

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

CROSS PRODUCTS

Dpp 2 2

1. Let \overrightarrow{a} and \overrightarrow{b} be two vectors of equal magnitude 5 units. Let \overrightarrow{p} , \overrightarrow{q} be

vectors such that $\overrightarrow{p} = \overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{q} = \overrightarrow{a} + \overrightarrow{b}$.

$$\left|\overrightarrow{p} imes\overrightarrow{q}
ight|=2igg\{\lambda-\left(\overrightarrow{a}.\stackrel{
ightarrow}{b}
ight)^2igg\}^{rac{1}{2}}$$
 , then value of λ is

A. 25

B. 125

C. 625

D. none of these

Answer: C

Watch Video Solution

- **2.** Let $\overrightarrow{u}=2\hat{i}-\hat{j}+\hat{k},$ $\overrightarrow{v}=-3\hat{j}+2\hat{k}$ be vectors and \overrightarrow{w} be a unit vector in the xy-plane. Then the maximum possible value of $\left|\left(\overrightarrow{u}\times\overrightarrow{v}\right)\right|.$ $\left|\overrightarrow{w}\right|$ is
 - A. $\sqrt{5}$
 - B. $\sqrt{12}$
 - C. $\sqrt{13}$
 - D. $\sqrt{17}$

Answer: D

3. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors in a plane such that they are

$$\left(\overrightarrow{a} imes\overrightarrow{b}
ight)\!.\left(\overrightarrow{b} imes\overrightarrow{c}
ight)\!+\left(\overrightarrow{b} imes\overrightarrow{c}
ight)\!.\left(\overrightarrow{c} imes\overrightarrow{a}
ight)\!+\left(\overrightarrow{c}$$

equally inclined to each other, then the value of
$$\left(\overrightarrow{a}\times\overrightarrow{b}\right).\left(\overrightarrow{b}\times\overrightarrow{c}\right)+\left(\overrightarrow{b}\times\overrightarrow{c}\right).\left(\overrightarrow{c}\times\overrightarrow{a}\right)+\left(\overrightarrow{c}\times\overrightarrow{a}\right).\left(\overrightarrow{a}\times\overrightarrow{b}\right)$$

A.
$$\frac{9}{4}$$

B.
$$-\frac{9}{4}$$

D.
$$-\frac{3}{4}$$

Answer: A

Watch Video Solution

(3a,0,0),(0,3b,0) and (0,0,3c) respectively, then the area of ΔPQR is

4. The coordinates of the mid-points of the sides of ΔPQR , are

A.
$$18\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

B.
$$9\sqrt{b^2c^2+c^2a^2+a^2b^2}$$
C. $\frac{9}{12}\sqrt{b^2c^2+c^2a^2+a^2b^2}$

D.
$$rac{9}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$$

Answer: A

Watch Video Solution

(a) $\hat{i} - \hat{j} + \hat{k}$ (b) $2\hat{i} - \hat{k}$ (c) \hat{i} (d) $2\hat{i}$

5. If $\overrightarrow{a} = (\hat{i} + \hat{j} + \hat{k})$, \overrightarrow{a} . $\overrightarrow{b} = 1$ and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} - \hat{k}$, then \overrightarrow{b} is

A. 3

B. 9

C. 10

D. 12

Answer: A

If
$$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$$
 are

vectors such that

$$\overrightarrow{a} \cdot \overrightarrow{b} = 0, (\overrightarrow{a} - \overrightarrow{c}) \cdot (\overrightarrow{b} + \overrightarrow{c}) = 0$$
 $\overrightarrow{a} \cdot \overrightarrow{b} = 0, (\overrightarrow{a} - \overrightarrow{c}) \cdot (\overrightarrow{b} + \overrightarrow{c}) = 0$

and

$$\overrightarrow{c}=\lambda\overrightarrow{a}+\mu\overrightarrow{b}+\omega(\overrightarrow{a} imes\overrightarrow{b})$$
 , where λ,μ,ω are scalars, then

unit

A.
$$\mu^2+\omega^2=1$$

$$B.\lambda + \mu = 1$$

C.
$$(\mu + 1)^2 + \mu^2 + \omega^2 = 1$$

D.
$$\lambda^2 + \mu^2 = 1$$

Answer: C

Watch Video Solution

7. Let $\ riangle ABC$ be a given triangle. If $\left|\overrightarrow{BA} - t\overrightarrow{BC}\right| \geq \left|\overrightarrow{AC}\right|$ for any $t \in R$,then riangle ABC is

A. Equilateral

B. Right angled

C. Isosceles

D. None of these

Answer: B

Watch Video Solution

8. If $\overrightarrow{a}, \overrightarrow{b}$ are vectors perpendicular to each other and

$$\left|\overrightarrow{a}
ight|=2,\left|\overrightarrow{b}
ight|=3,\overrightarrow{c} imes\overrightarrow{a}=\overrightarrow{b}$$
 , then the least value of $2\left|\overrightarrow{c}-\overrightarrow{a}
ight|$ is

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: C

9.
$$\overrightarrow{a}$$
 as

9. \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}\right|=1, \left|\overrightarrow{b}\right|=4$ and \overrightarrow{a} . Vecb

$$=2.\ If$$
vecc $=\left(2\overrightarrow{a} imes\overrightarrow{b}
ight)-3\overrightarrow{b}$ then find angle between \overrightarrow{b} and \overrightarrow{c} .

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.}\;\frac{\pi}{6}$$

$$\mathsf{C.} \; \frac{3\pi}{4}$$

D. $\frac{5\pi}{6}$

Answer: D

Watch Video Solution

10. If \overrightarrow{a} and \overrightarrow{b} are non-zero, non parallel vectors, then the value of

$$\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} imes \overrightarrow{b} \right|^2 + \left|\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{a} imes \overrightarrow{b} \right|^2$$
 equals

A.
$$\Big(1+\overrightarrow{a}.\overrightarrow{a}\Big)\Big(1+\overrightarrow{b}.\overrightarrow{c}\Big)$$

$$\mathtt{B.}\,2\Big(1+\overrightarrow{a}\,.\,\overrightarrow{a}\Big)\Big(1+\overrightarrow{b}\,.\,\overrightarrow{b}\Big)$$

Watch Video Solution

nswer: B		

B. 50

Answer: C

$$(-3b)^2 + (5b - 4c)^2 + (3c - 5a)^2$$
 is

11. If
$$a^2+b^2+c^2=1$$
 where, a,b, $c\in R$, then the maximum value of $(4a-3b)^2+(5b-4c)^2+(3c-5a)^2$ is

 $\mathsf{C.}\,2\bigg\{\left(1+\overrightarrow{a}.\,\overrightarrow{a}\right)\bigg(1+\overrightarrow{b}.\,\overrightarrow{b}\right)-\bigg(1-\overrightarrow{a}.\,\overrightarrow{b}\bigg)^2\bigg\}$

 $\mathsf{D.}\,2\bigg\{\Big(1-\overrightarrow{a}\,.\,\overrightarrow{a}\Big)\bigg(1-\overrightarrow{b}\,.\,\overrightarrow{b}\Big)+\Big(1-\overrightarrow{a}\,.\,\overrightarrow{b}\Big)^2\bigg\}$

12. Three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are such that $\overrightarrow{a} \times \overrightarrow{b} = 4 \left(\overrightarrow{a} \times \overrightarrow{c} \right)$ and $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = 1$ and $\left| \overrightarrow{c} \right| = \frac{1}{4}$. If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then \overrightarrow{b} is

A.
$$\overrightarrow{a} + 4\overrightarrow{c}$$

B.
$$\overrightarrow{a}-4\overrightarrow{c}$$

C.
$$4\overrightarrow{c}-\overrightarrow{a}$$

D.
$$2\overrightarrow{c}-\overrightarrow{a}$$

Answer: A::C

Watch Video Solution

13. If $2\overrightarrow{a}$, $3\overrightarrow{b}$, $2\left(\overrightarrow{a}\times\overrightarrow{b}\right)$ are position vectors of the vectors A,B,C, of $\triangle ABC$ and $\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|=1$, \overrightarrow{OA} . $\overrightarrow{OB}=-3$ (where O is the origin), then

A. Triangle ABC is right-angled triangle

B. Angle B is 90°

$$\mathsf{C.}\,A = \cos^{-1}\!\left(\sqrt{\frac{7}{19}}\right)$$

D. The position vector of orthocenter is $2\left(\overrightarrow{a} imes \overrightarrow{b}\right)$

Answer: A::C::D

