\vec{y}=\frac{1}{5}(\vec{r}+\vec{s})$ is
A. $-\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
B. $\cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
C. $\pi \cos ^{-1}\left(\frac{19}{5 \sqrt{43}}\right)$
D. cannot of these

Answer: b

- Watch Video Solution

33. If $\quad \vec{\alpha}|\mid(\vec{b} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})=$
$|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$ (B) $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$ (C) $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$ (D) $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$
A. $|\vec{\alpha}|^{2}(\vec{\beta} \cdot \vec{\gamma})$
B. $|\vec{\beta}|^{2}(\vec{\gamma} \cdot \vec{\alpha})$
c. $|\vec{\gamma}|^{2}(\vec{\alpha} \cdot \vec{\beta})$
D. $|\vec{\alpha}||\vec{\beta}||\vec{\gamma}|$

Answer: a

34. The position vectors of points A, B and C are $\hat{i}+\hat{j}, \hat{i}+5 \hat{j}-\hat{k}$ and $2 \hat{i}+3 \hat{j}+5 \hat{k}$, respectively the greatest angle of triangle $A B C$ is
A. 120°
B. 90°
C. $\cos ^{-1}(3 / 4)$
D. none of these

Answer: b

- Watch Video Solution

35. Given three vectors \vec{a}, \vec{b}, and \vec{c} two of which are non-collinear. Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with $\vec{a},|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$. Find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ a. 3 b. -3 c. 0 d. cannot be evaluated
A. 3
B. -3
C. 0
D. cannot of these

Answer: b

- Watch Video Solution

36. If \vec{a} and \vec{b} are unit vectors such that $(\vec{a}+\vec{b}) \cdot(2 \vec{a}+3 \vec{b}) \times(3 \vec{a}-2 \vec{b})=\overrightarrow{0}$ then angle between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. π
D. indeterminate

D Watch Video Solution

37. If in a right-angled triangle $A B C$, the hypotenuse $A B=p$, then $\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ is equal to
A. $2 p^{2}$
B. $\frac{p^{2}}{2}$
C. p^{2}
D. none of these

Answer: c

- Watch Video Solution

38. Resolved part of vector \vec{a} and along vector \vec{b} is $\vec{a} 1$ and that prependicular to \vec{b} is $\vec{a} 2$ then $\vec{a} 1 \times \vec{a} 2$ is equl to
A. $\frac{(\vec{a} \times \vec{b}) \cdot \vec{b}}{|\vec{b}|^{2}}$
B. $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{|\vec{a}|^{2}}$
c. $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$
D. $\frac{(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{a})}{|\vec{b} \times \vec{a}|}$

Answer: c

- Watch Video Solution

39. Let $\vec{a}=2 \hat{i}=\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plans of \vec{b} and \vec{c} whose projection on \vec{a} is of magnitude $\sqrt{\left(\frac{2}{3}\right)}$ is (A) $2 \hat{i}+3 \hat{j}+3 \hat{k} \quad$ (B) $2 \hat{i}+3 \hat{j}-3 \hat{k}$

$$
\begin{equation*}
-2 \hat{i}-\hat{j}+5 \hat{k}(\mathrm{D}) 2 \hat{i}+\hat{j}+5 \hat{k} \tag{C}
\end{equation*}
$$

A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $-2 \hat{i}-\hat{j}+5 \hat{k}$
C. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: b

- Watch Video Solution

40. If P is any arbitrary point on the circumcirlce of the equllateral trangle of side length l units, then $|\vec{P} A|^{2}+|\vec{P} B|^{2}+|\vec{P} C|^{2}$ is always equal to $2 l^{2}$ b. $2 \sqrt{3} l^{2}$ c. l^{2} d. $3 l^{2}$
A. $2 l^{2}$
B. $2 \sqrt{3} l^{2}$
C. l^{2}
D. $3 l^{2}$

- Watch Video Solution

41. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r}+b \vec{s}|$ is minimum, then the value of $|b \vec{s}|^{2}+|\vec{r}+b \vec{s}|^{2}$ is equal to
A. $2|\vec{r}|^{2}$
B. $|\vec{r}|^{2} / 2$
C. $3|\vec{r}|^{2}$
D. $|\vec{r}|^{2}$

Answer: b
42. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is equal to
A. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
B. $\frac{1}{2}(\vec{a} \times \vec{b}+\vec{a}+\vec{b})$
C. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
D. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

Answer: a

- Watch Video Solution

43. Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a}+\vec{b}=\mu \vec{p}, \vec{b} \cdot \vec{q}=0$ and $|\vec{b}|^{2}=1$ where μ is a sclar. Then $|(\vec{a} \cdot \vec{q}) \vec{p}-(\vec{p} \cdot \vec{q}) \vec{a}|$ is equal to
(a) $2|\vec{p} \vec{q}|$
(b)(1/2) $|\vec{p} \cdot \vec{q}|$
(c) $|\vec{p} \times \vec{q}|$
(d) $|\vec{p} \cdot \vec{q}|$
A. $2|\vec{p} \vec{q}|$
B. $(1 / 2)|\vec{p} \cdot \vec{q}|$
C. $|\vec{p} \times \vec{q}|$
D. $|\vec{p} \cdot \vec{q}|$

Answer: d

- Watch Video Solution

44. The position vectors of the vertices A, B and C of a triangle are three unit vectors \vec{a}, \vec{b} and \vec{c} respectively. A vector \vec{d} is such that $\vec{d} \cdot \widehat{a}=\vec{d} \cdot \hat{b}=\vec{d} \cdot \hat{c}$ and $\vec{d}=\lambda(\hat{b}+\hat{c})$. Then triangle $A B C$ is
A. acute angled
B. obtuse angled
C. right angled
D. none of these

- Watch Video Solution

45. If a is real constant $A, B a n d C$ are variable angles and $\sqrt{a^{2}-4} \tan A+a \tan B+\sqrt{a^{2}+4} \tan c=6 a$, then the least vale of $\tan ^{2} A+\tan ^{2} b+\tan ^{2} C i s 6$ b. 10 c. 12 d. 3
A. 6
B. 10
C. 12
D. 3

Answer: d

46. The vertex A triangle $A B C$ is on the line $\vec{r}=\hat{i}+\hat{j}+\lambda \hat{k}$ and the vertices $B a n d C$ have respective position vectors $\hat{i} a n d \hat{j}$. Let Delta be the area of the triangle and $\operatorname{Delta}[3 / 2, \sqrt{33} / 2]$. Then the range of values of λ corresponding to A is $[-8,4] \cup[4,8]$ b. $[-4,4]$ c. $[-2,2]$ d. $[-4,-2] \cup[2,4]$
A. $[-8,-4]$ cup $[4,8]^{`}$
B. $[-4,4]$
C. $[-2,2]$
D. $[-4,-2] \cup[2,4]$

Answer: c

- Watch Video Solution

47. A non-zero vecto \vec{a} is such tha its projections along vectors $\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$ and \hat{k} are equal , then unit vector along \vec{a} us
A. $\frac{\sqrt{2} \hat{j}-\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{j}-\sqrt{2} \hat{k}}{\sqrt{3}}$
C. $\frac{\sqrt{2}}{\sqrt{3}} \hat{j}+\frac{\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{j}-\hat{k}}{\sqrt{2}}$

Answer: a

- Watch Video Solution

48. Position vector \hat{k} is rotated about the origin by angle 135° in such a way that the plane made by it bisects the angel between $\hat{i} a n d \hat{j}$. Then its new position is $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$ b. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$ c. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$ d. none of these
A. $\pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$
B. $\pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2}-\frac{\hat{k}}{\sqrt{2}}$
C. $\frac{\hat{i}}{\sqrt{2}}-\frac{\hat{k}}{\sqrt{2}}$
D. none of these

Answer: d

- Watch Video Solution

49. In a quadrilateral $A B C D, \vec{A} C$ is the bisector of $\vec{A} \operatorname{Band} \vec{A} D$, angle between $\vec{A} \operatorname{Band} \vec{A} D$ is $2 \pi / 3,15|\vec{A} C|=3|\vec{A} B|=5|\vec{A} D|$. Then the angle between \vec{B} Aand
$\frac{\cos ^{-1} 2}{\sqrt{7}}$ d. $\frac{\cos ^{-1}(2 \sqrt{7})}{14}$
A. $\cos ^{-1} \frac{\sqrt{14}}{7 \sqrt{2}}$
B. $\cos ^{-1} \frac{\sqrt{21}}{7 \sqrt{3}}$
C. $\cos ^{-1} \frac{2}{\sqrt{7}}$
D. $\cos ^{-1} \frac{2 \sqrt{7}}{14}$

Answer: c

50. In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other. If CD: $C E=C G: C B=2: 1$ then the value of area $(\triangle A E G): \operatorname{area}(\triangle A B D)$ is equal to (a) $7 / 2$ (b)3 (c)4 (d) $9 / 2$
A. $7 / 2$
B. 3
C. 4
D. $9 / 2$

Answer: b

- Watch Video Solution

51. Vectors \hat{a} in the plane of $\vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$ is such that it is equally inclined to \vec{b} and \vec{d} where $\vec{d}=\hat{j}+2 \hat{k}$ the value of \widehat{a} is (a) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (b) $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$ (c) $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$ (d) $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$
C. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$
D. $\frac{2 \hat{i}+\hat{j}}{\sqrt{5}}$

Answer: b

- Watch Video Solution

52. Let $A B C D$ be a tetrahedron such that the edges $A B, A C a n d A D$ are mutually perpendicular. Let the area of triangles $A B C, A C D$ and $A D B$ be 3, 4 and 5sq. units, respectively. Then the area of triangle $B C D$ is a. $5 \sqrt{2}$ b. 5 c. $\frac{\sqrt{5}}{2}$ d. $\frac{5}{2}$
A. $5 \sqrt{2}$
B. 5
C. $\frac{\sqrt{5}}{2}$
D. $\frac{5}{2}$

Answer: a

D Watch Video Solution

53. Let $\overrightarrow{f(t)}=[t] \hat{i}+(t-[t]) \hat{j}+[t+1] \hat{k}$, where $[$.$] denotes the$ greatest integer function. Then the vectors $\overrightarrow{f\left(\frac{5}{4}\right)}$ and $\overrightarrow{f(t)}, 0<t<1$ are (a)parallel to each other (b) perpendicular to each other (c) inclined at $\cos ^{-1}\left(\frac{2}{\sqrt{7\left(1-t^{2}\right)}}\right)(d)$ inclined at $\cos ^{-1}\left(\frac{8+t}{9 \cdot \sqrt{1+t^{2}}}\right)$
A. parallel to each other
B. perpendicular to each other
C. inclined at $\frac{\cos ^{-1} 2}{\sqrt{7}\left(1-t^{2}\right)}$
D. inclined at $\frac{\cos ^{-1}(8+t)}{9 \sqrt{1+t^{2}}}$

Answer: d

- Watch Video Solution

54. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$ is equal to
(a) $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$
(b) $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
(c) $|\vec{c}|^{2}(\vec{a} \cdot \vec{b})$
(d) none of these
A. $|\vec{a}|^{2}(\vec{b} \cdot \vec{c})$
B. $|\vec{b}|^{2}(\vec{a} \cdot \vec{c})$
c. $|\vec{c}|^{2}(\vec{a} \cdot \vec{b})$
D. none of these

Answer: a

- Watch Video Solution

55. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
A. $1 / 3$
B. 4
C. $(3 \sqrt{3}) / 4$
D. $4 \sqrt{3}$

Answer: d

- Watch Video Solution

56. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a on zero vector and $|(\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})|=0$ then (A) $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$ (B) $|\vec{a}|=|\vec{b}|=|\vec{c}|$ (C) $\vec{a}, \vec{b}, \vec{c}$ are coplanar (D) $\vec{a}+\vec{c}=\overrightarrow{2 b}$
A. $|\vec{a}|=|\vec{b}|=|\vec{c}|$
B. $|\vec{a}|+|\vec{b}|+|\vec{c}|=|\vec{d}|$
C. \vec{a}, \vec{b} and \vec{c} are coplanar
D. none of these

Answer: c

57.

$|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a})$ is equal to the given diagonal is $\vec{c}=4 \hat{k}=8 \hat{k}$ then, the volume of a parallelpiped is
A. $48 \hat{b}$
B. $-48 \hat{b}$
C. $48 \widehat{a}$
D. $-48 \widehat{a}$

Answer: a

- Watch Video Solution

58. If two diagonals of one of its faces are $6 \hat{i}+6 \hat{k}$ and $4 \hat{j}+2 \hat{k}$ and of the edges not containing the given diagonals is $\vec{c}=4 \hat{j}-8 \hat{k}$, then the
volume of a parallelpiped is
A. 60
B. 80
C. 100
D. 120

Answer: d

- Watch Video Solution

59. The volume of a tetrahedron fomed by the coterminus edges \vec{a}, \vec{b} and $\vec{c} i s 3$. Then the volume of the parallelepiped formed by the coterminus edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ is
A. 6
B. 18
C. 36
D. 9

Answer: c

- Watch Video Solution

60. If \vec{a}, \vec{b} and \vec{c} are three mutually orthogonal unit vectors, then the triple product $[\vec{a}+\vec{b}+\vec{c} \vec{a}+\vec{b} \vec{b}+\vec{c}]$ equals
A. 0
B. 1 or -1
C. 1
D. 3

Answer: b

- Watch Video Solution

61. vector \vec{c} are perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satifies the condition $\vec{c} \cdot(\hat{i}+2 \hat{j}-7 \hat{k})=10$ then vector \vec{c} is equal to
$(a)(7,5,1)(b)(-7,-5,-1)(c)(1,1,-1)(d)$ none of these
A. 7,5,1
B. $(-7,-5,-1)$
C. 1,1,-1
D. none of these

Answer: a

- Watch Video Solution

62.

Given
$\vec{a}=x \hat{i}+y \hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}, \vec{a} \perp \vec{b}, \vec{a} \cdot \vec{c}=4$ then find the value of $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$.
A. $\left[\begin{array}{llll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=|\vec{a}|$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=|\vec{a}|$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
D. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$

Answer: d

- Watch Video Solution

63.

Let
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ gre three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and $\vec{b} i s \frac{\pi}{6}$, then prove that $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right| p=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
A. 0
B. 1
C. $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$
D. $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

Answer: c

- Watch Video Solution

64. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non -zero vectors such that $\vec{r} \cdot \vec{a}-0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}| \vec{c} \mid$ then $[\mathrm{abc}$] is equal to
A. $|a||b||c|$
B. $-|a||b||c|$
C. 0
D. none of these

Answer: c

65. If \vec{a}, \vec{b} and \vec{c} are such that $[\vec{a} \vec{b} \vec{c}]=1, \vec{c}=\lambda(\vec{a} \times \vec{b})$,
angle between \vec{c} and \vec{b} is $2 \pi / 3,|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{c}|=\frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: b

- Watch Video Solution

66.

If
$4 \vec{a}+5 \vec{b}+9 \vec{c}=0$ then $(\vec{a} \times \vec{b}) \times[(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})]$
is equal to
A. a vector perpendicular to the plane of \vec{a}, \vec{b} and \vec{c}
B. a scalar quantity
C. $\overrightarrow{0}$
D. none of these

Answer: c

- Watch Video Solution

67. value of $[\vec{a} \times \vec{b} \vec{a} \times \vec{c} \vec{d}]$ is always equal to
A. $(\vec{a} \cdot \vec{d})[\vec{a} \vec{b} \vec{c}]$
B. `(veca.vecc)[veca vecb vecd]
c. $(\vec{a} \cdot \vec{b})[\vec{a} \vec{b} \vec{d}]$
D. none of these

Answer: a

68. Let \widehat{a} and \hat{b} be mutually perpendicular unit vectors. Then for ant arbitrary \vec{r}.
A. $\vec{r}=(\vec{r} \cdot \widehat{a}) \widehat{a}+(\vec{r} \cdot \hat{b}) \hat{b}+(\vec{r} \cdot(\vec{a} \times \hat{b}))(\widehat{a} \times \hat{b})$
B. $\vec{r}=(\vec{r} \cdot \widehat{a})-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\widehat{a} \times \hat{b})$
C. $\vec{r}=(\vec{r} \cdot \widehat{a}) \widehat{a}-(\vec{r} \cdot \hat{b}) \hat{b}-(\vec{r} \cdot(\vec{a} \times \hat{b}))(\widehat{a} \times \hat{b})$
D. none of these

Answer: a

- Watch Video Solution

69. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other, then $[\vec{a}+(\vec{a} \times \vec{b})+(\vec{a} \times \vec{b})]$ is equal to
A. 1
B. 0
C. -1
D. none of these

Answer: a

- Watch Video Solution

70. \vec{a} and \vec{b} are two vectors such that $|\vec{a}|=1,|\vec{b}|=4$ and \vec{a}. Verb $=2 . I f$ fec $=(2 \vec{a} \times \vec{b})-3 \vec{b}$ then find angle between \vec{b} and \vec{c}.
A. A $\frac{\pi}{3}$
B. B $\frac{\pi}{6}$
C. $\mathrm{C} \frac{3 \pi}{4}$
D. $\mathrm{D} \frac{5 \pi}{6}$

Answer: d

71. If \vec{b} and \vec{c} are unit vectors, then for any arbitary vector $\vec{a},(((\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})) \times(\vec{b} \times \vec{c})) \cdot(\vec{b}-\vec{c})$ is always equal to

- Watch Video Solution

72. If $\vec{a} \cdot \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is
A. $\frac{(\beta \vec{a}-\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
B. $\frac{(\beta \vec{a}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
C. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$
D. $\frac{(\beta \vec{c}+\vec{a} \times \vec{c})}{|\vec{a}|^{2}}$

Answer: a

73. If $a(\vec{\alpha} \times \vec{\beta})=b(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=\overrightarrow{0}$ and at least one of a, b and c is non zero then vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these
A. parallel
B. coplanar
C. mutually perpendicular
D. none of these

Answer: b

- Watch Video Solution

74. if $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are nonzero vectors, then
A. \vec{a}, \vec{b} and \vec{v} can be coplanar
B. \vec{a}, \vec{b} and \vec{c} must be coplanar
c. \vec{a}, \vec{b} and \vec{c} cannot be coplanar
D. none of these

Answer: c

- Watch Video Solution

75. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is
A. $|[\vec{a} \vec{b} \vec{c}]|$
B. $|\vec{r}|$
c. $|[\vec{a} \vec{b} \vec{c}] \vec{r}|$
D. none of these

Answer: c

76. A vector of magnitude 10 along the normal to the curve $3 x^{2}+8 x y+2 y^{2}-3=0$ at its point $P(1,0)$ can be $6 \hat{i}+8 \hat{j} \mathrm{~b}$. $-8 \hat{i}+3 \hat{j}$ c. $6 \hat{i}-8 \hat{j}$ d. $8 \hat{i}+6 \hat{j}$
A. $6 \hat{i}+8 \hat{j}$
B. $-8 \hat{i}+3 \hat{j}$
C. $6 \hat{i}-8 \hat{j}$
D. $8 \hat{i}+6 \hat{j}$

Answer: a

Watch Video Solution

77. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\frac{\pi}{3}$ then $\{\vec{a} \times(\vec{b}+\vec{a} \times \vec{b})\} \cdot \vec{b}$ is equal to (a) $-\frac{3}{4}$ (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{1}{2}$
A. $\frac{-3}{4}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. $\frac{1}{2}$

Answer: a

- Watch Video Solution

78. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} noncoplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to
A. $[\vec{r} \vec{a} \vec{b}] \vec{b}-(\vec{r} \cdot \vec{b})(\vec{b} \times \vec{a})$
B. $[\vec{r} \vec{a} \vec{b}](\vec{a}+\vec{b})$
C. $[\vec{r} \vec{a} \vec{b}] \vec{a}+(\vec{r} \cdot \vec{a}) \vec{a} \times \vec{b}$
D. none of these
79. If $\vec{a}+\vec{b}, \vec{c}$ are any three non- coplanar vectors then the equation $[\vec{b} \times \vec{c} \vec{c} \times \vec{a} \vec{a} \times \vec{b}] x^{2}+[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}] x+1+[\vec{b}-\vec{c}$ has roots
A. real and distinct
B. real
C. equal
D. imaginary

Answer: c

- Watch Video Solution

80. Sholve the simultasneous vector equations for
\vec{x} and $\vec{y}: \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \vec{c} \neq 0$
A. $\vec{x}=\frac{\vec{b} \times \vec{c}+\vec{a}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
B. $\vec{x}=\frac{\vec{c} \times \vec{b}+\vec{b}+(\vec{c} \cdot \vec{a}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
C. $\vec{y}=\frac{\vec{a} \times \vec{c}+\vec{b}+(\vec{c} \cdot \vec{b}) \vec{c}}{1+\vec{c} \cdot \vec{c}}$
D. none of these

Answer: b

- Watch Video Solution

81. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is
A. $\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{d}$
B. $\vec{a} \cdot \vec{b}=\vec{c} \cdot \vec{d}$
C. $\vec{b} \cdot \vec{c}+\vec{a} \cdot \vec{d}=0$
D. $\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d}=0$

D Watch Video Solution

82. If $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ then $[\vec{a} \vec{b} \vec{i}] \hat{i}+[\vec{a} \vec{b} \vec{j}] \hat{j}$
$+[\vec{a} \vec{b} \hat{k}] k$ is equal to

- Watch Video Solution

83.

$$
\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}, \vec{c}=\hat{i}+\hat{j}+2 \hat{k} \text { and }(1+\alpha) \hat{i}+\beta(1
$$

A. $-2,-4,-\frac{2}{3}$
B. $2,-4, \frac{2}{3}$
C. $-2,4, \frac{2}{3}$
D. $2,4,-\frac{2}{3}$

- Watch Video Solution

84.

Let
$(\vec{a}(x)=(\sin x) \hat{i}+(\cos x) \hat{j}$ and $\vec{b}(x)=(\cos 2 x) \hat{i}+(\sin 2 x) \hat{j} \quad$ be two variable vectors $(x \in R)$. Then $\vec{a}(x)$ and $\vec{b}(x)$ are
A. collinear for unique value of x
B. perpendicular for infinte values of x .
C. zero vectors for unique value of x
D. none of these

Answer: b

- Watch Video Solution

85.

For
any
vectors
\vec{a} and $\vec{b},(\vec{a} \times \hat{i})+(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b}$
is always equal to
A. $\vec{a} \cdot \vec{b}$
B. $2 \vec{a} \cdot V e c b$
C. zero
D. none of these

Answer: b

- Watch Video Solution

86. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r}$
A. $[\vec{a} \vec{b} \vec{c}] \vec{r}$
B. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
C. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
D. none of these

D Watch Video Solution

87.

$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$, where \vec{a}, \vec{b}
are three non- coplanar vectors then the value of the expression
$(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})$ is $(a) 3(b) 2(c) 1(d) 0$
A. 3
B. 2
C. 1
D. 0

Answer: a

88. $A(\vec{a}), B(\vec{b}) \operatorname{and} C(\vec{c})$ are the vertices of triangle $A B C$ and $R(\vec{r})$ is any point in the plane of triangle $A B C$, then $r \vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is always equal to a. zero b. $[\vec{a} \vec{b} \vec{c}]$ c. $-[\vec{a} \vec{b} \vec{c}]$ d. none of these
A. zero
B. $[\vec{a} \vec{b} \vec{c} \vec{c}]$
C. $-[\vec{a} \vec{b} \vec{c}]$
D. none of these

Answer: b

- Watch Video Solution

89. If \vec{a}, \vec{b} and \vec{c} are non- coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times(\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times(\vec{b} \times \vec{c})] \times \vec{c}$ is equal to
A. $[\vec{a} \vec{b} \vec{c}] \vec{c}$
B. $[\vec{a} \vec{b} \quad \vec{c}] \vec{b}$
C. $\overrightarrow{0}$
D. $[\vec{a} \vec{b} \vec{c}] \vec{a}$

Answer: c

- Watch Video Solution

90. If V be the volume of a tetrahedron and V^{\prime} be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron and $V=K V^{\prime}$, then K is equal to a. 9 b .12 c .27 d .81
A. 9
B. 12
C. 27
D. 81

- Watch Video Solution

91. $\quad[(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c}) \quad(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ $(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})]$ is equal to (where \vec{a}, \vec{b} and \vec{c} are nonzero non- colanar vectors). (a) $[\vec{a} \vec{b} \vec{c}]^{2}(b)[\vec{a} \vec{b} \vec{c}]^{3}$ (c) $[\vec{a} \vec{b} \vec{c}]^{4}$
(d) $[\vec{a} \vec{b} \vec{c}]$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{3}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{4}$
D. $[\vec{a} \vec{b} \vec{c}]$

Answer: c

$\vec{r}=x_{1}(\vec{a} \times \vec{b})+x_{2}(\vec{b} \times \vec{a})+x_{3}(\vec{c} \times \vec{d})$ and $4[\vec{a} \vec{b} \vec{c}]=1$ is equal to
A. $\frac{1}{2} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
B. $\frac{1}{4} \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
C. $2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
D. $4 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$

Answer: d

- Watch Video Solution

93. If the vectors \vec{a} and \vec{b} are perpendicular to each other then a vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations $\vec{v} \cdot \vec{a}=0, \vec{v} \cdot \vec{b}=1$ and $\left[\begin{array}{lll}\vec{v} & \vec{a} & \vec{b}\end{array}\right]=1$ is
A. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
B. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
C. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
D. none of these

Answer: a

D Watch Video Solution

94. If $\vec{a}^{\prime}=\hat{i}+\hat{j}, \vec{b},=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}^{\prime}=2 \hat{i}-\hat{j}-\hat{k}$ then the altitude of the parallelepiped formed by the vectors, \vec{a}, \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}, is recipocal vector \vec{a}) (a) $1(b) 3 \sqrt{2} / 2(c) 1 / \sqrt{6}(d) 1 / \sqrt{2}$
A. 1
B. $3 \sqrt{2} / 2$
C. $1 / \sqrt{6}$
D. $1 / \sqrt{2}$

- Watch Video Solution

95. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{j}+\hat{k}, \vec{c}=\hat{k}+\hat{i}$ then in the reciprocal system of vectors $\vec{a}, \vec{b}, \vec{c}$ reciprocal \vec{a} of vector \vec{a} is
A. $\frac{\hat{i}+\hat{j}+\hat{k}}{2}$
B. $\frac{\hat{i}-\hat{j}+\hat{k}}{2}$
C. $\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$
D. $\frac{\hat{i}+\hat{j}-\hat{k}}{2}$

Answer: d

Watch Video Solution

96. If the unit vectors \vec{a} and \vec{b} are inclined of an angle 2θ such that
$|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$ then θ in the interval
A. $[0, \pi / 6)$
B. $(5 \pi / 6, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $(\pi / 2,5 \pi / 6]$

Answer: a,b

- Watch Video Solution

97. \vec{b} and \vec{c} are non- collinear if
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(4-2 x-\sin y) \vec{b}+\left(x^{2}-1\right) \vec{c}$ and d then
A. $x=1$
B. $x=-1$
C. $y=(4 n+1) \frac{\pi}{2}, n \in I$
D. $y(2 n+1) \frac{\pi}{2}, n \in I$

- Watch Video Solution

98. Let $\vec{a} \cdot \vec{b}=0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both
\vec{a} and $\vec{b} \cdot I f \vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$ then
A. $\alpha=\beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $\gamma^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: a,b,c,d

- Watch Video Solution

99. \vec{a} and \vec{b} are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogam and which is perpendicular to \vec{a} is not equal to
A. $\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}} \vec{a}-\vec{b}$
B. $\frac{1}{|\vec{a}|^{2}}\left\{|\vec{a}|^{2} \vec{b}-(\vec{a} \cdot \vec{b}) \vec{a}\right\}$
$\vec{a} \times(\vec{a} \times \vec{b})$
C.
$|\vec{a}|^{2}$
$\vec{a} \times(\vec{b} \times \vec{a})$
D.
$|\vec{b}|^{2}$

Answer: a,b,c

- Watch Video Solution

100. If $\vec{a} \times(\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have
A. $(\vec{a} \cdot \vec{c})|\vec{b}|^{2}=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})$
B. $\vec{a} \cdot \vec{b}=0$
C. $\vec{a} \cdot \vec{c}=0$
D. $\vec{b} \cdot \vec{c}=0$

Answer: a,c

- Watch Video Solution

101. If $\vec{p}=\frac{\vec{b} \times \vec{c}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{b}\end{array}\right]}$
where $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then the value of the expression $(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{p}+\vec{q}+\vec{r})$ is

- Watch Video Solution

102. $a_{1}, a_{2}, a_{3} \in R-\{0\}$ and $a_{1}+a_{2} \cos 2 x+a_{3} \sin ^{2} x=0$ " for all " x in R then (a) vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k}$ are
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other (c)if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\quad\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
$2 a_{1}+3 a_{2}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right| i s 2 \sqrt{6}$
A. vectors $\quad \vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=4 \hat{i}+2 \hat{j}+\hat{k} \quad$ are
perpendicular to each other
B. vectors $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2 \hat{k}$ are parallel to each each other
C. if vector $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $\left(a_{1}, a_{2}, a_{3}\right)=(1,-1,-2)$
D. if $2 a_{1}+3 a_{2}+6 a_{3}+6 a_{3}=26$, then $\left|\vec{a} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right| i s 2 \sqrt{6}$

Answer: a,b,c,d

- Watch Video Solution

103. If \vec{a} and \vec{b} are two vectors and angle between them is θ, then
A. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}$
B. $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \cdot \vec{b})^{2}, \quad$ if $\theta=\pi / 4$
C. $\vec{a} \times \vec{b}=(\vec{a} \cdot V e c b) \widehat{n}$ (where \widehat{n} is a normal unit vector)

$$
\text { if } \theta f=\pi / 4
$$

D. $(\vec{a} \times \vec{b}) \cdot(\vec{a}+\vec{b})=0$

Answer: a,b,c,d

- Watch Video Solution

104. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c. $|\vec{a}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}| \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer: a,b,cd,

- Watch Video Solution

105.

If
vector
$\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2}) a n d \vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$ are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the z-axis, then the value of α is $a . \alpha=(4 n+1) \pi+\tan ^{-1} 2$
b. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
c. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
d. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

$$
\text { A. } \alpha=(4 n+1) \pi+\tan ^{-1} 2
$$

B. $\alpha=(4 n+1) \pi-\tan ^{-1} 2$
C. $\alpha=(4 n+2) \pi+\tan ^{-1} 2$
D. $\alpha=(4 n+2) \pi-\tan ^{-1} 2$

Answer: b,d

- Watch Video Solution

106. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a}=\vec{b}, \quad$ where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then
(a) $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
(b) $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
$\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})(\mathrm{d}) \vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
A. $\vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
В. $\vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
C. $\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
D. $\vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$

- Watch Video Solution

107. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b} \quad$ then \quad angle
θ between \vec{a} and \vec{b} is
A. 0
B. $\pi / 2$
C. $\pi / 4$
D. π

Answer: bed

- Watch Video Solution

108. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$, then which of the following is (are) true ?
A. $\lambda_{1}=\vec{a} \cdot \vec{c}$
B. $\lambda_{2}=|\vec{b} \times \vec{c}|$
C. $\lambda_{3}=|\vec{a} \times \vec{b}| \times \vec{c} \mid$
D. $\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$

Answer: a,d

- Watch Video Solution

109. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$
A. a unit vector
B. in the plane of \vec{a} and \vec{b}
C. equally inclined to \vec{a} and \vec{b}
D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

- Watch Video Solution

110. If \vec{a} and \vec{b} are non - zero vectors such that $|\vec{a}+\vec{b}|=|\vec{a}-2 \vec{b}|$ then
A. $2 \vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
B. $\vec{a} \cdot \vec{b}=|\vec{b}|^{2}$
C. least value of \vec{a}. Vecb $+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}$
D. least value of $\vec{a} \cdot \vec{b}+\frac{1}{|\vec{b}|^{2}+2}$ is $\sqrt{2}-1$

- Watch Video Solution

111. Let $\vec{a} \vec{b}$ and \vec{c} be non- zero vectors aned
$\vec{V}_{1}=\vec{a} \times(\vec{b} \times \vec{c})$ and $\vec{V}_{2}=(\vec{a} \times \vec{b}) \times \vec{c}$.vectors
\vec{V}_{1} and \vec{V}_{2} are equal . Then
A. \vec{a} and \vec{b} ar orthogonal
B. \vec{a} and \vec{c} are collinear
C. \vec{b} and \vec{c} ar orthogonal
D. $\vec{b}=\lambda(\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

- Watch Video Solution

112. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$. where vera and \vec{b} are given vectosrs, are
A. $\vec{A}=\frac{(\vec{a} \times \vec{b})-\vec{a}}{a^{2}}$
B. $\vec{B}=\frac{(\vec{b} \times \vec{a})+\vec{a}\left(a^{2}-1\right)}{a^{2}}$
C. $\vec{A}=\frac{(\vec{a} \times \vec{b})+\vec{a}}{a^{2}}$
D. $\vec{B}=\frac{(\vec{b} \times \vec{a})-\vec{a}\left(a^{2}-1\right)}{a^{2}}$

Answer: b,c,

- Watch Video Solution

113. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \overrightarrow{;} \vec{c}, \vec{a}$, respectively. Then
A. $\vec{x} \cdot \vec{d}=-1$
B. $\vec{y} \cdot \vec{d}=1$
C. $\vec{z} \cdot \vec{d}=0$
D. $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\delta \vec{z}$

Answer: cad

- Watch Video Solution

114. Vectors perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k} \quad$ are (A) $\hat{i}+\hat{k} \quad$ (B) $2 \hat{i}+\hat{j}+\hat{k}$
$3 \hat{i}+2 \hat{j}+\hat{k}(\mathrm{D})-4 \hat{i}-2 \hat{j}-2 \hat{k}$
A. $\hat{i}+\hat{k}$
B. $2 \hat{i}+\hat{j}+\hat{k}$
C. $3 \hat{i}+2 \hat{j}+\hat{k}$
D. $-4 \hat{i}-2 \hat{j}-2 \hat{k}$

- Watch Video Solution

115. If the sides $\overrightarrow{A B}$ of an equilateral triangle $A B C$ lying in the xy-plane is $3 \hat{i}$ then the side $\overrightarrow{C B}$ can be (A) $-\frac{3}{2}(\hat{i}-\sqrt{3})$ (B) $\frac{3}{2}(\hat{i}-\sqrt{3})$
$-\frac{3}{2}(\hat{i}+\sqrt{3})$ (D) $\frac{3}{2}(\hat{i}+\sqrt{3})$
A. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
B. $-\frac{3}{2}(\hat{i}-\sqrt{3} \hat{j})$
C. $-\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$
D. $\frac{3}{2}(\hat{i}+\sqrt{3} \hat{j})$

Answer: b,d

- Watch Video Solution

116. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \vec{a}. Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}(\widehat{\times} \vec{b})$ and $\vec{b}-(\widehat{a} \cdot \vec{b}) \widehat{a}$
A. $\tan ^{-1}(\sqrt{3})$
B. $\tan ^{-1}(1 / \sqrt{3})$
C. $\cot ^{-1}(0)$
D. $\operatorname{tant}^{\wedge}(-1)(1)^{\wedge}$

Answer: a,b,c

- Watch Video Solution

117. \vec{a}, \vec{b} and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicualt to them, $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angle between \vec{a} and $\vec{b} i s 30^{\circ}$ then \vec{c} is

$$
\text { A. }(\hat{i}-2 \hat{j}+2 \hat{k}) / 3
$$

B. $(-\hat{i}+2 \hat{j}-2 \hat{k}) / 3$
C. $(-\hat{i}+2 \hat{j}-\hat{k}) / 3$
D. $(-2 \hat{i}-2 \hat{j}+\hat{k}) / 3$

Answer: a,b

- Watch Video Solution

118. If $\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
A. $2(\vec{a} \times \vec{b})$
B. $6(\vec{b} \times \vec{c})$
C. $3(\vec{c} \times \vec{a})$
D. $\overrightarrow{0}$

Answer: c,d

119. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|\vec{u}|$
B. $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
c. $|\vec{u}|+|\vec{u} \cdot \vec{a}|$
D. none of these

Answer: bed

- Watch Video Solution

120. if $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$, where $\vec{c} \neq \overrightarrow{0}$ then

$$
\begin{equation*}
|\vec{a}|=|\vec{c}| \text { (b) }|\vec{a}|=|\vec{b}| \text { (c) }|\vec{b}|=1 \text { (d) }|\vec{a}|=|\vec{b}|=|\vec{c}|=1 \tag{a}
\end{equation*}
$$

A. $|\vec{a}|=|\vec{c}|$
B. $|\vec{a}|=|\vec{b}|$
c. $|\vec{b}|=1$
D. $|\vec{a}|=\vec{b}|=|\vec{c}|=1$

Answer: a,c

- Watch Video Solution

121. Let \vec{a}, \vec{b}, and \vec{c} be three non- coplanar vectors and \vec{d} be a nonzero , which is perpendicular to $(\vec{a}+\vec{b}+\vec{c})$. Now $\vec{d}=(\vec{a} \times \vec{b}) \sin x+(\vec{b} \times \vec{c}) \cos y+2(\vec{c} \times$
.Then
$\vec{d} \cdot(\vec{a}+\vec{c})$
A.

$$
\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]
$$

B. $\frac{\vec{d} \cdot(\vec{a}+\vec{c})}{[\vec{a} \vec{b} \vec{c}]}=-2$
C. minimum value of $x^{2}+y^{2} i s \pi^{2} / 4$
D. minimum value of $x^{2}+y^{2} i s 5 \pi^{2} / 4$

(D) Watch Video Solution

122. If \vec{a}, \vec{b}, and $\leftrightarrow c$ are three unit vecrtors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{1} \vec{b}$, then $(\vec{b}$ and \vec{c} being non-parallel) angle between \vec{a} and \vec{b} is $\pi / 3$ b.angleb et ween \vec{a} and \vec{c} i $\mathrm{s} \pi / 3 \mathrm{c}$. a. angle between \vec{a} and \vec{b} is $\pi / 2$ d. a. angle between \vec{a} and \vec{c} is $\pi / 2$
A. angle between \vec{a} and $\vec{b} i s \pi / 3$
B. angle between \vec{a} and $\vec{c} i s \pi / 3$
C. angle between \vec{a} and $\vec{b} i s \pi / 2$
D. angle between \vec{a} and $\vec{c} i s \pi / 2$

Answer: b,c

- Watch Video Solution

123. If in triangle

ABC,
$\overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
(a) $1+\cos 2 A+\cos 2 B+\cos 2 C=0$ (b) $\sin A=\cos C$ (c)projection of
$A C$ on $B C$ is equal to $B C$ (d) projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
B. $\sin A=\cos C$
C. projection of $A C$ on $B C$ is equal to $B C$
D. projection of $A B$ on $B C$ is equal to $A B$

Answer: a,b,c

- Watch Video Solution

124. $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{c} \times \vec{d} & \vec{e} \times \vec{f}\end{array}\right]$ is equal to
125. scalars and m such that $l \vec{a}+m \vec{b}=\vec{c}$, where \vec{a}, \vec{b} and \vec{c} are given vectors, are equal to A. l $=\frac{(\vec{c} \times \vec{b}) \cdot(\vec{a} \times \vec{b})}{(\vec{a} \times \vec{b})^{2}}$
B. $l=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$
C. $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})^{2}}$
D. $m=\frac{(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{a})}{(\vec{b} \times \vec{a})}$

Answer: ac

- Watch Video Solution

126. If $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d}) \cdot(\vec{a} \times \vec{d})=0$ then which of the following may be true?
A. $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are nenessarily coplanar
B. \vec{a} lies in the plane of \vec{c} and \vec{d}
C. \vec{b} lies in the plane of \vec{a} and \vec{d}
D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

- Watch Video Solution

127. $A, B, \operatorname{CandD}$ are four points such that $\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j}) a n d \vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{i}$ If $C D$ intersects $A B$ at some point E, then a. $m \geq 1 / 2$ b. $n \geq 1 / 3 \mathrm{c}$. $m=n$ d. $m<n$
A. (a) $m \geq 1 / 2$
B. (b) $n \geq 1 / 3$
C. (c) $m=n$
D. (d) $m<n$

- Watch Video Solution

128. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar and l, m, n are distinct scalars such that
$[l \vec{a}+m \vec{b}+n \vec{c} l \vec{b}+m \vec{c}+n \vec{a} l \vec{c}+m \vec{a}+n \vec{b}]=0$ then
A. $a) l+m+n=0$
B. b) roots of the equation $l x^{2}+m x+n=0$ are equal
C. c) $l^{2}+m^{2}+n^{2}=0$
D. d) $l^{3}+m^{2}+n^{3}=3 l m n$

Answer: a,b,d

129. Let $\vec{\alpha}=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. none of these

Answer: a,b,c

- Watch Video Solution

130. if vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} from a left handed system, then \vec{C} is
A. a) $11 \hat{i}-6 \hat{j}-\hat{k}$
B. b) $-11 \hat{i}-6 \hat{j}-\hat{k}$
C. c) $-11 \hat{i}-6 \hat{j}+\hat{k}$
D. d) $-11 \hat{i}+6 \hat{j}-\hat{k}$

Answer: b,d

- Watch Video Solution

131. If $\vec{a}=x \hat{i}+y \hat{j}+z \hat{k}, \vec{b}=y \hat{i}+z \hat{j}+x \hat{k}$ and $\vec{c}=z \hat{i}+x \hat{j}+y \hat{k}$, then $\vec{a} \times(\vec{b} \times \vec{c})$ is
(a) parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
(b)orthogonal to $\hat{i}+\hat{j}+\hat{k} \quad$ (c)orthogonal to $\quad(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
(d)orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$
A. parallel to $(y-z) \hat{i}+(z-x) \hat{j}+(x-y) \hat{k}$
B. orthogonal to $\hat{i}+\hat{j}+\hat{k}$
C. orthogonal to $(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$
D. orthogonal to $x \hat{i}+y \hat{j}+z \hat{k}$

D Watch Video Solution

132. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$ then
A. $(\vec{c} \times \vec{a}) \times \vec{b}=\overrightarrow{0}$
В. $\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$
C. $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
D. $\vec{c} \times \vec{a} \times \vec{b}=\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$

Answer: a,c,d

- Watch Video Solution

133. A vector \vec{d} is equally inclined to three vectors $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{j}-2 \hat{k}$. Let \vec{x}, \vec{y} and \vec{z} be three vectors in the plane of $\vec{a}, \vec{b} ; \vec{b}, \overrightarrow{;} \vec{c}, \vec{a}$, respectively. Then
A. (a) $\vec{z} \cdot \vec{d}=0$
B. (b) $\vec{x} \cdot \vec{d}=1$
C. (c) $\vec{y} \cdot \vec{d}=32$
D. (d) $\vec{r} \cdot \vec{d}=0$, where $\vec{r}=\lambda \vec{x}+\mu \vec{y}+\gamma \vec{z}$

Answer: a,d

D Watch Video Solution

134. A parallelogram is constructed on the vectors $\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta} . I f|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta} i s \frac{\pi}{3}$ then the length of a diagonal of the parallelogram is
A. $4 \sqrt{5}$
B. $4 \sqrt{3}$
C. $4 \sqrt{7}$
D. none of these

- Watch Video Solution

Reasoning type

1. (a)Statement 1: Vector $\vec{c}=-5 \hat{i}+7 \hat{j}+2 \hat{k}$ is along the bisector of angle between $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=8 \hat{i}+\hat{j}-4 \hat{k}$.
Statement $2: \vec{c}$ is equally inclined to \vec{a} and \vec{b}.
A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.
B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.
C. (c) Statement 1 is true and Statement 2 is false
D. (d) Statement 1 is false and Statement 2 is true.

Watch Video Solution

2. Statement1: A component of vector $\vec{b}=4 \hat{i}+2 \hat{j}+3 \hat{k}$ in the direction perpendicular to the direction of vector $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s \hat{i}-\hat{j}$

Statement 2: A component of vector in the direction of $\vec{a}=\hat{i}+\hat{j}+\hat{k} i s 2 \hat{i}+2 \hat{j}+2 \hat{k}$
A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.
B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.
C. (c) Statement 1 is true and Statement 2 is false
D. (d)Statement 1 is false and Statement 2 is true.

Answer: c

- Watch Video Solution

3. Statement 1: Distance of point $D(1,0,-1)$ from the plane of points $A($ $1,-2,0)$, B ($3,1,2$) and C($-1,1,-1$) is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A, B, C and D is $\frac{\sqrt{229}}{2}$
A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.
B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.
C. (c) Statement 1 is true and Statement 2 is false
D. (d) Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

4. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for given non- zero vectors $\vec{a} \vec{b}$ and \vec{c}

Statement 1: $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]=0$
Statement 2: $[\vec{a} \vec{b} \vec{c}]=0$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

5. Statement 1: If $a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ are three mutually perpendicular unit vectors then $a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}$ and $a_{3} \hat{i}+b_{3} \hat{j}+c_{3} \hat{k}$ may be mutually
perpendicular unit vectors.

Statement 2 : value of determinant and its transpose are the same.
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: a

- Watch Video Solution

6.

$\vec{A}=2 \hat{i}+3 \hat{j}+6 \hat{k}, \vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{C}=\hat{i}+2 \hat{j}+\hat{k} \quad$ then $|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=243$
$\left.|\vec{A} \times(\vec{A} \times(\vec{A} \times \vec{B})) \cdot \vec{C}|=|\vec{A}|^{2}| | \vec{A} \vec{B} \vec{C}\right] \mid$
A. Both the statements are true and statement 2 is the correct explanation for statement 1.
B. Both statements are true but statement 2 is not the correct explanation for statement 1.
C. Statement 1 is true and Statement 2 is false
D. Statement 1 is false and Statement 2 is true.

Answer: d

- Watch Video Solution

7. Statement 1: \vec{a}, \vec{b} and \vec{c} arwe three mutually perpendicular unit vectors and \vec{d} is a vector such that $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are non- coplanar. If $\left[\begin{array}{lll}\vec{d} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{a} & \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{c} & \vec{a}\end{array}\right]=1$, then $\vec{d}=\vec{a}+\vec{b}+\vec{c}$ Statement 2: $\left[\begin{array}{lll}\vec{d} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{a} & \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{c} & \vec{a}\end{array}\right] \Rightarrow \vec{d} \quad$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.
A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.
B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.
C. (c) Statement 1 is true and Statement 2 is false
D. (d) Statement 1 is false and Statement 2 is true.

Answer: b

- Watch Video Solution

8. Consider three vectors \vec{a}, \vec{b} and \vec{c}

Statement

$\vec{a} \times \vec{b}=((\hat{i} \times \vec{a}) \cdot \vec{b}) \hat{i}+((\hat{j} \times \vec{a}) \cdot \vec{b}) \hat{j}+(\hat{k} \times \vec{a}) \cdot \vec{b}) \hat{k}$
Statement 2: $\vec{c}=(\hat{i} \cdot \vec{c}) \hat{i}+(\hat{j} \cdot \vec{c}) \hat{j}+(\hat{k} \cdot \vec{c}) \hat{k}$
A. (a) Both the statements are true and statement 2 is the correct explanation for statement 1.
B. (b) Both statements are true but statement 2 is not the correct explanation for statement 1.
C. (c) Statement 1 is true and Statement 2 is false
D. (d) Statement 1 is false and Statement 2 is true.

Answer: a

D Watch Video Solution

Comprehension type

1. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=$ Vector \vec{u} is
A. $\vec{a}-\frac{2}{3} \vec{b}+\vec{c}$
B. $\vec{a}+\frac{4}{3} \vec{b}+\frac{8}{3} \vec{c}$
C. $2 \vec{a}-\vec{b}+\frac{1}{3} \vec{c}$
D. $\frac{4}{3} \vec{a}-\vec{b}+\frac{2}{3} \vec{c}$

Answer: b

- Watch Video Solution

2. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=$ Vector \vec{u} is
A. $2 \vec{a}-3 \vec{c}$
B. $3 \vec{b}-4 c$
C. $-4 \vec{c}$
D. $\vec{a}+\vec{b}+2 \vec{c}$

Answer: c

- Watch Video Solution

3. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=$ Vector \vec{u} is
A. $\frac{2}{3}(2 \vec{c}-\vec{b})$
B. $\frac{1}{3}(\vec{a}-\vec{b}-\vec{c})$
C. $\frac{1}{3} \vec{a}-\frac{2}{3} \vec{b}-2 \vec{c}$
D. $\frac{4}{3}(\vec{c}-\vec{b})$

Answer: d

- Watch Video Solution

4. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \quad$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
5. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \quad$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

6. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a} \quad \vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \quad$ and $\overrightarrow{\times} x \vec{y}=\vec{c}$, find vecx, vecy, vecz \in termsofveca,vecb and vecc'.
A. $\frac{1}{2}[(\vec{a}-\vec{c}) \times \vec{c}-\vec{b}+\vec{a}]$
B. $\frac{1}{2}[(\vec{a}-\vec{b}) \times \vec{c}+\vec{b}-\vec{a}]$
C. $\frac{1}{2}[\vec{c} \times(\vec{a}-\vec{b})+\vec{b}+\vec{a}]$
D. none of these

Answer: b
$\vec{x} \cdot x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in terms of 'veca, vecb and gamma.
A. A. $\frac{1}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times(\vec{a} \times \vec{b})]$
B. B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. C $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a} \times \vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. D. none of these

Answer: b

- Watch Video Solution

8. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \quad$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.
A. $\frac{\vec{a} \times \vec{b}}{\gamma}$
B. $\vec{a}+\frac{\vec{a} \times \vec{b}}{\gamma}$
c. $\vec{a}+\vec{b}+\frac{\vec{a} \times \vec{b}}{\gamma}$
D. none of these

Answer: a

- Watch Video Solution

9.

$\vec{x} \cdot x \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in terms of 'veca, vecb and gamma.
A. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b} \times(\vec{a} \times \vec{b})]$
B. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}-\vec{a} \times(\vec{a} \times \vec{b})]$
C. $\frac{\gamma}{|\vec{a} \times \vec{b}|^{2}}[\vec{a}+\vec{b}+\vec{a} \times(\vec{a} \times \vec{b})]$
D. none of these

Answer: c

- Watch Video Solution

10. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then \vec{P} is equal to
A. \vec{P}
B. $-\vec{P}$
C. $2 \vec{B}$
D. \vec{A}

Answer: b

D Watch Video Solution

11. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then \vec{P} is equal to
A. $\frac{\vec{A}}{2}+\frac{\vec{A} \times \vec{B}}{2}$
B. $\frac{\vec{A}}{2}+\frac{\vec{B} \times \vec{A}}{2}$
C. $\frac{\vec{A} \times \vec{B}}{2}-\frac{\vec{A}}{2}$
D. $\vec{A} \times \vec{B}$

Answer: B

- Watch Video Solution

12. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B}=\vec{A}-\vec{P}$. then which of the following statements is false ?
A. vectors \vec{P}, \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.
B. vectors \vec{P}, \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent
C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.
D. none of these

Answer: d

- Watch Video Solution

13.

Let
$\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}
. Then
\vec{a}_{2} is equal to
A. (a) $\frac{943}{49}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
B. (b) $\frac{943}{49^{2}}(2 \hat{i}-3 \hat{j}-6 \hat{k})$
C. (c) $\frac{943}{49}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. (d) $\frac{943}{49^{2}}(-2 \hat{i}+3 \hat{j}+6 \hat{k})$

- Watch Video Solution

14.

$\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}
.Then
$\vec{a}_{1} \cdot \vec{b}$ is equal to
A. (a) -41
B. (b) $-41 / 7$
C. (c) 41
D. (d) 287

Answer: a

$\vec{a}=2 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $\vec{c}=-2 \hat{i}+3 \hat{j}+6 \hat{k}$. Let \vec{a}_{1} be the projection of \vec{a} on \vec{b} and \vec{a}_{2} be the projection of \vec{a}_{1} on \vec{c}
.Then
\vec{a}_{2} is equal to
A. \vec{a} and $v c e a_{2}$ are collinear
B. \vec{a}_{1} and \vec{c} are collinear
C. $\vec{a} m \vec{a}_{1}$ and \vec{b} are coplanar
D. \vec{a}, \vec{a}_{1} and a_{2} are coplanar

Answer: c

- Watch Video Solution

16. Consider a triangular pyramid ABCD the position vectors of whose angular points are $A(3,0,1), B(-1,4,1), C(5,2,3)$ and $D(0,-5,4)$

Let G be the point of intersection of the medians of the triangle BCD. The length of the vec $A G$ is
A. $\sqrt{17}$
B. $\sqrt{51} / 3$
C. $3 / \sqrt{6}$
D. $\sqrt{59} / 4$

Answer: b

- Watch Video Solution

17. Consider a triangular pyramid $A B C D$ the position vectors of whone agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$

Let G be the point of intersection of the medians of the triangle BCT. The length of the perpendicular from the vertex D on the opposite face
A. (a) 24
B. (b) $8 \sqrt{6}$
C. (c) $4 \sqrt{6}$
D. (d) none of these

Answer: c

- Watch Video Solution

18. Consider a triangular pyramid ABCD the position vectors of whose agular points are $A(3,0,1), B(-1,4,1), C(5,3,2)$ and $D(0,-5,4)$ Let G be the point of intersection of the medians of the triangle BCD. The length of the vector $\overline{A G}$ is
A. $14 / \sqrt{6}$
B. $2 / \sqrt{6}$
C. $3 / \sqrt{6}$
D. $\sqrt{5}$

Answer: a

19. Vertices of a parallelogram taken in order are $\mathrm{A},(2,-1,4), \mathrm{B}(1,0,-1), \mathrm{C}($ $1,2,3)$ and $D(x, y, z)$ The distance between the paralle lines $A B$ and $C D$ is
A. (a) $\sqrt{6}$
B. (b) $3 \sqrt{6 / 5}$
C. (c) $2 \sqrt{2}$
D. (d) 3

Answer: c

- Watch Video Solution

20. Vertices of a parallelogram taken in order are $\mathrm{A}(2,-1,4) \mathrm{B}(1,0,-1) \mathrm{C}(1,2,3)$ and D .

Distance of the point $\mathrm{P}(8,2,-12)$ from the plane of the parallelogram is
A. $\frac{4 \sqrt{6}}{9}$
B. $\frac{32 \sqrt{6}}{9}$
C. $\frac{16 \sqrt{6}}{9}$
D. none

Answer: b

- Watch Video Solution

21. Vertices of a parallelogram taken in order are $A(2,-1,4) B(1,0,-1) C(1,2,3)$ and D.

Distance of the point $\mathrm{P}(8,2,-12)$ from the plane of the parallelogram is
A. 14, 4, 2
B. 2,4,14
C. $4,2,14$
D. 2,14,4
22. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that

$$
\vec{r} \cdot(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad \text { and }
$$

$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$.
tangent line is drawn to the curve $y=\frac{8}{x^{2}}$ at the point A with abscissa 2.
The drawn line cuts x-axis at a point B
A. (a) 9
B. (b) $2 \sqrt{2}-1$
C. (c) $6 \sqrt{6}+3$
D. (d) $9-4 \sqrt{2}$

Answer: d

- Watch Video Solution

23. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\vec{r} \cdot(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and
$p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. Then $p_{1}+p_{2}$ is equal to
A. 2
B. 10
C. 18
D. 5

Answer: c

- Watch Video Solution

24. Let \vec{r} is a positive vector of a variable pont in cartesian OXY plane such that $\vec{r} \cdot(10 \hat{j}-8 \hat{i}-\vec{r})=40 \quad$ and $p_{1}=\max \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}, p_{2}=\min \left\{|\vec{r}+2 \hat{i}-3 \hat{j}|^{2}\right\}$. Then $p_{1}+p_{2}$ is equal to
A. 1
B. 2
C. 3
D. 4

Answer: c

- Watch Video Solution

25. $A b, A C$ and $A D$ are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and
A,
B, D are \vec{b} and \vec{c}, respectively i.e. $\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$ the projection of each edge $A B$ and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$ vector $\overrightarrow{A B}$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: a

- Watch Video Solution

26. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and $\mathrm{A}, \mathrm{B}, \mathrm{D}$ are \vec{b} and \vec{c}, respectively, i.e. $\overrightarrow{A B} \times \overrightarrow{A C}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$ the projection of each edge $A B$ and $A C$ on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$ vector $\overrightarrow{A D}$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: C

- Watch Video Solution

27. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a}. The vector of the faces containing vertices A, B, C and $\mathrm{A}, \quad \mathrm{B}, \quad \mathrm{D}$ are \vec{b} and \vec{c}, respectively , i.e.
$\overrightarrow{A B} \times \overrightarrow{A C}=\vec{b}$ and $\overrightarrow{A D} \times \overrightarrow{A B}=\vec{c}$ the projection of each edge AB
and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$
vector $\overrightarrow{A B}$ is
A. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}$
B. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}+\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
C. $\frac{1}{3} \vec{a}+\frac{\vec{a} \times(\vec{b}-\vec{c})}{|\vec{a}|^{2}}-\frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^{2}}$
D. none of these

Answer: A

- Watch Video Solution

Martrix - match type

2.

A

- View Text Solution

3.

- View Text Solution

4. Given two vectors $\vec{a}=-\hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{j}-\hat{k}$

- View Text Solution

5. Given two vectors $\vec{a}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}+2 \hat{k}$ find $|\vec{a} \times \vec{b}|$
6.

- View Text Solution

7. Volume of parallelpiped formed by vectors
$\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ is 36 sq. units.

- Watch Video Solution

8.

- View Text Solution

9.
10.

- View Text Solution

Integer type

1. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive integer in the range of $\frac{3|\vec{a}+\vec{b}|}{2}+2|\vec{a}-\vec{b}|$

- Watch Video Solution

2. Let \vec{u} be a vector on rectangular coodinate system with sloping angle 60° suppose that $|\vec{u}-\hat{i}|$ is geomtric mean of $|\vec{u}|$ and $|\vec{u}-2 \hat{i}|$, where \hat{i} is the unit vector along the x-axis. Then find the value of $\frac{\sqrt{2}-1}{|\vec{u}|}$

(D) Watch Video Solution

3. Find the absolute value of parameter t for which the area of the triangle whose vertices the $A(-1,1,2) ; B(1,2,3) \operatorname{and} C(t, 1,1)$ is minimum.

- Watch Video Solution

4. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}, \vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ and

$$
[3 \vec{a}+\vec{b} 3 \vec{b}+\vec{c} 3 \vec{c}+\vec{a}]=\lambda\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \text { then find the value of }
$$

- Watch Video Solution

5. Let $\vec{a}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}+2 \alpha \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\alpha \hat{j}+\hat{k}$.

Find the value of 6α. Such that
$\{(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})\} \times(\vec{c} \times \vec{a})=0$

(D) Watch Video Solution

6. If \vec{x}, \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2) \alpha^{2}+(b-3) \alpha+c\right] \vec{x}+\left[(a-2) \beta^{2}+(b-3) \beta+c\right] \vec{y}+[(a-2)$ are three distinct real numbers, then find the value of $\left(a^{2}+b^{2}+c^{2}-4\right)$.

- Watch Video Solution

7. Let \vec{u} and \vec{v} be unit vectors such that
$\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$. Find the value of $[\vec{u} \vec{v} \vec{w}]$

- Watch Video Solution

8. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k} \quad$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units if the value of λ is
9.

Given
that
$\vec{u}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{v}=2 \hat{i}+\hat{k}+4 \hat{k}, \vec{w}=\hat{i}+3 \hat{j}+3 \hat{k}$ and $(\vec{u} \cdot \vec{R}-15$
.Then find the greatest integer less than or equal to $|\vec{R}|$.

- Watch Video Solution

10. Let a three- dimensional vector \vec{V} satisfy the condition, $2 \vec{V}+\vec{V} \times(\hat{i}+2 \hat{j})=2 \hat{i}+\hat{k}$. If $3|\vec{V}|=\sqrt{m}$. Then find the value of m.

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$ and the angle between \vec{b} and $\vec{c} i s \frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b}-\vec{a} \times \vec{c}|$
12. Let $\vec{O} A=\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are non-collinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with $O A a n d O C$ as adjacent sides. If $p=k q$, then find k.

- Watch Video Solution

13. Find the work done by the force $F=3 \hat{i}-\hat{j}-2 \hat{k}$ acting on a particle such that the particle is displaced from point $A(-3,-4,1)$ topoint $B(-1,-1,-2)$.

- Watch Video Solution

14. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then find the value of
$(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$
15. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=i+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$ then find the value of $\vec{r} \cdot \vec{b}$.

- Watch Video Solution

16. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then find the value of $\mid 2 \vec{a}+5 \vec{l}$

- Watch Video Solution

17. Let \vec{a}, \vec{b}, and \vec{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are scalars then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

Subjective type

1. From a point O inside a triangle $A B C$, perpendiculars $O D$, $O E$ Eand $O f$ are drawn to rthe sides $B C, C$ Aand $A B$, respecrtively. Prove that the perpendiculars from A, B, andC to the sides $E F, F D a n d D E$ are concurrent.

- Watch Video Solution

2. $A_{1}, A_{2}, \ldots . A_{n}$ are the vertices of a regular plane polygon with n sides

$$
\begin{aligned}
& \text { and } \begin{array}{l}
\text { and } \quad \text { ars } \quad \text { its } \quad \text { centre. Show that } \\
\sum_{i=1}^{n-1}\left(\overrightarrow{O A}_{i} \times \overrightarrow{O A}_{i+1}\right)=(n-1)\left(\overrightarrow{O A}_{1} \times \overrightarrow{O A}_{2}\right)
\end{array}
\end{aligned}
$$

- Watch Video Solution

3. If c is a given non-zero scalar, and \vec{A} and \vec{B} are given non- zero, vectors such that $\vec{A} \perp \vec{B}$. Then find vector, \vec{X} which satisfies the equations $\vec{A} \cdot \vec{X}=c$ and $\vec{A} \times \vec{X}=\vec{B}$.

- Watch Video Solution

4. $A, B, C a n d D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

5. If the vectors \vec{a}, \vec{b}, and \vec{c} are coplanar show that $\left|\begin{array}{ccc}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=0$

- Watch Video Solution

6.

$\vec{A}=(2 \vec{i}+\vec{k}), \vec{B}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{C}=4 \vec{i}-\overrightarrow{3} j+7 \vec{k}$ determine a \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$

- Watch Video Solution

7. Determine the value of c so that for the real x, vectors $c x$ $\hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other

- Watch Video Solution

8. If vectors, \vec{b}, \vec{c} and \vec{d} are not coplanar, the prove that vector $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b}$ is parallel to \vec{a}.

- Watch Video Solution

9. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$, respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E. If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 \sqrt{ } 2 / 3$, find the position vectors of the point E for all its possible positions

- Watch Video Solution

10. Let a, b and c be non-coplanar unit vectors equally inclined to one another at an acute angle θ then [abc] in terms of θ is equal to :

- Watch Video Solution

11. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|=|\vec{C}|$ prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$
12. For any two vectors \vec{u} and \vec{v} prove that $\left(1+|\vec{u}|^{2}\right)\left(1+|\vec{v}|^{2}\right)=(1-\vec{u} \cdot \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$

- Watch Video Solution

13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

14. Find 3 -dimensional vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \quad$ satisfying

$$
\begin{aligned}
& \vec{v}_{1} \cdot \vec{v}_{1}=4, \vec{v}_{1} \cdot \vec{v}_{2}=-2, \vec{v}_{1} \cdot \vec{v}_{3}=6 \\
& \vec{v}_{2} \cdot \vec{v}_{2}=2, \vec{v}_{2} \cdot \vec{v}_{3}=-5, \vec{v}_{3} \cdot \vec{v}_{3}=29
\end{aligned}
$$

- Watch Video Solution

15. Let V be the volume of the parallelepied formed by the vectors, $\vec{a}=a_{1} \hat{i}=a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$. are non- negative real numbers and
$\sum_{r=1}^{3}\left(a_{r}+b_{r}+c_{r}\right)=3 L$ show that $V \leq L^{3}$

- Watch Video Solution

16. \vec{u}, \vec{v} and \vec{w} are three nono-coplanar unit vectors and α, β and γ are the angles between \vec{u} and \vec{u}, \vec{v} and \vec{w} and \vec{w} and \vec{u}, respectively and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\quad \alpha, \beta$ and γ. respectively, prove that $[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x})=\frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \frac{\sec ^{2} \alpha}{2} \frac{\sec ^{2} \beta}{2} \frac{\sec ^{2} \gamma}{2}$.

- Watch Video Solution

17. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} ar distinct vectors such that $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$.

$$
(\vec{a}-\vec{d}) \cdot(\vec{c}-\vec{b}) \neq 0, \text { i.e. }, \vec{a} \cdot \vec{b}+\vec{d} \cdot \vec{c} \neq \vec{d} \cdot \vec{b}+\vec{a} \cdot \vec{c} .
$$

- Watch Video Solution

18. $P_{1} n d P_{2}$ are planes passing through origin $L_{1} a n d L_{2}$ are two lines on P_{1} and P_{2}, respectively, such that their intersection is the origin. Show that there exist points $A, B a n d C$, whose permutation A^{\prime}, B^{\prime} and C^{\prime}, respectively, can be chosen such that A is on $L_{1}, \operatorname{Bon} P_{1}$ but not on L_{1} andC not on $P_{1} ; A^{\prime}$ is on L_{2}, B^{\prime} on P_{2} but not on $L_{2} a n d C^{\prime}$ not on P_{2}.

- Watch Video Solution

19. about to only mathematics

- Watch Video Solution

1. Let \vec{A}, \vec{B} and \vec{C} be vectors of legth, 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B}+\vec{C}, \vec{B}$ to $\vec{C}+\vec{A}$ and \vec{C} to $\vec{A}+\vec{B}$ then the length of vector $\vec{A}+\vec{B}+\vec{C}$ is \qquad .

- Watch Video Solution

2. The unit vector perendicular to the plane determined by $P(1,-1,2), Q(2,0,-1)$ and $R(0,2,1)$.

- Watch Video Solution

3. The area of the triangle whose vertices are $A(1,-1,2), B(2,1-1) C(3,-1,2)$ is

- Watch Video Solution

4. If $\vec{A}, \vec{B}, \vec{C}$ are non-coplanar vectors then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}}+\frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}=$

- Watch Video Solution

5. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors then find a vector \vec{B} satisfying equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$

- Watch Video Solution

6. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the $x y$-plane. Find all vetors in te same plane having projection 1 and 2 along \vec{b} and \vec{c} respectively.

- Watch Video Solution

7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are \qquad and \qquad , respectively.

(D) Watch Video Solution

8. A unit vector coplanar with $\vec{i}+\vec{j}+2 \vec{k}$ and $\vec{i}+2 \vec{j}+\vec{k}$ and perpendicular to $\vec{i}+\vec{j}+\vec{k}$ is \qquad

- Watch Video Solution

9. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and thepane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ then angle between \vec{a} and $\vec{i}-2 \vec{j}+2 \vec{k}$ is $=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$
10. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is any
$(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0
$\vec{a}(C)$ veca $/ 2(D)$ 2veca`

- Watch Video Solution

11. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angel between \vec{a} and \vec{c} is

- Watch Video Solution

12. A, B C and D are four points in a plane with position vectors, $\vec{a}, \vec{b} \vec{c}$ and \vec{d} respectively, such
that

$$
(\vec{a}-\vec{d}) \cdot(\vec{b}-\vec{c})=(\vec{b}-\vec{d}) \cdot(\vec{c}-\vec{a})=0 \text { then point } \mathrm{D} \text { is }
$$

the \qquad of triangle $A B C$.

- Watch Video Solution

13.

$\vec{A}=\lambda(\vec{u} \times \vec{v})+\mu(\vec{v} \times \vec{w})+v(\vec{w} \times \vec{u})$ and $[\vec{u} \vec{v} \vec{w}]=\frac{1}{5}$ then λ
(A) 5 (B) 10 (C) 15 (D) none of these

- Watch Video Solution

14. If $\vec{a}=\hat{j}+\sqrt{3} \hat{k}, \vec{b}=-\hat{j}+\sqrt{3} \hat{k}$ and $\vec{c}=2 \sqrt{3} \hat{k}$ form a triangle, then the internal angle of the triangle between \vec{a} and \vec{b} is

- Watch Video Solution

1. Let \vec{A}, \vec{B} and \vec{C} be unit vectors such that $\vec{A} \cdot \vec{B}=\vec{A} \cdot \vec{C}=0$ and the angle between \vec{B} and \vec{C} be $\pi / 3$. Then $\vec{A}= \pm 2(\vec{B} \times \vec{C})$.

- Watch Video Solution

2. If $\vec{x} \cdot \vec{a}=0 \vec{x} \cdot \vec{b}=0$ and $\vec{x} \cdot \vec{c}=0$ for some non zero vector \vec{x} then show that $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

$$
\begin{array}{lccc}
\text { 3. for } & \text { any } & \text { three } & \text { vectors, } \\
\vec{a}, \vec{b} \text { and } \vec{c},(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=
\end{array}
$$

- Watch Video Solution

$|\vec{a}|$ and $|\vec{b}|, \quad$ if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

- Watch Video Solution

2. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$ for any two non zero vectors `veca and vecb.

- Watch Video Solution

3. If the vertices A, B, C of a triangle $A B C$ are $(1,2,3),(-1,0,0),(0,1,2)$, respectively, then find $\angle A B C$.

- Watch Video Solution

4. If $|\vec{a}|=3,|\vec{b}|=4$ and the angle between \vec{a} and $\vec{b} i s 120^{\circ}$. Then find the value of $|4 \vec{a}+3 \vec{b}|$
5. If vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then find the locus of th point (x, y).

- Watch Video Solution

6. Let $\vec{a} \vec{b}$ and \vec{c} be pairwise mutually perpendicular vectors, such that $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=2$, the find the length of $\vec{a}+\vec{b}+\vec{c}$.

- Watch Video Solution

7. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

8. If the angle between unit vectors \vec{a} and $\vec{b} i s 60^{\circ}$. Then find the value of $|\vec{a}-\vec{b}|$.

Watch Video Solution

9. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0,|\vec{w} \cdot \widehat{n}|$ is equal to (A) O (B) 1 (C) 2 (D) 3

- Watch Video Solution

10. A, B, C and d are any four points prove that $\overrightarrow{A B} \cdot \overrightarrow{C D}+\overrightarrow{B C} \cdot \overrightarrow{A D}+\overrightarrow{C A} \cdot \overrightarrow{B D}=0$

- Watch Video Solution

11. $P(1,0,-1), Q(2,0,-3), R(-1,2,0) \operatorname{and} S(3,-2,-1)$, then find the projection length of $\vec{P} Q$ and $\vec{R} S$.

- Watch Video Solution

12. If the vectors $3 \vec{P}+\vec{q}, 5 \vec{P}-3 \vec{q}$ and $2 \vec{p}+\vec{q}, 4 \vec{p}-2 \vec{q}$ are pairs of mutually perpendicular vectors, the find the angle between vectors \vec{p} and \vec{q}.

- Watch Video Solution

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A}+\vec{B})$ bisets the internal angle between \vec{A} and \vec{B} then find the value of α.

- Watch Video Solution

14. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{x}, \vec{a} \cdot \vec{x}=1, \vec{b} \cdot \vec{x}=\frac{3}{2},|\vec{x}|=2$ then find theh angle between \vec{c} and \vec{x}.

- Watch Video Solution

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$.

- Watch Video Solution

16.

Constant
forces
$P_{1}=\hat{i}-\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{i} k$ and $P_{3}=\hat{j}-\hat{k}$ act on a particle at a point A. Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k}) \operatorname{to} B(6 \hat{i}+\hat{j}-3 \hat{k})$

- Watch Video Solution

17. If $|\vec{a}|=5,|\vec{a}-\vec{b}|=8$ and $|\vec{a}+\vec{b}|=10$ then find $|\vec{b}|$

- Watch Video Solution

18. If A, B, C, D are four distinct point in space such that $A B$ is not perpendicular to and satisfies $\vec{A} B \vec{C} D=k\left(|\vec{A} D|^{2}+|\vec{B} C|^{2}-|\vec{A} C|^{2}=|\vec{B} D|^{2}\right)$, then find the value of k.

- Watch Video Solution

Exercise 2.2

1. If $\vec{a}=2 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=m \hat{i}+n \hat{j}+12 \hat{k}$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then find (m, n)

- Watch Video Solution

2. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$ then find the value of $\vec{a} \cdot \vec{b}$

- Watch Video Solution

3. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq 0$ where \vec{a}, \vec{b} and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a}+\vec{c}=k \vec{b}$.

- Watch Video Solution

4.

$\vec{a}=2 \vec{j}+3 \vec{j}-\vec{k}, \vec{b}=-\vec{i}+2 \vec{j}-4 \vec{k}$ and $\vec{c}=\vec{i}+\vec{j}+\vec{k}$
, then find the value of $(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{c})$

- Watch Video Solution

5. find the vector $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right -handed system, then find \vec{c}.

- Watch Video Solution

6. given that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$.

- Watch Video Solution

7. Show that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ and give a geometrical interpretation of it.

- Watch Video Solution

8. If \vec{x} and \vec{y} are unit vectors and $|\vec{z}|=\frac{2}{\sqrt{7}}$ such that $\vec{z}+\vec{z} \times \vec{x}=\vec{y}$ then find the angle θ between \vec{x} and \vec{z}

- Watch Video Solution

9.

Prove
$(\vec{a} \cdot \hat{i})(\vec{a} \times \hat{i})+(\vec{a} \cdot \hat{j})(\vec{a} \times \hat{j})+(\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k})=\overrightarrow{0}$

Watch Video Solution

10. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-zero vectors such that $a+b+c=0$, then $\lambda b \times a+b \times c+c \times a=0$, where λ is

- Watch Video Solution

11. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2) \operatorname{and}(1,2,-2)$. Find the velocity of the particle at point $P(3,6,4)$.

- Watch Video Solution

12. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$. It the angle between \vec{b} and $\vec{c} i s \frac{\pi}{6}$ then find \vec{a}.

- Watch Video Solution

13. if $(\vec{a} \times \vec{b})^{2}+(\vec{a} \cdot \vec{b})^{2}=144$ and $|\vec{a}|=4$ the find the value of $|\vec{b}|$

- Watch Video Solution

14. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$ if \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$ then find the value of $\vec{c} \cdot \vec{b}$.

- Watch Video Solution

15. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.

Exercise 2.3

1. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that $\left[\begin{array}{lll}\vec{d} & \vec{a} & \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{c} & \vec{b}\end{array}\right]=\left[\begin{array}{lll}\vec{d} & \vec{c} & \vec{a}\end{array}\right]$

- Watch Video Solution

2. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that $[\overrightarrow{~ v e c m ~ v e c n] ~}$ (vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm), (vecn.veca, vecn.vecb, vecn)|'

- Watch Video Solution

3. if the volume of a parallelpiped whose adjacent egges are $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+\alpha \hat{j}+2 \hat{k}, \vec{c}=\vec{i}+2 \hat{j}+\alpha \hat{k}$ is 15 then find of α if $(\alpha>0)$

- Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.

- Watch Video Solution

5. If \vec{x}. Veca $=0, \vec{x} \cdot$ Vecb $=0$ and $\vec{x} \cdot \vec{c}=0$ for some non-zero vector \vec{x}. Then prove that $[\vec{a} \vec{b} \vec{c}]=0$

- Watch Video Solution

6. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c}=2$ and $\vec{a} \times \vec{c}=\vec{b}$.

- Watch Video Solution

7. If \vec{a}, \vec{b} and \vec{c} are three vectors such that
$\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b} \quad$ then prove that $|\vec{a}|=|\vec{b}|=|\vec{c}|$

- Watch Video Solution

8. If $\vec{a}=\vec{P}+\vec{q}, \vec{P} \times \vec{b}=\overrightarrow{0}$ and $\vec{q} \cdot \vec{b}=0$ then prove that $\frac{\vec{b} \times(\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{b}}=\vec{q}$

- Watch Video Solution

9.

Prove
$(\vec{a} \cdot(\vec{b} \times \hat{i})) \hat{i}+(\vec{a} \cdot(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} \cdot(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$

- Watch Video Solution

10. for any four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} prove that $\vec{d} \cdot(\vec{a} \times(\vec{b} \times(\vec{c} \times \vec{d})))=(\vec{b} \cdot \vec{d})[\vec{a} \vec{c} \vec{d}]$

- Watch Video Solution

11. If \vec{a} and \vec{b} be two non-collinear unit vectors such that $\vec{a} \times(\vec{a} \times \vec{b})=\frac{1}{2} \vec{b}$, then find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

12. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b}=\overrightarrow{0}$

(Watch Video Solution

13. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin \theta$.

- Watch Video Solution

14. If $\vec{p}, \vec{q}, \vec{r}$ denote vectors $\vec{b} \times \vec{c}, \vec{c} \times \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$. Respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}, \vec{b}$ is parallel to $\vec{r} \times \vec{p}, \vec{c}$ is parallel to $\vec{p} \times \vec{q} \cdot$.

- Watch Video Solution

15. Let $\vec{a}, \vec{b}, \vec{c}$ be non -coplanar vectors and let equations $\vec{a}, \vec{b}, \vec{c}$, are reciprocal system of vector $\vec{a}, \vec{b}, \vec{c}$ then prove that $\vec{a} \times \vec{a},+\vec{b} \times \vec{b},+\vec{c} \times \vec{c}^{\prime}$ is a null vector.
16. Given unit vectors $\widehat{m} \widehat{n}$ and \hat{p} such that angle between \widehat{m} and $\widehat{n} i s \alpha$ and angle between \hat{p} and $\widehat{m} X \widehat{n} i s \alpha$ if [n p m] = $1 / 4$ find alpha

- Watch Video Solution

17. \vec{a}, \vec{b}, and \vec{c} are three unit vectors and every two are inclined to each other at an angel $\cos ^{-1}(3 / 5)$ If $\vec{a} \times \vec{b}=p \vec{a}+q \vec{b}+r \vec{c}$, wherep, q, r are scalars, then find the value of q.

- Watch Video Solution

18.

Let
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ gve three non-zero vectors such that \vec{c} is a unit vector perpendicular to both
\vec{a} and \vec{b}. If the angle between \vec{a} and $\vec{b} i s \frac{\pi}{6}$, then prove that $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right| p=\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)$

- Watch Video Solution

single correct answer type

1. The scalar $\vec{A} \cdot(\vec{B}+\vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals (A) 0
$[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$ (C) $[\vec{A} \vec{B} \vec{C}]$ (D) none of these
A. 0
B. $[\vec{A} \vec{B} \vec{C}]+[\vec{B} \vec{C} \vec{A}]$
c. $[\vec{A} \vec{B} \vec{C}]$
D. none of these

Answer: a
2. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}=|\vec{a}|| \vec{b}| | \vec{c} \mid$ holds if and only if
A. $\vec{a} \cdot \vec{b}=0, \vec{b} \cdot \vec{c}=0$
B. $\vec{b} \cdot \vec{c}=0, \vec{c}, \vec{a}=0$
C. $\vec{c} \cdot \vec{a}=0, \vec{a}, \vec{b}=0$
D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer: d

- Watch Video Solution

3. The volume of he parallelepiped whose sides are given by $\vec{O} A=2 i-2, j, \vec{O} B=i+j-k a n d \vec{O} C=3 i-k$ is a. $4 / 13 \mathrm{~b} .4 \mathrm{c}$. $2 / 7$ d. 2
A. $4 / 13$
B. 4
C. $2 / 7$
D. 2

Answer: d

- Watch Video Solution

4. Let $\vec{a}, \vec{b}, \vec{c}$ be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined
by the
relations
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then the value of the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3
A. 0
B. 1
C. 2
D. 3

- Watch Video Solution

5. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i} . \operatorname{If} \hat{d}$ is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$
B. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
C. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: a

- Watch Video Solution

6. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}\right)$ then the angle between vea and \vec{b} is
(A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: a

- Watch Video Solution

7. Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u}+\vec{v}+\vec{w}=0$ if $|\vec{u}|=3,|\vec{v}|=4$ and $|\vec{w}|=5$ then $\vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u}$ is (a) 47
(b) -25 (c) 0 (d) 25
B. -25
C. 0
D. 25

Answer: b

- Watch Video Solution

8. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $(\vec{a}+\vec{b}+\vec{c}) \cdot[(\vec{a}+\vec{b}) \times(\vec{a}+\vec{c})]$ equals
A. 0
B. $[\vec{a} \vec{b} \vec{c}]$
C. $2[\vec{a} \vec{b} \vec{c}]$
D. $-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: d

9. Let $\vec{p}, \vec{q}, \vec{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \vec{x} satisfies the equation

$$
\vec{p} \times\{\vec{x}-\vec{q}) \times \vec{p}\}+\vec{q} \times\{\vec{x}-\vec{r}) \times \vec{q}\}+\vec{r} \times\{\vec{x}-\vec{p}) \times \vec{r}
$$

then \vec{x} is given by
A. (a) $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. (b) $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. (c) $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. (d) $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: b

- Watch Video Solution

10. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and \quad the angle between
$\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: b
11. Let $\vec{a}=2 i+j+k, \vec{b}=i+2 j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is pependicular to \vec{a}. Then \vec{c} is
A. $\frac{1}{\sqrt{2}}(-j+k)$
B. $\frac{1}{\sqrt{3}}(i-j-k)$
C. $\frac{1}{\sqrt{5}}(i-2 j)$
D. $\frac{1}{\sqrt{3}}(i-j-k)$

D Watch Video Solution

12. If the vectors $\vec{a}, \vec{b}, \vec{c}$ form the sides BC, CA and AB respectively of a triangle ABC then (A) $\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$ (B) $\vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$
$\vec{a} \cdot \vec{b}=\vec{c}=\vec{c}=\vec{a} \cdot a \neq 0$ (D) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a} \overrightarrow{0}$
A. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
c. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$

Answer: b

(D) Watch Video Solution

13. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes determined by pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Thenthe \angle between $P_{-} 1$ and $\mathrm{P}_{-} 2 i s(A) 0(B) \mathrm{pi} / 4(C) \mathrm{pi} / 3(D) \mathrm{pi} / 2^{\prime}$
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: a

(D) Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b}, 2 \vec{b}-c, \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: a

- Watch Video Solution

15. if \widehat{a}, \hat{b} and \hat{c} are unit vectors. Then $|\widehat{a}-\hat{b}|^{2}+|\hat{b}-\hat{c}|^{2}+|\vec{c}-\vec{a}|^{2}$ does not exceed
A. 4
B. 9
C. 8
D. 6

Answer: b

16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicular to each other then the angle between \vec{a} and \vec{b} is (A) 45^{0} (B) 60° (C) $\cos ^{-1}\left(\frac{1}{3}\right)$ (D) $\cos ^{-1}\left(\frac{2}{7}\right)$
A. 45°
B. 60°
C. $\cos ^{-1}(1 / 3)$
D. $\cos ^{-1}(2 / 7)$

Answer: b

- Watch Video Solution

17. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. if \vec{U} is a unit vector, then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is

$$
\text { A. }-1
$$

B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: c

- Watch Video Solution

18. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
A. -3
B. 3
C. $1 / \sqrt{3}$
D. $\sqrt{3}$

Answer: c

19. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \vec{b} is (a) $\hat{i}-\hat{j}+\hat{k}$ (b) $2 \hat{i}-\hat{k}$ (c) \hat{i} (d) $2 \hat{i}$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{i}-\hat{k}$
C. \hat{i}
D. $2 \hat{i}$

Answer: c

- Watch Video Solution

20. The unit vector which is orthogonal to the vector $5 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is (a) $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
$\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$ (c) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$ (d) $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$
A. $\frac{2 \hat{i}-6 \hat{j}+\hat{k}}{\sqrt{41}}$
B. $\frac{2 \hat{i}-3 \hat{j}}{\sqrt{13}}$
c. $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$
D. $\frac{4 \hat{i}+3 \hat{j}-3 \hat{k}}{\sqrt{34}}$

Answer: c

- Watch Video Solution

21. if \vec{a}, \vec{b} and \vec{c} are three non-zero, non- coplanar vectors and $\vec{b}_{1}=\vec{b}-\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{b}_{2}=\vec{b}+\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}, \vec{c}_{1}=\vec{c}-\frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a}+\frac{\vec{b}}{|\vec{c}|}$

$$
-\frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a}=\frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1}
$$

, then the set of orthogonal vectors is
А. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{3}\right)$
B. $\left(\vec{c} a, \vec{b}_{1}, \vec{c}_{2}\right)$
C. $\left(\vec{a}, \vec{b}_{1}, \vec{c}_{1}\right)$
D. $\left(\vec{a}, \vec{b}_{2}, \vec{c}_{2}\right)$

Answer: c

- Watch Video Solution

22. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$. A vector in the plane of \vec{a} and \vec{b} whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is (A) $4 \hat{i}-\hat{j}+4 \hat{k}$ (B) $\hat{i}+\hat{j}-3 \hat{k}$ (C) $2 \hat{i}+\hat{j}-2 \hat{k}$ (D) $4 \hat{i}+\hat{j}-4 \hat{k}$
A. $4 \hat{i}-\hat{j}+4 \hat{k}$
B. $3 \hat{i}+\hat{j}-3 \hat{k}$
C. $2 \hat{i}+\hat{j}-2 \hat{k}$
D. $4 \hat{i}+\hat{j}-4 \hat{k}$

Answer: a

23. Lelt two non collinear unit vectors \widehat{a} and \hat{b} form and acute angle. A point P moves so that at any time t the position vector $\overrightarrow{O P}$ (where O is the origin) is given by $\widehat{a} \cos t+\hat{b} \sin t$. When P is farthest from origin O , let M be the length of $\overrightarrow{O P}$ and \widehat{u} be the unit vector along $\overrightarrow{O P}$ Then (A)
$\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} \cdot \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{\frac{1}{2}}$
$\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{\frac{1}{2}}$
A. , $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+\widehat{a} . \hat{b})^{1 / 2}$
B., $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+\widehat{a} . \hat{b})^{1 / 2}$
C. $\widehat{u}=\frac{\widehat{a}+\hat{b}}{|\widehat{a}+\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{1 / 2}$
D., $\widehat{u}=\frac{\widehat{a}-\hat{b}}{|\widehat{a}-\hat{b}|}$ and $M=(1+2 \widehat{a} . \hat{b})^{1 / 2}$

Answer: a

24. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{c}=\frac{1}{2}$ then (A) $\vec{a}, \vec{b}, \vec{c}$ are non coplanar (B) $\vec{b}, \vec{c}, \vec{d}$ are non coplanar (C) \vec{b}, \vec{d} are non paralel (D) \vec{a}, \vec{d} are paralel and \vec{b}, \vec{c} are parallel
A. \vec{a}, \vec{b} and \vec{c} are non- coplanar
B. \vec{b}, \vec{c} and \vec{d} are non-coplanar
c. \vec{b} and \vec{d} are non- parallel
D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Answer: c

- Watch Video Solution

25. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$
becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: b

- Watch Video Solution

26. Let P, Q, R and S be the points on the plane with position vectors $-2 \hat{i}-\hat{j}, 4 \hat{i}, 3 \hat{i}+3 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$ respectively. The quadrilateral PQRS must be a
A. Parallelogram, which is neither a rhombus nor a rectangle
B. square
C. rectangle, but not a square
D. rhombus, but not a square.

Answer: a

- Watch Video Solution

27. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is given by
A. $\hat{i}-3 \hat{j}+3 \hat{k}$
B. $-3 \hat{i}-3 \hat{j}+\hat{k}$
C. $3 \hat{i}-\hat{j}+3 \hat{k}$
D. $\hat{i}+3 \hat{j}-3 \hat{k}$

Answer: c

28. Let $\overline{P R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\overline{S Q}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS and $\overline{P T}=\hat{i}+2 \hat{j}+3 \hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $\overline{P T}, \overline{P Q}$ and $\overline{P S}$ is
A. 5
B. 20
C. 10
D. 30

Answer: c

- Watch Video Solution

Multiple correct answers type
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non- zero vectors such that \vec{c} is a unit vectors perpendicular to both the vectors \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
A. (a) 0
B. (b) 1
C. (c) $\frac{1}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)$
D. (d) $\frac{3}{4}\left(a_{1}^{2}+a_{2}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{2}^{2}\right)\left(c_{1}^{2}+c_{2}^{2}+c_{2}^{2}\right)$

Answer: c

- Watch Video Solution

2. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. one
B. two
C. three
D. infinite

Answer: b

- Watch Video Solution

3. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$ be three vectors. A vector in the plane of \vec{b} and \vec{c} whose projection on \vec{a} is of
magnitude $\sqrt{\left(\frac{2}{3}\right)}$ is \quad (A) $2 \hat{i}+3 \hat{j}+3 \hat{k} \quad$ (B) $\quad 2 \hat{i}+3 \hat{j}-3 \hat{k}$
$-2 \hat{i}-\hat{j}+5 \hat{k}$ (D) $2 \hat{i}+\hat{j}+5 \hat{k}$
A. $2 \hat{i}+3 \hat{j}-3 \hat{k}$
B. $2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}-\hat{j}+5 \hat{k}$
D. $2 \hat{i}+\hat{j}+5 \hat{k}$

Answer: a,c

- Watch Video Solution

4. For three vectors, \vec{u}, \vec{v} and \vec{w} which of the following expressions is not equal to any of the remaining three ?
A. (a) $\vec{u} \cdot(\vec{v} \times \vec{w})$
B. (b) $(\vec{v} \times \vec{w}) \cdot \vec{u}$
C. (c) $\vec{v} \cdot(\vec{u} \times \vec{w})$
D. (d) $(\vec{u} \times \vec{v}) \cdot \vec{w}$

Answer: c

- Watch Video Solution

5. Which of the following expressions are meaningful? $\vec{u} \cdot(\vec{v} \times \vec{w})$
b. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$ c. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$ d. $\vec{u} \times(\vec{v} \cdot \vec{w})$
A. $\vec{u} \cdot(\vec{v} \times \vec{w})$
B. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
c. $(\vec{u} \cdot \vec{v}) \vec{w}$
D. $\vec{u} \times(\vec{v} \cdot V e c w)$

Answer: ac

- Watch Video Solution

6. If \vec{a} and \vec{b} are two non collinear vectors and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \cdot \vec{b}$ and $\vec{v}=\vec{a} x \vec{b}$ then \vec{v} is
A. $|\vec{u}|$
B. $|\vec{u}|+\mid \vec{u} \cdot$ Veca \mid
c. $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
D. $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$

Answer: a,c

- Watch Video Solution

7. $\vec{P}=(2 \hat{i}-2 \hat{j}+\hat{k})$, then find $|\vec{P}|$
A. a unit vector
B. makes an angle $\pi / 3$ with vector $(2 \hat{i}-4 \hat{j}+3 \hat{k})$
C. parallel to vector $\left(-\hat{i}+\hat{j}-\frac{1}{2} \hat{k}\right)$
D. perpendicular to vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$

Answer: a,c,d

- Watch Video Solution

8. Let \vec{a} be vector parallel to line of intersection of planes P_{1} and P_{2} through origin. If P_{1} is parallel to the vectors $2 \bar{j}+3 \bar{k}$ and $4 \bar{j}-3 \bar{k}$ and P_{2} is parallel to $\bar{j}-\bar{k}$ and $3 \bar{I}+3 \bar{j}$, then the angle between \vec{a} and $2 \bar{i}+\bar{j}-2 \bar{k}$ is :
A. $\pi / 2$
B. $\pi / 4$
C. $\pi / 6$
D. $3 \pi / 4$

Answer: b,d

- Watch Video Solution

9. The vectors which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$ is /are (A) $\hat{j}-\hat{k}$ (B) $-\hat{i}+\hat{j}$ (C) $\hat{i}-\hat{j}$ (D) $-\hat{j}+\hat{k}$
A. $\hat{j}-\hat{k}$
B. $-\hat{i}+\hat{j}$
C. $\hat{i}-\hat{j}$
D. $-\hat{j}+\hat{k}$

Answer: add

- Watch Video Solution

10. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$ if \vec{a} is a non-zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a nonzero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. (a) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. (b) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
C. (c) $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. (d) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

- Watch Video Solution

11. Let $P Q R$ be a triangle . Let

$$
\vec{a}=\overline{Q R}, \vec{b}=\overline{R P} \text { and } \vec{c}=\overline{P Q} . \quad \text { if }|\vec{a}|=12,|\vec{b}|=4 \sqrt{3} \text { and } \vec{b} \cdot \overrightarrow{c^{\prime}}
$$

then which of the following is (are) true?
A. (а) $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
B. (b) $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=30$
C. (c) $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. (d) $\vec{a} \cdot \vec{b}=-72$

Answer: a,c,d

