©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

NUCLEI

Topic 1 Very Short Answer Type Questions

1. How does nuclear radius of an atom depend
on its mass number ?
2. A radioactive element ${ }_{92} X^{238}$ emits one α particle and one β^{\prime} particle in succession.

What is the mass number of new element formed?

- Watch Video Solution

3. What is the SI unit of activity?

- Watch Video Solution

4. What is mean life of a radioactive element?

- Watch Video Solution

5. State the law of radiactive disintegration.

- Watch Video Solution

6. Name the anti-particle of an electron.

- Watch Video Solution

7. Identify the particle P in the following nuclear reaction.
$X_{Z}^{A} \rightarrow Y_{Z+1}^{A}+e_{-1}^{0}+P$

- Watch Video Solution

Topic 1 Short Answer Type Questions I

1. Two nuclei have mass numbers in the ratio 8
: 125. Calculate the ratio of their nuclear radii.
2. Show that the density of nucleus over a wide range of nuclei is constant independent of mass number.

D Watch Video Solution

3. Calculate the half-life period of a radioactive substance, if its activity drops to $16^{t h}$ of its initial value in 30 years.

Topic 1 Short Answer Type Questions li

1. Write the expression for the half life of a radioactive element.

- Watch Video Solution

2. What are the characteristics of nuclear forces?
3. A given number of atoms, N_{0} of a radioactive element with a half life T is
uniformly distributed in the blood stream of a
(i) Normal person A having total volume V of
blood in the body.
(ii) Person B in need of blood transfusion having a volume V' of blood in the body.

The number of radioactive atoms per unit volume in the blood streams of the two persons after a time $n T$ are found to be N_{1} and N_{2}.

Prove mathematically that the additional volume of blood that needs to be transfused in the body of person B equals $\left(\frac{N_{2}-N_{1}}{N_{2}}\right)$ V.

D Watch Video Solution

4. The half-life of ${ }_{92}^{238} U$ undergoing a-decay is
4.5×10^{9} years. What is the activity of 1 g sample of ${ }_{92}^{238} U$?

- Watch Video Solution

5. State the law of radioactivity and hence, show that $N=N_{0} e^{-\lambda t}$.

- Watch Video Solution

6. (a) The number of nuclei of a given radioactive nucleus, at times $t=0$ and $t=T$
, are N_{0} and (N_{0} / n) respectively. Obtain an expression for the half life $\left(T_{1 / 2}\right)$ of this nucleus in terms of n and T .
(b) Identify the nature of the 'radioactive radiations', emitted in each step of the 'decay
chain' given below:
${ }_{Z}^{A} X \rightarrow{ }_{Z-2}^{A-4} Y \rightarrow{ }_{Z-2}^{A-4} Y \rightarrow{ }_{Z-1}^{A-4} W$

D Watch Video Solution

7. State the law of radioactive decay.

Plot a graph showing the number (N) of undecayed nuclei as a function of time (t) for a given radioactive sample having half life $T_{1 / 2}$.

Depict in the plot, the number of undecayed nuclei at (i) $t=3 T_{1 / 2}$ and (ii) $t=5 T_{1 / 2}$.
8. (a) Write symbolically the β-decay process of phosphorus.
(b) Derive an expression for the average life of a radionuclide. Give its relationship with the half-life.

- Watch Video Solution

9. (i) Define 'activity' of a radioactive material and write its S.I. unit.
(ii) Plot a graph showing variation of activity of
a given radioactive sample with time.
(iii) The sequence of stepwise decay of a radioactive nucleus is
$D \xrightarrow{\alpha} D_{1} \xrightarrow{\beta-} D_{2}$

If the atomic number and mass number of D_{2}
are 71 and 176 respectively, what are their corresponding values for D ?

- Watch Video Solution

Topic 1 Long Answer Type Questions I

1. State the law of radioactivity and hence, show that $N=N_{0} e^{-\lambda t}$.

D Watch Video Solution
2. Write the expression for the half life of a radioactive element.

- Watch Video Solution

3. (a) Define the terms (i) half-life $\left(T_{1 / 2}\right)$ and
(ii) average life (τ). Find out their relationships with the decay constant (λ).
(b) A radioactive nucleus has a decay constant,
$\lambda=0.3465$ (day $^{-1}$. How long would it take the nucleus to decay to 75% of its initial amount?

- Watch Video Solution

1. Determine the mass of $N a^{22}$ which has an activity of 5 mCl . Half life of $N A^{22}$ is 2.6 years. Avogadro number $=6.023 \times 10^{23}$ atoms.

- Watch Video Solution

2. A given coin has a mass of 3.0 g . Calculate
the nuclear energy that would be required to
separate all the neutrons and protons from each other. For simplicity, assume that the coin is entirely made of ${ }_{29}^{63} \mathrm{Cu}$ atoms (of mass 62.92960 u)

- Watch Video Solution

Topic 2 Very Short Answer Type Questions

1. What is meant by specific binding energy ?

- Watch Video Solution

2. Write the relation for binding energy (BE)
(in MeV) of a nucleus of mass ${ }_{Z}^{A} M$, atomic number (Z) and mass number (A) in terms of
the masses of its constituents - neutrons and protons.

D Watch Video Solution

3. In a typical nuclear reaction, e.g.
${ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+n+3.27 \mathrm{Mev}$,
although number of nucleons is conserved, yet energy is released. How ? Explain.
4. What characteristic property of nuclear force explains the constancy of binding energy per nucleon ($B E / A$) in the range of mass number 'A' lying $30<A<170$?

- Watch Video Solution

5. State any three feautures of nuclear force

D Watch Video Solution

1. Draw a plot of $B E / A$ versus mass number A
for $2 \leq A \leq 170$. Use this graph to explain the release of energy in the process of nuclear fusion of two light nuclei.

OR

Using the curve for the binding energy per nucleon as a function of mass number A, state
clearly how the release in energy in the processes of nuclear fission and nuclear fusion can be explained.

Draw a plot of the binding energy per nucleon
as a function of mass number for a large
number of nuclei, $2<A<240$. How do you explain the constancy of binding energy per nucleon in the range $30<A<170$ using the property that nuclear force is short-ranged ?

D Watch Video Solution

2. A heavy nucleus X of mass number 240 and
binding energy per nucleon 7.6 MeV is split into two fragments Y and Z of mass numbers

110 and 130. The binding energy of nucleons in

Y and Z is 8.5 Me V per nucleon. Calculate the energy Q released per fission in Me V.

D Watch Video Solution

Topic 2 Short Answer Type Questions li

1. Define the terms (i) mass defect, (ii) binding energy for a nucleus and state the relation between the two.

For a given nuclear reaction, the B.E./nucleon
of the product nucleus/nuclei is more than that for the original nucleus/nuclei. Is this nuclear reaction exothermic or endothermic in nature? Justify your choice.

D Watch Video Solution

2. Draw a plot of potential energy of a pair of nucleons as a function of their separations.

Mark the regions where the nuclear force is (i)
attractive and (ii) repulsive. Write any two characteristic features of nuclear forces.

OR

Draw a plot of potential energy of a pair of nucleons as a function of their separation.

Write two important conclusions which you
can draw regarding the nature of nuclear forces.

- Watch Video Solution

Topic 2 Long Answer Type Questions

1. Distinguish between nuclear fission and nuclear fusion.

D Watch Video Solution

2. Show that $1 \mathrm{amu}=932 \mathrm{MeV}$.
(D) Watch Video Solution

Topic 2 Numerical Problems

1. The half life of ${ }_{38} S r^{90}$ isotope is 28 years.

What is the rate of disintegration of 15 mg of this isotope?
$\left.=6.023 \times 10^{23}\right)$
(Given Avogadro
No

D Watch Video Solution

2. A thermal neutron strikes U_{92}^{235} nucleus to
produce fission. The nuclear reaction is as given below :
$n_{0}^{1}+U_{92}^{235} \rightarrow B a_{56}^{141}+K r_{36}^{92}+3 n_{0}^{1}+E$

Calculate the energy released in MeV. Hence calculate the total energy released in the fission of 1 Kg of U_{92}^{235}.

Given mass of $U_{92}^{235}=235.043933 \mathrm{amu}$
Mass of neutron $n_{0}^{1}=1.008665 \mathrm{amu}$
Mass of $B a_{56}^{141}=140.917700 \mathrm{amu}$
Mass of $K r_{36}^{92}=91.895400 \mathrm{amu}$

- Watch Video Solution

3. Calculate the energy released in the
following nuclear reaction and hence calculate
the energy released when 235 gram of uranium-235 undergoes fission.
$U_{92}^{235}+n_{0}^{1} \rightarrow K r_{36}^{92}+B a_{56}^{141}+3 n_{0}^{1}$
Rest masses of $U^{235}, B a^{141}, K r^{92}$ and neutron are $235.04390 \mathrm{amu}, 140.91390 \mathrm{amu}$, 91.89730 amu and 1.00867 amu respectively. Avogadro number $=6.023 \times 10^{23}$.
