

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

NUCLEI

Topic 1 Very Short Answer Type Questions

1. How does nuclear radius of an atom depend

on its mass number?

Watch Video Solution

3. What is the SI unit of activity?

Watch Video Solution

4. What is mean life of a radioactive element?

6. Name the anti-particle of an electron.

Watch Video Solution

7. Identify the particle P in the following nuclear reaction.

$$X^A_Z
ightarrow Y^A_{Z+1} + e^0_{-1} + P$$

Watch Video Solution

Topic 1 Short Answer Type Questions I

1. Two nuclei have mass numbers in the ratio 8

: 125. Calculate the ratio of their nuclear radii.

2. Show that the density of nucleus over a wide range of nuclei is constant independent of mass number.

Watch Video Solution

3. Calculate the half-life period of a radioactive substance, if its activity drops to 16^{th} of its initial value in 30 years.

Topic 1 Short Answer Type Questions li

1. Write the expression for the half life of a radioactive element.

Watch Video Solution

2. What are the characteristics of nuclear

forces?

3. A given number of atoms, N_0 of a radioactive element with a half life T is uniformly distributed in the blood stream of a (i) Normal person A having total volume V of blood in the body. (ii) Person B in need of blood transfusion having a volume V' of blood in the body. The number of radioactive atoms per unit volume in the blood streams of the two persons after a time nT are found to be

 N_1 and N_2 .

4. The half-life of $^{238}_{92}U$ undergoing a-decay is $4.5 imes10^9\,$ years. What is the activity of 1g sample of $^{238}_{92}U$?

5. State the law of radioactivity and hence,

show that $N = N_0 e^{-\lambda t}$.

Watch Video Solution

6. (a) The number of nuclei of a given radioactive nucleus, at times t = 0 and t = T, are N_0 and (N_0/n) respectively. Obtain an expression for the half life $(T_{1/2})$ of this nucleus in terms of n and T.

(b) Identify the nature of the 'radioactive radiations', emitted in each step of the 'decay

chain' given below:

$${}^A_ZX
ightarrow {}^{A-4}_{Z-2}Y
ightarrow {}^{A-4}_{Z-2}Y
ightarrow {}^{A-4}_{Z-1}W$$

7. State the law of radioactive decay.

Plot a graph showing the number (N) of undecayed nuclei as a function of time (t) for a given radioactive sample having half life $T_{1/2}$. Depict in the plot, the number of undecayed nuclei at (i) $t = 3T_{1/2}$ and (ii) $t = 5T_{1/2}$.

8. (a) Write symbolically the β -decay process of phosphorus.

(b) Derive an expression for the average life of a radionuclide. Give its relationship with the

half-life.

Watch Video Solution

9. (i) Define 'activity' of a radioactive material

and write its S.I. unit.

(ii) Plot a graph showing variation of activity of

a given radioactive sample with time.

(iii) The sequence of stepwise decay of a radioactive nucleus is

$$D \stackrel{lpha}{\longrightarrow} D_1 \stackrel{eta -}{\longrightarrow} D_2$$

If the atomic number and mass number of D_2 are 71 and 176 respectively, what are their corresponding values for D ?

Watch Video Solution

Topic 1 Long Answer Type Questions I

1. State the law of radioactivity and hence,

show that $N = N_0 e^{-\lambda t}$.

Watch Video Solution

2. Write the expression for the half life of a

radioactive element.

3. (a) Define the terms (i) half-life $(T_{1/2})$ and (ii) average life (τ) . Find out their relationships with the decay constant (λ) . (b) A radioactive nucleus has a decay constant, $\lambda = 0.3465$ (day)⁻¹. How long would it take the nucleus to decay to 75% of its initial amount?

Watch Video Solution

Topic 1 Numerical Problems

1. Determine the mass of Na^{22} which has an activity of 5mCi. Half life of NA^{22} is 2.6 years. Avogadro number $= 6.023 imes 10^{23}$ atoms.

Watch Video Solution

2. A given coin has a mass of 3.0g . Calculate the nuclear energy that would be required to separate all the neutrons and protons from each other . For simplicity, assume that the coin is entirely made of $.^{63}_{29}$ Cu atoms (of mass 62.92960 u)

2. Write the relation for binding energy (BE) (in MeV) of a nucleus of mass ${}^A_Z M$, atomic number (Z) and mass number (A) in terms of

the masses of its constituents - neutrons and

protons.

3. In a typical nuclear reaction, e.g.

 $^2_1H+^2_1H
ightarrow ^3_2He+n+3.27$ Mev,

although number of nucleons is conserved, yet

energy is released. How ? Explain.

Watch Video Solution

4. What characteristic property of nuclear force explains the constancy of binding energy per nucleon (BE/A) in the range of mass number 'A' lying 30 < A < 170?

Watch Video Solution

5. State any three feautures of nuclear force

Watch Video Solution

Topic 2 Short Answer Type Questions I

1. Draw a plot of BE/A versus mass number A for $2 \le A \le 170$. Use this graph to explain the release of energy in the process of nuclear fusion of two light nuclei.

OR

Using the curve for the binding energy per nucleon as a function of mass number A, state clearly how the release in energy in the processes of nuclear fission and nuclear fusion can be explained.

OR

Draw a plot of the binding energy per nucleon as a function of mass number for a large number of nuclei, 2 < A < 240. How do you explain the constancy of binding energy per nucleon in the range 30 < A < 170 using the property that nuclear force is short-ranged ?

O Watch Video Solution

2. A heavy nucleus X of mass number 240 and binding energy per nucleon 7.6 MeV is split into two fragments Y and Z of mass numbers

110 and 130. The binding energy of nucleons in

Y and Z is 8.5 Me V per nucleon. Calculate the

energy Q released per fission in Me V.

Watch Video Solution

Topic 2 Short Answer Type Questions li

1. Define the terms (i) mass defect, (ii) binding energy for a nucleus and state the relation between the two.

For a given nuclear reaction, the B.E./nucleon

of the product nucleus/nuclei is more than that for the original nucleus/nuclei. Is this nuclear reaction exothermic or endothermic in nature? Justify your choice.

2. Draw a plot of potential energy of a pair of nucleons as a function of their separations. Mark the regions where the nuclear force is (i) attractive and (ii) repulsive. Write any two characteristic features of nuclear forces. OR

Draw a plot of potential energy of a pair of nucleons as a function of their separation. Write two important conclusions which you can draw regarding the nature of nuclear forces.

Watch Video Solution

Topic 2 Long Answer Type Questions

Topic 2 Numerical Problems

1. The half life of ${}_{38}Sr^{90}$ isotope is 28 years. What is the rate of disintegration of 15 mg of this isotope? (Given Avogadro No $= 6.023 imes 10^{23}$)

Watch Video Solution

2. A thermal neutron strikes U_{92}^{235} nucleus to produce fission. The nuclear reaction is as given below :

 $n_0^1 + U_{92}^{235} \to Ba_{56}^{141} + Kr_{36}^{92} + 3n_0^1 + E$

Calculate the energy released in MeV. Hence calculate the total energy released in the fission of 1 Kg of U_{92}^{235} . Given mass of $U_{92}^{235} = 235.043933$ amu Mass of neutron $n_0^1=1.008665$ amu Mass of $Ba_{56}^{141} = 140.917700$ amu Mass of $Kr_{36}^{92} = 91.895400$ amu Watch Video Solution

3. Calculate the energy released in the following nuclear reaction and hence calculate

the energy released when 235 gram of uranium-235 undergoes fission. $U_{92}^{235} + n_0^1 \rightarrow Kr_{36}^{92} + Ba_{56}^{141} + 3n_0^1$ Rest masses of U^{235} , Ba^{141} , Kr^{92} and neutron are 235.04390 amu, 140.91390 amu, 91.89730 amu and 1.00867 amu respectively. Avogadro number $= 6.023 \times 10^{23}$.

Watch Video Solution