

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

Illustration

1. Find the angle between the following pairs of vectors

$$3\hat{i} + 2\hat{j} - 6\hat{k}, 4\hat{i} - 3\hat{j} + \hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$$

Watch Video Solution

2. If \vec{a} , \vec{b} and \vec{c} are non - zero vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , then find the goemetrical relation between the vectors.

3. if
$$\vec{r}$$
. $\vec{i} = \vec{r}$. $\vec{j} = \vec{r}$. \vec{k} and $|\vec{r}| = 3$, then find vector \vec{r} .

4. If
$$\vec{a}$$
, \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} is

5. if \vec{a} , \vec{b} and \vec{c} are mutally perpendicular vectors of equal magnitudes,

then find the angle between vectors and $\vec{a} + \vec{b} + \vec{c}$.

6. If
$$|\vec{a}| + |\vec{b}| = |\vec{c}|$$
 and $\vec{a} + \vec{b} = \vec{c}$ then find the angle between \vec{a} and \vec{b} .

7. If three unit vectors \vec{a} , \vec{b} and \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Then find the angle between \vec{a} and \vec{b} .

8. If θ is the angle between the unit vectors \vec{a} and \vec{b} , then prove that

i.
$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} + \vec{b}\right|$$

$$ii. \sin\left(\frac{\theta}{2}\right) = \frac{1}{2} \left| \vec{a} - \vec{b} \right|$$

- **9.** find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$
 - Watch Video Solution

10. If the scalar projection of vector $x\hat{i} - \hat{j} + \hat{k}1$ on vector $2\hat{i} - \hat{j} + 5\hat{k}is\frac{1}{\sqrt{30}}$.

The find the value of x.

Watch Video Solution

11. If $\vec{a} = x\hat{i} + (x - 1)\hat{j} + \hat{k}$ and $\vec{b} = (x + 1)\hat{i} + \hat{j} + a\hat{k}$ make an acute angle

 $\forall x \in R$, then find the values of a

12. If \vec{a} . $\vec{i} = \vec{a}$. $(\hat{i} + \hat{j}) = \vec{a}$. $(\hat{i} + \hat{j} + \hat{k})$. Then find the unit vector \vec{a} .

Watch Video Solution

13. Prove by vector method that cos(A + B) = cosAcosB - sinAsinB

14. In any triangle ABC, prove the projection formula $a = b\cos C + c\cos B$ using vector method.

15. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

16. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

17. If a + 2b + 3c = 4, then find the least value of $a^2 + b^2 + c^2$

18. A unit vector a makes an angle $\frac{\pi}{4}$ with z-axis. If a+i+j is a unit vector, then a can be equal to

Watch Video Solution

19. vectors \vec{a} , \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then find vector \vec{c} .

Watch Video Solution

20. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angle with \vec{a} , \vec{b} and \vec{c} , then find the value of $|\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2$.

21. A particle acted on by constant forces $4\vec{i} + \vec{j} - 3\vec{k}$ and $3\vec{i} + \vec{j} - \vec{k}$ is displaced from the point $\vec{i} + 2\vec{j} + 3\vec{k}$ to the point $5\vec{i} + 4\vec{j} + \vec{k}$. Find the total work done by the forces

- **22.** If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitude show that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c}
 - **Watch Video Solution**

- **23.** If $\vec{a} = 4\hat{i} + 6\hat{j}$ and $\vec{b} = 3\hat{i} + 4\hat{k}$ find the vector component of \vec{a} along \vec{b} .
 - **Watch Video Solution**

- **24.** If $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$ then find the value of $|\vec{a} \vec{b}|$
 - Watch Video Solution

25. If $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 0\hat{j} + \hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b} , (ii) that it is $\perp to\vec{b}$ and (iii) that $\vec{a} \cdot \vec{c} = 7$.

Watch Video Solution

26. If
$$\vec{a}$$
, \vec{b} and \vec{c} are vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = 5$ and $(\vec{a} + \vec{b})$ is perpendicular to \vec{c} , $(\vec{b} + \vec{c})$ is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} then $|\vec{a} + \vec{b} + \vec{c}| = (A) 4\sqrt{3}$ (B) $5\sqrt{2}$ (C) 2 (D) 12

27. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the third pair is also perpendicular.

28. In the isosceles triangle
$$ABC$$
, $\begin{vmatrix} \overrightarrow{AB} \\ AB \end{vmatrix} = \begin{vmatrix} \overrightarrow{BC} \\ BC \end{vmatrix} = 8$, a point E divide AB

internally in the ratio 1:3, then the cosine of the angle between CE and

$$\overrightarrow{CA}$$
 is (where $\begin{vmatrix} \overrightarrow{CA} \\ CA \end{vmatrix} = 12$)

29. An arc AC of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio 1:2, If $\vec{O}A = a \& \vec{O}B = b$. then the vector $\vec{O}C$ in terms of a&b, is

30. Vector $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is

$$\frac{-\hat{j}}{\sqrt{2}}$$

Watch Video Solution

31. The base of the pyramid AOBC is an equilateral triangle OBC with each side equal to $4\sqrt{2}$, O is the origin of reference, AO is perpendicualar to the plane of \overrightarrow{OBC} and $\left| \overrightarrow{AO} \right| = 2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of OBand the other passing through O and the mid point of BC

Watch Video Solution

32. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.

33. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$ then $|\vec{a} \times \vec{b}|$

is a unit vector. If the angle between \vec{a} and \vec{b} is ?

34. Prove that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$ also interpret this result.

35. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - 2\hat{j} + 4\hat{k}$. Find a vector *d* which perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 15$.

36. If A, BandC are the vetices of a triangle ABC, then prove sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\cos B}$

Using cross product of

that

vectors,

prove

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

37.

38. Find a unit vector perpendicular to the plane determined by the

39. If
$$\vec{a}$$
 and \vec{b} are two vectors , then prove that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$

Watch Video Solution

40. If
$$|\vec{a}| = 2$$
 then find the value of $|\vec{a} \times \vec{i}|^2 + |\vec{a} \times \vec{j}|^2 + |\vec{a} \times \vec{k}|^2$

41.
$$\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{a} \neq \lambda \vec{b}$$
 and \vec{a} is not perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

42.
$$\vec{A}$$
, \vec{B} , \vec{C} and \vec{D} are any four points in the space, then prove that $|\vec{A}\vec{B} \times \vec{C}\vec{D} + \vec{B}\vec{C} \times \vec{A}\vec{D} + \vec{C}\vec{A} \times \vec{B}\vec{D}| = 4$ (area of $\vec{A}\vec{B}\vec{C}$.)

43. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A,B and C. respectively, of \triangle ABC. Prove that the perpendicualar distance of the $\left| \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right|$ vertex A from the base BC of the triangle ABC is

 $|\vec{c} - \vec{b}|$

44. Using vectors, find the area of the triangle with vertices

$$A(1, 1, 2), B(2, 3, 5)$$
 and $C(1, 5, 5)$

45. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

46. Area of a parallelogram, whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ will be:

47. Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $\vec{a} \neq 0$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and $|\vec{b} \times \vec{c}| = \sqrt{15}$. If $\vec{b} - 2\vec{c} = \lambda \vec{a}$ then find the value of λ .

48. Find the moment about (1,-1,-1) of the force $3\hat{i} + 4\hat{j} - 5\hat{k}$ acting at (1,0,-2)

49. A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2).

Find the velocity of the particle at point (4,1,1).

50. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ show that $(\vec{a} - \vec{d})$ is parallel to $(\vec{b} - \vec{c})$.

51. Show by a numerical example that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ does not imply $\vec{b} = \vec{c}$

52. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that $|\vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a}| = |\vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} + \vec{d} \times \vec{b}|$

$$\frac{\left|\vec{a}\times\vec{b}+\vec{b}\times\vec{d}+\vec{d}\times\vec{a}\right|}{\left(\vec{b}-\vec{a}\right).\left(\vec{d}-\vec{a}\right)}+\frac{\left|\vec{b}\times\vec{c}+\vec{c}\times\vec{d}+\vec{d}+\vec{d}\times\vec{b}\right|}{\left(\vec{b}-\vec{c}\right).\left(\vec{d}-\vec{c}\right)}$$

53. The postion vectors of the vertrices fo aquadrilateral with A as origian are $B(\vec{b}), D(\vec{d})$ and $C(l\vec{b}+m\vec{d})$. Prove that the area of the quadrilateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

Watch Video Solution

54. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$. Then find the value of $(2\vec{a} + 5\vec{b})$. $(3\vec{a} + \vec{b} + \vec{a} \times \vec{b})$

Watch Video Solution

55. uandv are two non-collinear unit vectors such that $\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \hat{v} \right| = 1$.

Prove that $|\hat{u} \times \hat{v}| = \left| \frac{\hat{u} - \hat{v}}{2} \right|$

56. In a \triangle *ABC* points D,E,F are taken on the sides BC,CA and AB

respectively such that $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = n$ prove that

57. Let A,B,C be points with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} + \hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively. Find the shortest distance between point B and plane OAC.

58. Let $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{k}$. If the ordered set

$$\begin{bmatrix} \vec{b} \vec{c} \vec{a} \end{bmatrix}$$
 is left handed, then find the value of x.

59. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}.\left(\vec{b}\times\vec{c}\right)}{\vec{b}.\left(\vec{c}\times\vec{a}\right)} + \frac{\vec{b}.\left(\vec{c}\times\vec{a}\right)}{\vec{c}.\left(\vec{a}\times\vec{b}\right)} + \frac{\vec{c}.\left(\vec{b}\times\vec{a}\right)}{\vec{a}.\left(\vec{b}\times\vec{c}\right)}$$

60. if the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ from three concurrent edges of a parallelpiped, then find the volume of the parallelepied.

61. The postion vectors of the four angular points of a tetrahedron are $A(\hat{j}+2\hat{k})$, $B(3\hat{i}+\hat{k})$, $C(4\hat{i}+3\hat{j}+6\hat{k})$ and $D(2\hat{i}+3\hat{j}+2\hat{k})$

find

the

volume of the tetrahedron ABCD.

62. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors and \vec{a} . \vec{b} = \vec{a} . \vec{c} = 0 . If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$

Watch Video Solution

63. Prove that
$$\left[\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}\right] = 2\left[\vec{a}\vec{b}\vec{c}\right]$$

Watch Video Solution

64. Show that :
$$[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}] = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c} \end{vmatrix}$$

65. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then find the value of

$$\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

Watch Video Solution

66. The value of a so thast the volume of parallelpiped formed by vectors

$$\hat{i} + a\hat{j} + \hat{k}, \hat{j} + a\hat{k}, a\hat{i} + \hat{k}$$
 becomes minimum is (A) $\sqrt{93}$) (B) 2 (C) $\frac{1}{\sqrt{3}}$ (D) 3

67. If \vec{u} , \vec{v} and \vec{w} are three non coplanar vectors then

$$(\vec{u} + \vec{v} - \vec{w}) \cdot (\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})$$
 equals (A) $\vec{u} \cdot (\vec{v} \times \vec{w})$ (B) $\vec{u} \cdot \vec{w} \times \vec{v}$ (C)

 $2\vec{u}$. $(\vec{v} \times \vec{w})$ (D) 0

68. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}| = 2$, then find the value of $|\vec{a}\vec{b}\vec{a}| \times \vec{b}$.

69. Find th altitude of a parallelepiped whose three coterminous edges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelepiped.

70. If
$$\left[\vec{a}\vec{b}\vec{c}\right] = 2$$
, then find the value of $\left[\left(\vec{a} + 2\vec{b} - \vec{c}\right)\left(\vec{a} - \vec{b}\right)\left(\vec{a} - \vec{b} - \vec{c}\right)\right]$

If $ec{a}$, $ec{b}$ and $ec{c}$ are , mutually perpendicular vcetors $\vec{a} = \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \gamma (\vec{c} \times \vec{a})$ and $[\vec{a}\vec{b}\vec{c}] = 1$, then find the value

and

of $\alpha + \beta + \gamma$

Watch Video Solution

72. If \vec{a} , $\vec{b}a$ and \vec{c} are non-coplanar vecotrs, then prove that $|(\vec{a}.\vec{d})(\vec{b}\times\vec{c})+(\vec{b}.\vec{d})(\vec{c}\times\vec{a})+(\vec{c}.\vec{d})(\vec{a}\times\vec{b})|$ is independent of \vec{d} where \vec{d} is a unit vector.

Watch Video Solution

73. Prove that vectors $\vec{u} = (al + a_1 l_1)\hat{i} + (am + a_1 m_1)\hat{j} + (an + a_1 n_1)\hat{k}$ $\vec{v} = (bl + b_1 l_1)\hat{i} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k}$ $\vec{w} = (cl + c_1 l_1)\hat{i} + (cm + c_1 m_1)\hat{j} + (cn + c_1 n_1)\hat{k} \text{ are coplanar.}$

Watch Video Solution

74. Let G_1 , G_2 and G_3 be the centroids of the trianglular faces OBC,OCA and OAB, respectively, of a tetrahedron OABC. If V_1 denotes the volume of **75.** Prove that $\hat{i} \times (\vec{a} \times \vec{i}) + \hat{j} \times (\vec{a} \times \vec{j}) + \hat{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$ Watch Video Solution

 $4V_1 = 9V_2$.

vector \vec{a} .

 $\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2$

77. Let vea, \vec{b} and \vec{c} be any three vectors, then prove

that

the tetrahedron OABC and V_2 that of the parallelepiped with

 OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that

76. If $\hat{i} \times \left[\left(\vec{a} - \hat{j} \right) \times \hat{i} \right] \times \left[\left(\vec{a} - \hat{k} \right) \times \hat{j} \right] + \vec{k} \times \left[\left(\vec{a} - \vec{i} \right) \times \hat{k} \right] = 0$, then find

78. For any four vectors prove that

$$(\vec{b} \times \vec{c}).(\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}).(\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 0$$

79. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a} \mid (\vec{b} \times \vec{c})$. Then prove that $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^2 (\vec{b} \cdot \vec{c})$.

80. Find the vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$

81. Let \hat{a} , \hat{b} ,and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b}

and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha,0),B(\hat{b}\cos\beta,0)$ and $C(\hat{c}\cos\gamma,0)$, then show that in triangle

$$ABC, \ \frac{\left|\hat{a} \times \left(\hat{b} \times \hat{c}\right)\right|}{\sin A} = \frac{\left|\hat{b} \times \left(\hat{c} \times \hat{a}\right)\right|}{\sin B} = \frac{\left|\hat{c} \times \left(\hat{a} \times \hat{b}\right)\right|}{\sin C}$$

Watch Video Solution

- **82.** find the cosine of the angle between the vectors $\vec{a} = 3 \hat{i} + 2 \hat{k}$ and
- Watch Video Solution

 $\vec{b} = 2\hat{i} - 2\hat{i} + 4\hat{k}$

- **83.** If \vec{b} is not perpendicular to \vec{c} . Then find the vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$
 - Watch Video Solution

84. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$.

85.
$$\vec{r} \times \vec{a} = \vec{b} \times \vec{a}, \vec{r} \times \vec{b} = \vec{a} \times \vec{b}, \vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}, \vec{a} \neq \lambda \vec{b}$$
 and \vec{a} is not perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

86. if vectors
$$3\hat{i} - 2\hat{j} + m\hat{k}$$
 and $-2\hat{i} + \hat{j} + 4$ hat k are perpendicular to each other, find the value of m

87. Let
$$\vec{a}$$
, \vec{b} and \vec{c} be three non-coplanar vectors and \vec{r} be any arbitrary vector. Then $(\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a})(\vec{r} \times \vec{b})$ is always equal to

88. If
$$\vec{a}$$
, \vec{b} and \vec{c} are non coplanar and unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$
 then the angle between \vec{a} and \vec{b} is (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

$$\vec{R} + \frac{\begin{bmatrix} \vec{R}\vec{\beta} \times (\vec{\beta} \times \vec{\alpha}) \end{bmatrix} \vec{\alpha}}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2} + \frac{\begin{bmatrix} \vec{R}\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta}) \end{bmatrix} \vec{\beta}}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2} = \frac{\begin{bmatrix} \vec{R}\vec{\alpha}\vec{\beta} \end{bmatrix} (\vec{\alpha} \times \vec{\beta})}{\begin{vmatrix} \vec{\alpha} \times \vec{\beta} \end{vmatrix}^2}$$

90. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove that

$$(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b} = [\vec{b}\vec{c}\vec{a}]\vec{a}$$

91. Find a set of vectors reciprocal to the set $-\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + \hat{k}$

92. find the scalar and vector projection of $3\hat{i} - \hat{j} + 4\hat{k}on2\hat{i} + 3\hat{j} - 6\hat{k}$

93. If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vectors, then prove

that
$$\vec{a}' \times \vec{b}' \times \vec{b}$$
, $\times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$

94. \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} . Is any arbitrary vector. Prove that $\begin{bmatrix} \vec{b} \vec{c} \vec{r} \end{bmatrix} \vec{a} + \begin{bmatrix} \vec{c} \vec{a} \vec{r} \end{bmatrix} \vec{b} + \begin{bmatrix} \vec{a} \vec{b} \vec{r} \end{bmatrix} \vec{c} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$.

95. Find the angle between the following pairs of vectors $3\hat{i} + 2\hat{i} - 6\hat{k}$, $4\hat{i} - 3\hat{i} + \hat{k}$, $\hat{i} - 2\hat{i} + 3\hat{k}$, $3\hat{i} - 2\hat{i} + \hat{k}$

96. If \vec{a} , \vec{b} and \vec{c} are non - zero vectors such that \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , then find the goemetrical relation between the vectors.

97. if \vec{r} . $\vec{i} = \vec{r}$. $\vec{j} = \vec{r}$. \vec{k} and $|\vec{r}| = 3$, then find vector \vec{r} .

98. If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of \vec{a} , $\vec{b} + \vec{b}$, $\vec{c} + \vec{c}$, \vec{a} is

99. if \vec{a} , \vec{b} and \vec{c} are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and $\vec{a} + \vec{b} = \vec{c}$.

100. If $|\vec{a}| + |\vec{b}| = |\vec{c}|$ and $\vec{a} + \vec{b} = \vec{c}$ then find the angle between \vec{a} and \vec{b}

101. If three unit vectors \vec{a} , \vec{b} and \vec{c} satisfy $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Then find the angle between \vec{a} and \vec{b} .

Watch Video Solution

102. If θ is the angle between the unit vectors \vec{a} and \vec{b} , then prove that

i.
$$\cos\left(\frac{\theta}{2}\right) = \frac{1}{2}\left|\vec{a} + \vec{b}\right|$$

$$ii. \sin\left(\frac{\theta}{2}\right) = \frac{1}{2} \left| \vec{a} - \vec{b} \right|$$

103. find the projection of the vector $\hat{i} + 3\hat{j} = 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$

104. If the scalar projection of vector $x\hat{i} - \hat{j} + \hat{k}1$ on vector $2\hat{i} - \hat{j} + 5\hat{k}is\frac{1}{\sqrt{30}}$.

The find the value of x.

105. If $\vec{a} = x\hat{i} + (x - 1)\hat{j} + \hat{k}$ and $\vec{b} = (x + 1)\hat{i} + \hat{j} + a\hat{k}$ make an acute angle

 $\forall x \in R$, then find the values of a.

106. If \vec{a} . $\vec{i} = \vec{a}$. $(\hat{i} + \hat{j}) = \vec{a}$. $(\hat{i} + \hat{j} + \hat{k})$. Then find the unit vector \vec{a} .

107. Prove by vector method that cos(A + B) = cosAcosB - sinAsinB

108. In any triangle ABC, prove the projection formula $a = b\cos C + c\cos B$ using vector method.

109. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

110. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

111. If a + 2b + 3c = 4, then find the least value of $a^2 + b^2 + c^2$

112. about to only mathematics

Watch Video Solution

113. Vectors \vec{a} , \vec{b} and \vec{c} are of the same length and when taken pair-wise they form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ then find vector \vec{c} .

Watch Video Solution

114. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular unit vectors and \vec{d} is a unit vector which makes equal angle with \vec{a} , \vec{b} and \vec{c} , then find the value of $|\vec{a} + \vec{b} + \vec{c} + \vec{d}|^2$.

115. A particle acted upon by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k}$ to point $5\hat{i} + 4\hat{j} + \hat{k}$. The total work done by the forces in SI unit is

116. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

117. If
$$\vec{a} = 4\hat{i} + 6\hat{j}$$
 and $\vec{b} = 3\hat{i} + 4\hat{k}$ find the vector component of \vec{a} along \vec{b} .

118. If
$$|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$$
 then find the value of $|\vec{a} - \vec{b}|$

119. If $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 0\hat{j} + \hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b} , (ii) that it is \perp to \vec{b} and (iii) that \vec{a} . $\vec{c} = 7$.

Watch Video Solution

 \vec{a} , \vec{b} and \vec{c} are vectors 120. Let such that

$$\left| \vec{a} \right| = 3$$
, $\left| \vec{b} \right| = 4$ and $\left| \vec{c} \right| = 5$, and $\left(\vec{a} + \vec{b} \right)$ is perpendicular to \vec{c} , $\left(\vec{b} + \vec{c} \right)$

is perpendicular to \vec{a} and $(\vec{c} + \vec{a})$ is perpendicular to \vec{b} . Then find the value of $|\vec{a} + \vec{b} + \vec{c}|$.

121. Prove that in a tetrahedron if two pairs of opposite edges are perpendicular, then the thrid pair is also perpendicular.

122. In isosceles triangle ABC $\begin{vmatrix} \overrightarrow{AB} \\ AB \end{vmatrix} = \begin{vmatrix} \overrightarrow{BC} \\ BC \end{vmatrix} = 8$ a point E divides AB

internally in the ratio 1:3, then find the angle between CE and CA (where

$$\begin{vmatrix} \overrightarrow{CA} \end{vmatrix} = 12$$

Watch Video Solution

123. An arc AC of a circle subtends a right angle at then the center O. the point B divides the arc in the ratio 1:2, If $\overrightarrow{OA} = a \& \overrightarrow{OB} = b$. then the vector OC in terms of a&b, is

Watch Video Solution

124. Vector $\vec{O}A = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new position is

$$\frac{-\hat{j}-\sqrt{2}}{\sqrt{2}}$$

Watch Video Solution

125. The base of the pyramid AOBC is an equilateral triangle OBC with each side equal to $4\sqrt{2}$, O is the origin of reference, AO is perpendicualar to the plane of \overrightarrow{OBC} and $\left| \overrightarrow{AO} \right| = 2$. Then find the cosine of the angle between the skew straight lines, one passing though A and the midpoint of OBand the other passing through O and the mid point of BC

Watch Video Solution

126. Find
$$|\vec{a} \times \vec{b}|$$
, if $\vec{a} = 2\hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

127. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$ then $|\vec{a} \times \vec{b}|$

128. Show that
$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

is a unit vector. If the angle between \vec{a} and \vec{b} is ?

129. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - 2\hat{j} + 4\hat{k}$. Find a vector

 \vec{d} which perpendicular to both \vec{a} and \vec{b} and \vec{c} . \vec{d} = 15.

130. If
$$A$$
, $BandC$ are the vetices of a triangle ABC , then prove sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Watch Video Solution

131. Using cross product of vectors , prove that $(\sin A + B) - \sin A \cos B + \cos A \sin B$.

132. Find a unit vector perpendicular to the plane determined by the points (1, -1, 2), (2, 0, -1) and (0, 2, 1)

133. If \vec{a} and \vec{b} are two vectors , then prove that

$$\left(\vec{a} \times \vec{b}\right)^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} \end{vmatrix}$$

134. If $|\vec{a}| = 2$ then find the value of $|\vec{a} \times \vec{i}|^2 + |\vec{a} \times \vec{j}|^2 + |\vec{a} \times \vec{k}|^2$

Watch Video Solution

 $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$, $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$, $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$, $\vec{a} \neq \lambda \vec{b}$ and \vec{a} is not perpendicular to \vec{b} , then find \vec{r} in terms of \vec{a} and \vec{b} .

Watch Video Solution

136. A, B, CandD are any four points in the space, then prove that $|\vec{A}B \times \vec{C}D + \vec{B}C \times \vec{A}D + \vec{C}A \times \vec{B}D| = 4$ (area of ABC.)

Watch Video Solution

137. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices A,B and C. respectively of \triangle ABC. Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is $\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}{\left|\vec{c} - \vec{b}\right|}$

138. Using vectors, find the area of the triangle with vertices

A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5)

139. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

140. find the area of a parallelogram whose diagonals are $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$.

Let \vec{a}, \vec{b} and \vec{c} be 141. three vectors such that $\vec{a} \neq 0$, $\left| \vec{a} \right| = \left| \vec{c} \right| = 1$, $\left| \vec{b} \right| = 4$ and $\left| \vec{b} \times \vec{c} \right| = \sqrt{15}$. If $\vec{b} - 2\vec{c} = \lambda \vec{a}$ then find the value of λ .

Watch Video Solution

142. Find the moment about (1,-1,-1) of the force $3\hat{i} + 4\hat{j} - 5\hat{k}$ acting at (1,0,-2)

Watch Video Solution

143. A rigid body is spinning about a fixed point (3,-2,-1) with an angular velocity of 4 rad/s, the axis of rotation being in the direction of (1,2,-2). Find the velocity of the particle at point (4,1,1).

144. If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ show that $(\vec{a} - \vec{d})$ is parallel to $(\vec{b} - \vec{c})$.

145. Show by a numerical example and geometrically also that $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ does not imply $\vec{b} = \vec{\cdot}$

146. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are the position vectors of the vertices of a cycle quadrilateral ABCD, prove that

$$\frac{\left|\vec{a}\times\vec{b}+\vec{b}\times\vec{d}+\vec{d}\times\vec{a}\right|}{\left(\vec{b}-\vec{a}\right).\left(\vec{d}-\vec{a}\right)}+\frac{\left|\vec{b}\times\vec{c}+\vec{c}\times\vec{d}+\vec{d}\times\vec{b}\right|}{\left(\vec{b}-\vec{c}\right).\left(\vec{d}-\vec{c}\right)}=0$$

147. The postion vectors of the vertices of a quadrilateral with A as origin are $B(\vec{b}), D(\vec{d})$ and $C(l\vec{b}+m\vec{d})$. Prove that the area of the quadrilateral is $\frac{1}{2}(l+m)|\vec{b} \times \vec{d}|$.

Watch Video Solution

148. Let \vec{a} and \vec{b} be unit vectors such that $|\vec{a} + \vec{b}| = \sqrt{3}$. Then find the value of $(2\vec{a} + 5\vec{b})$. $(3\vec{a} + \vec{b} + \vec{a} \times \vec{b})$

Watch Video Solution

 \hat{u} and \hat{v} are two non-collinear 149. unit that vectors such

$$\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \vec{v} \right| = 1$$
. Prove that $\left| \hat{u} \times \hat{v} \right| = \left| \frac{\hat{u} - \hat{v}}{2} \right|$

150. In a $\triangle ABC$ points D,E,F are taken on the sides BC,CA and AB

respectively such that
$$\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = n$$
 prove that $\triangle DEF = \frac{n^2 - n + 1}{(n+1)^2} \triangle ABC$

151. Let A,B,C be points with position vectors
$$2\hat{i} - \hat{j} + \hat{k}$$
, $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively. Find the shortest distance between point B and plane OAC.

152. Let
$$\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$$
, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{k}$. If the ordered set

$$\begin{bmatrix} \vec{b} \vec{c} \vec{a} \end{bmatrix}$$
 is left handed, then find the value of x.

153. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, then find the value of

$$\frac{\vec{a}.\left(\vec{b}\times\vec{c}\right)}{\vec{b}.\left(\vec{c}\times\vec{a}\right)} + \frac{\vec{b}.\left(\vec{c}\times\vec{a}\right)}{\vec{c}.\left(\vec{a}\times\vec{b}\right)} + \frac{\vec{c}.\left(\vec{b}\times\vec{a}\right)}{\vec{a}.\left(\vec{b}\times\vec{c}\right)}$$

154. if the vectors $2\hat{i} - 3\hat{j}$, $\hat{i} + \hat{j} - \hat{k}$ and $3\hat{i} - \hat{k}$ from three concurrent edges of a parallelpiped, then find the volume of the parallelepied.

155. The postion vectors of the four angular points of a tetrahedron are

$$A(\hat{j}+2\hat{k})$$
, $B(3\hat{i}+\hat{k})$, $C(4\hat{i}+3\hat{j}+6\hat{k})$ and $D(2\hat{i}+3\hat{j}+2\hat{k})$ find the volume of the tetrahedron ABCD.

156. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors and \vec{a} . \vec{b} = \vec{a} . \vec{c} = 0 . If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then find the value of $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$

Watch Video Solution

157. Prove that
$$\left[\vec{a} + \vec{b}\vec{b} + \vec{c}\vec{c} + \vec{a}\right] = 2\left[\vec{a}\vec{b}\vec{c}\right]$$

Watch Video Solution

158. Prove that
$$[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}] = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c} \end{vmatrix}$$

159. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then find the value of

$$\begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix}$$

160. Find the value of a so that the volume of the parallelopiped formed

by vectors $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

Watch Video Solution

161. If \vec{u}, \vec{v} and \vec{w} are three non-coplanar vectors, then prove that

$$(\vec{u} + \vec{v} - \vec{w}).[[(\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})]] = \vec{u}. \vec{v} \times \vec{w}$$

162. If \vec{a} and \vec{b} are two vectors, such that $|\vec{a} \times \vec{b}| = 2$, then find the value of $|\vec{a}\vec{b}\vec{a}| \times \vec{b}$.

163. Find the altitude of a parallelopiped whose three coterminous edges are vectors $\vec{A} = \hat{i} + \hat{j} + \hat{k}$, $\vec{B} = 2\hat{i} + 4\hat{j} - \hat{k}$ and $\vec{C} = \hat{i} + \hat{j} + 3\hat{k}$ with \vec{A} and \vec{B} as the sides of the base of the parallelopiped .

164. If
$$\left[\vec{a}\vec{b}\vec{c}\right] = 2$$
, then find the value of
$$\left[\left(\vec{a} + 2\vec{b} - \vec{c}\right)\left(\vec{a} - \vec{b}\right)\left(\vec{a} - \vec{b} - \vec{c}\right)\right]$$

165. If \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vector and

$$\vec{a} = \alpha (\vec{a} \times \vec{b}) + \beta (\vec{b} \times \vec{c}) + \gamma (\vec{c} \times \vec{a})$$
 and $[\vec{a}\vec{b}\vec{c}] = 1 then \vec{\alpha} + \vec{\beta} + \vec{\gamma} = (A)$

 $|\vec{a}|^2$ (B) - $|\vec{a}|^2$ (C) 0 (D) none of these

166. i. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors, prove that vectors

 $3\vec{a} - 7\vec{b} - 4\vec{c}$, $3\vec{a} - 2\vec{b} + \vec{c}$ and $\vec{a} + \vec{b} + 2\vec{c}$ are coplanar.

167. Prove that vectors

$$\vec{u} = \left(al + a_1l_1\right)\hat{i} + \left(am + a_1m_1\right)\hat{j} + \left(an + a_1n_1\right)\hat{k}$$

$$\vec{v} = (bl + b_1 l_1)\hat{i} + (bm + b_1 m_1)\hat{j} + (bn + b_1 n_1)\hat{k}$$

$$\vec{w} = \left(wl + c_1 l_1\right)\hat{i} + \left(cm + c_1 m_1\right)\hat{j} + \left(cn + c_1 n_1\right)\hat{k}$$

168. Let G_1 , G_2 and G_3 be the centroids of the triangular faces OBC, OCA and OAB, respectively, of a tetrahedron OABC If V_1 denotes the volumes of the tetrahedron OABC and V_2 that of the parallelepiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that $AV_1 = 9V_2$

169. Prove that
$$\hat{i} \times (\vec{a} \times \vec{i}) + \hat{j} \times (\vec{a} \times \vec{j}) + \hat{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$$

170. If
$$\hat{i} \times \left[\left(\vec{a} - \hat{j} \right) \times \hat{i} \right] + \hat{j} \times \left[\left(\vec{a} - \hat{k} \right) \times \hat{j} \right] + \vec{k} \times \left[\left(\vec{a} - \vec{i} \right) \times \hat{k} \right] = 0$$
, then find vector \vec{a} .

171. Prove that:
$$\left[\vec{a} \times \vec{b}\vec{b} \times \vec{c}\vec{c} \times \vec{a}\right] = \left[\vec{a}\vec{b}\vec{c}\right]^2$$

172. For any four vectors prove that

$$(\vec{b} \times \vec{c}).(\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}).(\vec{b} \times \vec{d}) + (\vec{a} \times \vec{b}).(\vec{c} \times \vec{d}) = 0$$

that $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to $|\vec{a}|^2 (\vec{b} \cdot \vec{c})$

173. If \vec{b} and \vec{c} are two non-collinear such that $\vec{a} \mid (\vec{b} \times \vec{c})$. Then prove

174. Find the vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$

175. Let \hat{a} , \hat{b} ,and \hat{c} be the non-coplanar unit vectors. The angle between \hat{b} and \hat{c} is α , between \hat{c} and \hat{a} is β and between \hat{a} and \hat{b} is γ . If $A(\hat{a}\cos\alpha,0),B(\hat{b}\cos\beta,0)$ and $C(\hat{c}\cos\gamma,0)$, then show that in triangle

$$ABC, \frac{\left|\hat{a} \times \left(\hat{b} \times \hat{c}\right)\right|}{\sin A} = \frac{\left|\hat{b} \times \left(\hat{c} \times \hat{a}\right)\right|}{\sin B} = \frac{\left|\hat{c} \times \left(\hat{a} \times \hat{b}\right)\right|}{\sin C}$$

176. If \vec{a} , \vec{b} and \vec{c} are three non-coplannar vectors, then prove that

$$\frac{\left|\hat{a}\times\left(\hat{b}\times\hat{c}\right)\right|}{\sin\!A} = \frac{\left|\hat{b}\times\left(\hat{c}\times\hat{a}\right)\right|}{\sin\!B} = \frac{\left|\hat{c}\times\left(\hat{a}\times\hat{b}\right)\right|}{\sin\!C} = \frac{\prod\left|\hat{a}\times\left(\hat{b}\times\hat{c}\right)\right|}{\left|\sum\hat{n}_{1}\sin\alpha\cos\beta\cos\gamma\right|}$$

177. If $ec{b}$ is not perpendicular to $ec{c}$. Then find the vector $ec{r}$ satisfying the

equation $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ and $\vec{r} \cdot \vec{c} = 0$

178. If \vec{a} and \vec{b} are two given vectors and k is any scalar, then find the vector \vec{r} satisfying $\vec{r} \times \vec{a} + k\vec{r} = \vec{b}$.

Watch Video Solution

179. If $\vec{r} \cdot \vec{a} = 0$, $\vec{r} \cdot \vec{b} = 1$ and $\left[\vec{r} \vec{a} \vec{b} \right] = 1$, $\vec{a} \cdot \vec{b} \neq 0$, $\left(\vec{a} \cdot \vec{b} \right)^2 - \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 = 1$, then find \vec{r} in terms of \vec{a} and \vec{b} .

Watch Video Solution

If vector \vec{x} satisfying $\vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b})\vec{c} = \vec{d}$ is given 180.

$$\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a}.\vec{c})|\vec{a}|^2}$$
, then find out the value of λ

181. \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r} . Is any arbitrary vector. Prove that $\begin{bmatrix} \vec{b} \vec{c} \vec{r} \end{bmatrix} \vec{a} + \begin{bmatrix} \vec{c} \vec{a} \vec{r} \end{bmatrix} \vec{b} + \begin{bmatrix} \vec{a} \vec{b} \vec{r} \end{bmatrix} \vec{c} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} \vec{r}$.

182. If \vec{a} , \vec{b} and \vec{c} are non -coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} \times \vec{c}}{\sqrt{2}}$, \vec{b} and \vec{c} are non- parallel , then prove that the angle between \vec{a} and \vec{b} is $3\pi/4$

$$\vec{R} + \frac{\left[\vec{R}\vec{\beta} \times (\vec{\beta} \times \vec{\alpha})\right] \vec{\alpha}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} + \frac{\left[\vec{R}\vec{\alpha} \times (\vec{\alpha} \times \vec{\beta})\right] \vec{\beta}}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}} = \frac{\left[\vec{R}\vec{\alpha}\vec{\beta}\right] (\vec{\alpha} \times \vec{\beta})}{\left|\vec{\alpha} \times \vec{\beta}\right|^{2}}$$

184. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar non-zero vectors, then prove

that
$$(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b} = [\vec{b}\vec{c}\vec{a}]\vec{a}$$

185. Find a set of vectors reciprocal to the set $-\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + \hat{k}$, $\hat{i} + \hat{j} + \hat{k}$

186. Let \vec{a} , \vec{b} and \vec{c} be a set of non-coplanar vectors and \vec{a}' \vec{b}' and \vec{c}' be its reciprocal set.

prove that
$$\vec{a} = \frac{\vec{b}' \times \vec{c}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$$
, $\vec{b} = \frac{\vec{c}' \times \vec{a}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$ and $\vec{c} = \frac{\vec{a}' \times \vec{b}'}{\left[\vec{a}' \, \vec{b}' \, \vec{c}'\right]}$

187. If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vectors, then prove

that
$$\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$$

Watch Video Solution

188. If \vec{a} , \vec{b} and \vec{c} be three non-coplanar vectors and a',b' and c' constitute the reciprocal system of vectors, then prove that

$$i. \ \vec{r} = (\vec{r}. \vec{a}')\vec{a} + (\vec{r}. \vec{b}')\vec{b} + (\vec{r}. \vec{c}')\vec{c}$$

ii.
$$\vec{r} = (\vec{r} \cdot \vec{a})\vec{a}' + (\vec{r} \cdot \vec{b})\vec{b}' + (\vec{r} \cdot \vec{c})\vec{c}'$$

Exercise 2.1

1. Find '|veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

2. Show that $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$ for any two non zero vectors 'veca and vecb.

Watch Video Solution

3. If the vectors A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2),respectively then find $\angle ABC$

Watch Video Solution

4. If $|\vec{a}| = 3$, $|\vec{b}| = 4$ and the angle between \vec{a} and \vec{b} is 120°. Then find the value of $\left| 4\vec{a} + 3\vec{b} \right|$

5. If vectors $\hat{i} - 2x\hat{j} - 3y\hat{k}$ and $\hat{i} + 3x\hat{j} + 2y\hat{k}$ are orthogonal to each other, then find the locus of th point (x,y).

6. Let $\vec{a}\vec{b}$ and \vec{c} be pairwise mutually perpendicular vectors, such that

 $\left| \vec{a} \right| = 1$, $\left| \vec{b} \right| = 2$, $\left| \vec{c} \right| = 2$, the find the length of $\vec{a} + \vec{b} + \vec{c}$.

Watch Video Solution

7. If
$$\vec{a} + \vec{b} + \vec{c} = 0$$
, $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between \vec{a} and \vec{b} .

8. If the angle between unit vectors \vec{a} and \vec{b} is 60° . Then find the value of $|\vec{a} - \vec{b}|$.

9. Let
$$\vec{u} = \hat{i} + \hat{j}$$
, $\vec{v} = \hat{i} - \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$. If \hat{n} is a unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, $|\vec{w} \cdot \hat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

10.
$$A$$
, B , C , D are any four points, prove that $\vec{A}\vec{B}\vec{C}D + \vec{B}\vec{C}\vec{A}D + \vec{C}\vec{A}\vec{B}D = 0$.

11.
$$P(1, 0, -1), Q(2, 0, -3), R(-1, 2, 0)$$
 and $S(-2, -1)$, then find the projection length of $\vec{P}Qon\vec{R}S$

12. If the vectors $3\vec{p} + \vec{q}$; $5p - 3\vec{q}$ and $2\vec{p} + \vec{q}$; $3\vec{p} - 2\vec{q}$ are pairs of mutually perpendicular vectors, then find the angle between vectors \vec{p} and \vec{q}

13. Let \vec{A} and \vec{B} be two non-parallel unit vectors in a plane. If $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between \vec{A} and \vec{B} then find the value of α .

14. Let \vec{a} , \vec{b} and \vec{c} be unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{x}$, \vec{a} . $\vec{x} = 1$, \vec{b} . $\vec{x} = \frac{3}{2}$, $|\vec{x}| = 2$ then find theh angle between \vec{c} and \vec{x} .

15. If \vec{a} and \vec{b} are unit vectors, then find the greatest value of $|\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$.

16. Constant forces $P_1 = \hat{i} - \hat{j} + \hat{k}$, $P_2 = -\hat{i} + 2\hat{j} - \hat{i}k$ and $P_3 = \hat{j} - \hat{k}$ act on a particle at a point A . Determine the work done when particle is displaced from position $A\left(4\hat{i} - 3\hat{j} - 2\hat{k}\right)$ to $B\left(6\hat{i} + \hat{j} - 3\hat{k}\right)$

17. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$

18. If A,B, C and D are four distinct points in space that AB is not

perpendicular to
$$\stackrel{\rightarrow}{CD}$$
 and satisfies (AB) . $(CD) = k \left(\left| \stackrel{\rightarrow}{AD} \right|^2 + \left| \stackrel{\rightarrow}{BC} \right|^2 - \left| \stackrel{\rightarrow}{BD} \right|^2 \right)$,

Watch Video Solution

then find the value of k.

Exercise 2.2

1. If
$$\vec{a} = 2\hat{i} + 3\hat{j} - 5\hat{k}$$
, $\vec{b} = m\hat{i} + n\hat{j} + 12\hat{k}$ and $\vec{a} \times \vec{b} = \vec{0}$ then find (m,n)

Watch Video Solution

2. Find
$$\vec{a}$$
. \vec{b} if $|\vec{a}| = 2$, $|\vec{b}| = 5$, and $|\vec{a} \times \vec{b}| = 8$

3. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} \neq 0$ where \vec{a} , \vec{b} and \vec{c} are coplanar vectors, then for some scalar k prove that $\vec{a} + \vec{c} = kb\vec{b}$.

Watch Video Solution

- **4.** If $\vec{a} = 2\vec{i} + 3\vec{j} \vec{k}$, $\vec{b} = -\vec{i} + 2\vec{j} 4\vec{k}$ and $\vec{c} = \vec{i} + \vec{j} + \vec{k}$, then find the value of $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$
 - Watch Video Solution

5. If the vectors \vec{c} , $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} and \vec{b} form a right handed system then \vec{c} is

A. (a)
$$z\hat{i} - x\hat{k}$$

B. (b)
$$\vec{0}$$

D. (d)
$$-z\hat{i} + x\hat{k}$$

- **6.** given that $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b} = \vec{c}$.
 - Watch Video Solution

- 7. Show that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$ and give a genometrical interpretation of it.
 - Watch Video Solution

- **8.** If \vec{x} and \vec{y} are unit vectors and $|\vec{z}| = \frac{2}{\sqrt{7}}$ such that $\vec{z} + \vec{z} \times \vec{x} = \vec{y}$ then find the angle θ between \vec{x} and \vec{z}
 - Watch Video Solution

9. prove that
$$(\vec{a}.\hat{i})(\vec{a}\times\hat{i})+(\vec{a}.\hat{j})(\vec{a}\times\hat{j})+(\vec{a}.\hat{k})(\vec{a}\times\hat{k})=\vec{0}$$

- **10.** Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$ then find the value of λ .
 - Watch Video Solution

- 11. A particle has an angular speed of 3 rad/s and the axis of rotation passes through the points (1, 1, 2) and (1, 2, -2) Find the velocity of the particle at point P(3, 6, 4)
 - Watch Video Solution

12. Let *vea*, \vec{b} and \vec{c} be unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} . It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a} .

13. If
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2 = 144$$
 and $|\vec{a}| = 4$, then $|\vec{b}|$ is equal to

14. Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$ if \vec{c} is a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$ then find the value of \vec{c} . Vecb.

- **15.** Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F} = 3\hat{i} + 2\hat{j} 4\hat{k}$ is acting on point (1, -1, 2).
 - Watch Video Solution

1. If \vec{a} , \vec{b} , \vec{c} and \vec{d} are four non-coplanar unit vectors such that \vec{d} makes equal angles with all the three vectors $\vec{a}, \vec{b}, \vec{c}$ then prove that

Watch Video Solution

 $\left[\vec{d}\vec{a}\vec{b} \right] = \left[\vec{d}\vec{c}\vec{b} \right] = \left[\vec{d}\vec{c}\vec{a} \right]$

2. prove that if $\begin{bmatrix} \vec{l} \vec{m} \vec{n} \end{bmatrix}$ are three non-coplanar vectors, then

$$\left[\vec{l} \, \vec{m} \vec{n} \, \right] \left(\vec{a} \times \vec{b} \, \right) = \begin{vmatrix} \vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \end{vmatrix}$$

Watch Video Solution

3. if the volume of a parallelpiped whose adjacent egges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \ \vec{b} = \hat{i} + \alpha\hat{j} + 2\hat{k}, \ \vec{c} = \vec{i} + 2\hat{j} + \alpha\hat{k}is15$ then find of α if $(\alpha > 0)$

4. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.

5. If \vec{x} . $\vec{a}=0\vec{x}$. $\vec{b}=0$ and \vec{x} . $\vec{c}=0$ for some non zero vector \vec{x} then show that $\left[\vec{a}\vec{b}\vec{c}\right]=0$

6. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ then find the vector \vec{c} such that

 $\vec{a} \cdot \vec{c} = 2$ and $\vec{a} \times \vec{c} = \vec{b}$.

7. If
$$\vec{a}$$
, \vec{b} , \vec{c} are three non-coplanar vectors such $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, $\vec{c} \times \vec{a} = \vec{b}$, then the value of $|\vec{a}| + |\vec{b}| + |\vec{c}|$ is

that

Watch Video Solution

8. If
$$\vec{a} = \vec{P} + \vec{q}$$
, $\vec{P} \times \vec{b} = \vec{0}$ and $\vec{q} \cdot \vec{b} = 0$ then prove that $\frac{\vec{b} \times (\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{b}} = \vec{q}$

- **9.** Prove that $(\vec{a}.(\vec{b}\times\hat{i}))\hat{i}+(\vec{a}.(\vec{b}\times\hat{j}))\hat{j}+(\vec{a}.(\vec{b}\times\hat{k}))\hat{k}=\vec{a}\times\vec{b}$
 - Watch Video Solution

- **10.** for any four vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} prove that \vec{d} . $(\vec{a} \times (\vec{b} \times (\vec{c} \times \vec{d}))) = (\vec{b} \cdot \vec{d})[\vec{a}\vec{c}\vec{d}]$
 - Watch Video Solution

11. If \vec{a} and \vec{b} be two non-collinear unit vectors such that $\vec{a} \times (\vec{a} \times \vec{b}) = -\frac{1}{2}\vec{b}$, then find the angle between \vec{a} and \vec{b} .

12. show that $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b} = \vec{0}$

13. Let \vec{a} , \vec{b} and \vec{c} be the non zero vectors such that $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$. If theta is the acute angle between the vectors \vec{b} and \vec{a} then theta equals (A) $\frac{1}{3}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{2}{3}$ (D) $2\frac{\sqrt{2}}{3}$

14. If \vec{p} , \vec{q} , \vec{r} denote vectors $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{c} \times \vec{a}$, $\vec{a} \times \vec{b}$. Respectively, show that \vec{a} is parallel to $\vec{q} \times \vec{r}$, \vec{b} is parallel to $\vec{r} \times \vec{p}$, \vec{c} is parallel to $\vec{p} \times \vec{q}$.

15. Let \vec{a} , \vec{b} , \vec{c} be non -coplanar vectors and let equations \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vector \vec{a} , \vec{b} , \vec{c} then prove that $\vec{a} \times \vec{a}' + \vec{b} \times \vec{b}' + \vec{c} \times \vec{c}'$ is a null vector.

16. Given unit vectors $\hat{m}\hat{n}$ and \hat{p} such that angle between \hat{m} and $\hat{n}is\alpha$ and angle between \hat{p} and $\hat{m}X\hat{n}is\alpha$ if [n p m] = 1/4 find alpha

17. \vec{a} , \vec{b} , \vec{c} arwe threee unit vectors and every two are two inclined to each at an angle $\cos^{-1}(3/5)$. If $\vec{a} \times \vec{b} = p\vec{a} + q\vec{b} + r\vec{c}$, where p,q,r are scalars, then find the value of q.

Watch Video Solution

18. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both

vectors, \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is

equal to

Watch Video Solution

Exercises

1. If
$$\begin{vmatrix} (a-x)^2 & (a-y)^2 & (a-z)^2 \\ (b-x)^2 & (b-y)^2 & (b-z)^2 \\ (c-x)^2 & (c-y)^2 & (c-a)^2 \end{vmatrix} = 0 \text{ and vectors } \vec{A}, \vec{B} \text{ and } \vec{C} \text{, where }$$

$$\vec{A} = a^2 \hat{i} = a\hat{j} + \hat{k}$$
 etc. are non-coplanar, then prove that vectors \vec{X} , \vec{Y} and \vec{Z} where $\vec{X} = x^2 \hat{i} + x \hat{j} + \hat{k}$. etc.may be coplanar.

2. OABC is a tetrahedron where O is the origin and A,B,C have position vectors \vec{a} , \vec{b} , \vec{c} respectively prove that circumcentre of tetrahedron OABC

is
$$\frac{a^2(\vec{b} \times \vec{c}) + b^2(\vec{c} \times \vec{a}) + c^2(\vec{a} \times \vec{b})}{2[\vec{a}\vec{b}\vec{c}]}$$

3. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show

that the angel between any edge and a face not containing the edge is $\cos^{-1}\!\left(1/\sqrt{3}\right)$.

4. In $\triangle ABC$, a point P is taken on AB such that AP/BP = 1/3 and point Q is taken on BC such that CQ/BQ = 3/1. If R is the point of intersection of the lines AQ and CP, using vector method, find the area of ABC if the area of BRC is 1 unit

5. Let O be an interior points of $\triangle ABC$ such that $OA + OB + 3\vec{O}C = \vec{0}$, then the ratio of $\triangle ABC$ to area of $\triangle AOC$ is

6. The length of two opposite edges of a tetrahedrom are a and b, the shortest distance between these edges is d, and the angle between them is θ . Prove using vectors that the volume of the tetrahedron is $\frac{abd\sin\theta}{c}$

origin.

Watch Video Solution

7. Find the volume of a parallelopiped having three coterminus vectors of equal magnitude |a| and equal inclination θ with each other.

8. Let \vec{p} and \vec{q} any two othogonal vectors of equal magnitude 4 each. Let \vec{a} , \vec{b} and \vec{c} be any three vectors of lengths $7\sqrt{15}$ and $2\sqrt{33}$, mutually perpendicular to each other. Then find the distance of the vector $(\vec{a}.\vec{p})\vec{p} + (\vec{a}.\vec{q})\vec{q} + (\vec{a}.(\vec{p}\times\vec{q}))(\vec{p}\times\vec{q}) + (\vec{b}.\vec{p})\vec{p} + (\vec{b}.\vec{p})\vec{q} + (\vec{b}.(\vec{p}))(\vec{p}\times\vec{q}) + (\vec{c}.(\vec{p}))(\vec{p}\times\vec{q}) + (\vec{c}.(\vec{p}\times\vec{q}))(\vec{p}\times\vec{q})$ from the

9. Given that vectors \vec{A} , \vec{B} and \vec{C} from a triangle such that $\vec{A} = \vec{B} + \vec{C}$. Find

a, b,c and d such that the area of the triangle is
$$5\sqrt{16}$$
 where.

$$\vec{B} = d\hat{i} + 3\hat{i} + 4\hat{k}$$

 $\vec{A} = a\hat{i} + b\vec{i} + c\hat{k}$

$$\vec{C} = 3\hat{i} + \hat{j} - 2\hat{k}$$

10. A line I is passing through the point \vec{b} and is parallel to vector \vec{c} .

Determine the distance of point $A(\vec{a})$ from the line I in from

$$\left| \vec{b} - \vec{a} + \frac{\left(\vec{a} - \vec{b} \right) \vec{c}}{|\vec{c}|^2} \vec{c} \right| \text{ or } \frac{\left| \left(\vec{b} - \vec{a} \right) \times \vec{c} \right|}{|\vec{c}|}$$

11. If \vec{e}_1 , \vec{e}_2 , \vec{e}_3 and \vec{E}_1 , \vec{E}_2 , \vec{E}_3 are two sets of vectors such that .

. $\vec{e}_i\vec{E}_j=1, \quad \text{if} \quad i=j \quad \text{and} \quad \vec{e}_i\vec{E}_j=0 \\ \text{and} \quad \text{if} \quad i\neq j, \quad \text{then} \quad \text{prove} \quad \text{that} \\ \left[\vec{e}_1 \quad \vec{e}_2 \quad \vec{e}_3\right] \left[\vec{E}_1 \quad \vec{E}_2 \quad \vec{E}_3\right]=1.$

12. In a quadrillateral ABCD, it is given that AB ||CD and the diagonals AC and BD are perpendiclar to each other . Show that AD. $BC \ge AB$. CD.

13. OABC is regular tetrahedron in which D is the circumcentre of OAB and E is the midpoint of edge AC. Prove that DE is equal to half the edge of tetrahedron.

14. If $A(\vec{a})$. $B(\vec{b})$ and $C(\vec{c})$ are three non-collinear point and origin does not lie in the plane of the points A, B and C, then for any point $P(\vec{P})$ in the plane of the $\triangle ABC$ such that vector OP is \bot to plane of

15. If \vec{a} , \vec{b} , \vec{c} are three given non-coplanar vectors and any arbitrary vector

$$\vec{r}$$
 in space, where $\Delta_1 = \begin{bmatrix} \vec{r}.\ \vec{a} & \vec{b}.\ \vec{a} & \vec{c}.\ \vec{a} \\ \vec{r}.\ \vec{b} & \vec{b}.\ \vec{b} & \vec{c}.\ \vec{b} \end{bmatrix}, \Delta_2 = \begin{bmatrix} \vec{a}.\ \vec{a} & \vec{r}.\ \vec{a} & \vec{c}.\ \vec{a} \\ \vec{a}.\ \vec{b} & \vec{r}.\ \vec{b} & \vec{c}.\ \vec{b} \end{bmatrix}$

$$\Delta_{3} = \begin{bmatrix} \vec{a}. \ \vec{a} & \vec{b}. \ \vec{a} & \vec{r}. \ \vec{a} \\ \vec{a}. \ \vec{b} & \vec{b}. \ \vec{b} & \vec{r}. \ \vec{b} \\ \vec{a}. \ \vec{c} & \vec{b}. \ \vec{c} & \vec{r}. \ \vec{c} \end{bmatrix}, \Delta = \begin{bmatrix} \vec{a}. \ \vec{a} & \vec{b}. \ \vec{a} & \vec{c}. \ \vec{a} \\ \vec{a}. \ \vec{b} & \vec{b}. \ \vec{b} & \vec{c}. \ \vec{b} \\ \vec{a}. \ \vec{c} & \vec{b}. \ \vec{c} & \vec{c}. \ \vec{c} \end{bmatrix},$$

then prove that
$$\vec{r} = \frac{\Delta_1}{\Lambda} \vec{a} + \frac{\Delta_2}{\Lambda} \vec{b} + \frac{\Delta_3}{\Lambda} \vec{c}$$

Exercises MCQ

- 1. Two vectors in space are equal only if they have equal component in
 - A. a given direction
 - B. two given directions
 - C. three given direction
 - D. in any arbitrary direaction

Answer: c

Watch Video Solution

- **2.** Let \vec{a} , \vec{b} and \vec{c} be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between
- \vec{a} and \vec{b} is θ and $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{c}$. Then $\tan \theta$ is equal to

A. 0

Answer: d

D. $\frac{3}{4}$

each pair of vectors is
$$\pi/3$$
 such that $\left| \vec{a} + \vec{b} + \vec{c} \right| = \sqrt{6}$ then $\left| \vec{a} \right|$ is equal to

3. \vec{a} , \vec{b} and \vec{c} are three vectors of equal magnitude. The angle between

- A. 2
- C. 1
- D. $\sqrt{6}/3$

Answer: c

4. If \vec{a} , \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is

A.
$$\vec{a} + \vec{b} + \vec{c}$$

$$B. \frac{\vec{a}}{\left|\vec{a}\right|} + \frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{c}}{\left|\vec{c}\right|}$$

C.
$$\frac{\vec{a}}{\left|\vec{a}\right|^2} + \frac{\vec{b}}{\left|\vec{b}\right|^2} + \frac{\vec{c}}{\left|\vec{c}\right|^2}$$

D.
$$|\vec{a}|\vec{a} - |\vec{b}|\vec{b} + |\vec{c}|\vec{c}$$

Answer: b

Watch Video Solution

5. Let $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} - \hat{k}$. Then the point of intersection of the lines

$$\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$$
 and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is (A) (3, -1, 10 (B) (3, 1, -1) (C)

$$(-3, 1, 1)$$
 (D) $(-3, -1, -1)$

A.
$$\hat{i} - \hat{j} + \hat{k}$$

$$\mathsf{B.}\,3\hat{i}-\hat{j}+\hat{k}$$

$$\mathsf{C.}\ 3\hat{i} + \hat{j} - \hat{k}$$

D.
$$\hat{i}$$
 - \hat{j} - \hat{k}

Answer: c

Watch Video Solution

6. If
$$\vec{a}$$
 and \vec{b} are two vectors, such that $\vec{a} \cdot \vec{b} < 0$ and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$ then the angle between the vectors \vec{a} and \vec{b} is (a) π (b) $\frac{7\pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{3\pi}{4}$

$$C.\pi/4$$

B. $7\pi/4$

D.
$$3\pi/4$$

Answer: d

7. If \hat{a} , \hat{b} and \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector and θ_1 , θ_2 and θ_3 are angles between the vectors \hat{a} , \hat{b} , \hat{b} , \hat{c} and \hat{c} , \hat{a} , respectively m then among θ_1 , θ_2 and θ_3

A. all are acute angles

B. all are right angles

C. at least one is obtuse angle

D. none of these

Answer: c

Watch Video Solution

8. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $|\vec{a} \times \vec{b}| = |\vec{a} \times \vec{c}|$ is

- **A.** 1/2
- B. 1
- C. 2
- D. none of these

Answer: b

Watch Video Solution

- **9.** P (\vec{p}) and $Q(\vec{q})$ are the position vectors of two fixed points and $R(\vec{r})$ is the postion vector of a variable point. If R moves such that $(\vec{r} \vec{p}) \times (\vec{r} \vec{q}) = \vec{0}$ then the locus of R is
 - A. a plane containing the origian O and parallel to two non-collinear

vectors *OP* and *OQ*

- B. the surface of a sphere described on PQ as its diameter
- C. a line passing through points P and Q

D. a set of lines parallel to line PQ

Answer: c

Watch Video Solution

10. Two adjacent sides of a parallelogram ABCD are

$$2\hat{i} + 4\hat{j} - 5\hat{k}$$
 and $\hat{i} + 2\hat{j} + 3\hat{k}$. Then the value of $\begin{vmatrix} \vec{A} & \vec{A} \\ AC \times BD \end{vmatrix}$ is

A.
$$20\sqrt{5}$$

B.
$$22\sqrt{5}$$

C.
$$24\sqrt{5}$$

D.
$$26\sqrt{5}$$

Answer: b

11. If \hat{a} , \hat{b} and \hat{c} are three unit vectors inclined to each other at an angle θ .

The maximum value of θ is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

$$c. \frac{2\pi}{3}$$

$$D. \frac{5\pi}{5}$$

Answer: c

12. Let the pair of vector \vec{a} , \vec{b} and \vec{c} , \vec{d} each determine a plane. Then the planes are parallel if

A.
$$(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$$

B.
$$(\vec{a} \times \vec{c})$$
. $(\vec{b} \times \vec{d}) = \vec{0}$

$$\mathsf{C.}\left(\vec{a}\times\vec{b}\right)\times\left(\vec{c}\times\vec{d}\right)=\vec{0}$$

D.
$$(\vec{a} \times \vec{c})$$
. $(\vec{c} \times \vec{d}) = \vec{0}$

Answer: c

Watch Video Solution

13. If
$$\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$$
 where \vec{a} , \vec{b} and \vec{c} are non-coplanar, then

A.
$$\vec{r} \perp (\vec{c} \times \vec{a})$$

B.
$$\vec{r} \perp (\vec{a} \times \vec{b})$$

C.
$$\vec{r} \perp (\vec{b} \times \vec{c})$$

$$D. \vec{r} = \vec{0}$$

Answer: d

$$A. \lambda \hat{i} + (2\lambda - 1)\hat{i} + \lambda \hat{k}. \lambda \in R$$

$$B. \lambda \hat{i} + (1 - 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$$

$$C. \lambda \hat{i} + (2\lambda + 1)\hat{j} + \lambda \hat{k}, \lambda \in R$$

$$D. \lambda \hat{i} + (1 + 2\lambda)\hat{j} + \lambda \hat{k}, \lambda \in R$$

Answer: c

Watch Video Solution

15. Vectors
$$3\vec{a} - 5\vec{b}$$
 and $2\vec{a} + \vec{b}$ are mutually perpendicular. If $\vec{a} + 4\vec{b}$ and $\vec{b} - \vec{a}$ are also mutually perpendicular, then the cosine of the

angle between \vec{a} and \vec{b} is (a) $\frac{19}{5\sqrt{43}}$ (b) $\frac{19}{3\sqrt{43}}$ (c) $\frac{19}{\sqrt{45}}$ (d) $\frac{19}{6\sqrt{43}}$

A.
$$\frac{19}{5\sqrt{43}}$$

B.
$$\frac{19}{3\sqrt{43}}$$

$$C. \frac{19}{\sqrt{45}}$$

D.
$$\frac{19}{6\sqrt{43}}$$

Answer: a

Watch Video Solution

16. the unit vector orthogonal to vector $-\hat{i} + 2\hat{j} + 2\hat{k}$ and making equal angles with the x- and y-axes is

$$A. \pm \frac{1}{3} \left(2\hat{i} + 2\hat{j} - \hat{k} \right)$$

B.
$$\frac{19}{5\sqrt{43}}$$

$$C. \pm \frac{1}{3} \left(\hat{i} + \hat{j} - \hat{k} \right)$$

D. none of these

Answer: a

Watch Video Solution

17. The value of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} + \hat{k}$ and $\vec{b} = 7\hat{i} - 2\hat{j} + \hat{k}$ is obtuse and the angle between \vec{b}

and the z-axis is acute and less then $\pi/6$

A.
$$a < x < 1/2$$

B.
$$1/2 < x < 15$$

C.
$$x < 1/2$$
 or $x < 0$

D. none of these

Answer: b

Watch Video Solution

18. If vectors \vec{a} and \vec{b} are two adjecent sides of a paralleogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is

$$A. \vec{b} + \frac{\vec{b} \times \vec{a}}{|\vec{a}|^2}$$

B.
$$\frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|^2}$$

C.
$$\vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}$$
D.
$$\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$$

Answer: a

Watch Video Solution

19. parallelogram is constructed on $3\vec{a} + \vec{b}$ and $\vec{a} - 4\vec{b}$, where $|\vec{a}| = 6$ and $|\vec{b}| = 8$ and \vec{a} and \vec{b} are anti-parallel

then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

- A. 40
- B. 64
- C. 32
- D. 48

Answer: c

20. Let \vec{a} . \vec{b} = 0 where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both

 \vec{a} and \vec{b} . If $\vec{c} = m\vec{a} + n\vec{b} + p(\vec{a} \times \vec{b})$, $(m, n, p \in R)$ then

A.
$$\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$

$$\mathsf{B.} \, \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$$

$$C. 0 \le \theta \le \frac{\pi}{4}$$

$$D. 0 \le \theta \le \frac{3\pi}{4}$$

Answer: a

Watch Video Solution

21. \vec{a} and \vec{c} are unit vectors and $|\vec{b}| = 4$ the angle between \vec{a} and $\vec{b}iscos^{-1}(1/4)$ and $\vec{b} - 2\vec{c} = \lambda \vec{a}$ the value of λ is

- B. 1/4,3/4
- C. -3, 4
- D. -1/4, $\frac{3}{4}$

Answer: a

- 22. Let the position vectors of the points **PandQ** be $4\hat{i} + \hat{j} + \lambda \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$, respectively. Vector $\hat{i} - \hat{j} + 6\hat{k}$ is perpendicular to the plane containing the origin and the points PandQ. Then λ equals 1/2b. 1/2 c. 1 d. none of these
- A. 1/2
 - B.1/2
 - C. 1
 - D. none of these

Answer: a

Watch Video Solution

23. A vector of magnitude $\sqrt{2}$ coplanar with the vectors $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + \hat{k}$, and perpendicular to the vector $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ is

A.
$$-\hat{j} + \hat{k}$$

 $\mathbf{B}.\,\hat{i}$ and \hat{k}

C. \hat{i} - \hat{k}

D. hati- hatj`

Answer: a

24. Let P be a point interior to the acute triangle ABC If PA + PB + PC is a null vector, then w.r.t traingel ABC, point P is its a. centroid b. orthocentre c. incentre d. circumcentre

A. centroid

B. orthocentre

C. incentre

D. circumcentre

Answer: a

Watch Video Solution

25. G is the centroid of triangle ABC and A_1 and B_1 are the midpoints of sides AB and AC, respectively. If Δ_1 is the area of quadrilateral GA_1AB_1 and Δ is the area of triangle ABC, then $\frac{\Delta}{\Delta_1}$ is equal to

B. 3

c. $\frac{1}{3}$

D. none of these

Answer: b

Watch Video Solution

Points $\vec{a}, \vec{b}\vec{c}$ and \vec{d} are coplanar and 26. $(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = \vec{0}$. Then the least value of

A. 1/14

 $\sin^2\alpha + \sin^2 2\beta + \sin^2 3\gamma$ is

B. 14

C. 6

D. $1/\sqrt{6}$

Answer: a

27. If \vec{a} and \vec{b} are any two vectors of magnitudes 1and 2. respectively, and

$$(1 - 3\vec{a}.\vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47$$
 then the angle between \vec{a} and \vec{b}

A.
$$\pi/3$$

is

B.
$$\pi$$
 - $\cos^{-1}(1/4)$

c.
$$\frac{2\pi}{3}$$

D.
$$\cos^{-1}(1/4)$$

Answer: c

Watch Video Solution

28. If \vec{a} and \vec{b} are any two vectors of *magnitude* 2 and 3 respectively such

that $\left| 2(\vec{a} \times \vec{b}) \right| + \left| 3(\vec{a} \cdot \vec{b}) \right| = k$ then the maximum value of k is

A.
$$\sqrt{13}$$

B.
$$2\sqrt{13}$$

C.
$$6\sqrt{13}$$

D.
$$10\sqrt{13}$$

Answer: c

29.
$$\vec{a}$$
, \vec{b} and \vec{c} are unit vecrtors such that $\left| \vec{a} + \vec{b} + 3\vec{c} \right| = 4$ Angle between \vec{a} and $\vec{b}is\theta_1$, between \vec{b} and $\vec{c}is\theta_2$ and between \vec{a} and \vec{b} varies

$$[\pi/6,2\pi/3]$$
 . Then the maximum value of ${\rm cos}\theta_1 + 3{\rm cos}\theta_2$ is

C.
$$2\sqrt{2}$$

Answer: b

Watch Video Solution

30. If the vector product of a constant vector $\vec{O}A$ with a variable vector $\vec{O}B$ in a fixed plane OAB be a constant vector, then the locus of B is (a).a straight line perpendicular to $\vec{O}A$ (b). a circle with centre O and radius equal to $|\vec{O}A|$ (c). a straight line parallel to $|\vec{O}A|$ (d). none of these

- A. a straight line perpendicular to OA
- B. a circle with centre O and radius equal to OA
- C. a striaght line parallel to OA
- D. none of these

Answer: c

31. Let \vec{u} , \vec{v} , \vec{w} be such that $|\vec{u}| = 1$, $|\vec{v}| = 2$, $|\vec{w}| 3$. If the projection of \vec{v} along \vec{u} is equal to that of \vec{w} along \vec{v} , \vec{w} are perpendicular to each other then $|\vec{u} - \vec{v} + \vec{w}|$ equals (A) 2 (B) $\sqrt{7}$ (C) $\sqrt{14}$ (D) 14

B. $\sqrt{7}$

D. 14

Answer: c

Watch Video Solution

32. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and \vec{u} and \vec{v} are any two vectors.

Prove that
$$\vec{u} \times \vec{v} = \frac{1}{\left[\vec{a}\vec{b}\vec{c}\right]} \begin{vmatrix} \vec{u}.\vec{a} & \vec{v}.\vec{a} & \vec{a} \\ \vec{u}.\vec{b} & \vec{v}.\vec{b} & \vec{b} \\ \vec{u}.\vec{c} & \vec{v}.\vec{c} & \vec{c} \end{vmatrix}$$

A.
$$-\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$

$$B.\cos^{-1}\left(\frac{19}{5\sqrt{43}}\right)$$

$$C. \pi \cos^{-1} \left(\frac{19}{5\sqrt{43}} \right)$$

D. cannot of these

Answer: b

Watch Video Solution

33. if $\vec{\alpha} \mid (\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\gamma})$ equal to

A.
$$\left|\vec{\alpha}\right|^2 \left(\vec{\beta}. \vec{\gamma}\right)$$

B.
$$|\vec{\beta}|^2 (\vec{\gamma}. \vec{\alpha})$$

C.
$$|\vec{\gamma}|^2 (\vec{\alpha}. \vec{\beta})$$

D.
$$|\vec{\alpha}| |\vec{\beta}| |\vec{\gamma}|$$

Answer: a

34. The position vectors of points A,B and C are $\hat{i} + \hat{j}$, $\hat{i} + 5\hat{j} - \hat{k}$ and $2\hat{i} + 3\hat{j} + 5\hat{k}$, respectively the greatest angle of triangle

ABC is

- **A.** 120 °
- B. 90°
- C. $\cos^{-1}(3/4)$
- D. none of these

Answer: b

Watch Video Solution

35. Given three vectors $e\vec{a}$, \vec{b} and \vec{c} two of which are non-collinear.

Futrther if $(\vec{a} + \vec{b})$ is collinear with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with

$$\vec{a}$$
, $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$ find the value of \vec{a} . $Vecb + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a}

- B. -3
- C. 0
- D. cannot of these

Answer: b

Watch Video Solution

such

that

36. If
$$\vec{a}$$
 and \vec{b} are unit vectors such $(\vec{a} + \vec{b})$. $(2\vec{a} + 3\vec{b}) \times (3\vec{a} - 2\vec{b}) = \vec{0}$ then angle between \vec{a} and \vec{b} is

A. 0

 $B.\pi/2$

C. *π*

D. indeterminate

Answer: d

$$AB = p$$
, $then\vec{A}BAC + \vec{B}C\vec{B}A + \vec{C}A\vec{C}B$ is equal to $2p^2$ b. $\frac{p^2}{2}$ c. p^2 d. none of these

B.
$$\frac{p^2}{2}$$

D. none of these

Answer: c

Watch Video Solution

prependicular to \vec{b} is \vec{a} 2 then \vec{a} 1 × \vec{a} 2 is equl to

38. Resolved part of vector \vec{a} and along vector \vec{b} is $\vec{a}1$ and that

A.
$$\frac{\left(\vec{a} \times \vec{b}\right) \cdot \vec{b}}{\left|\vec{b}\right|^2}$$

B.
$$\frac{\left(\vec{a}.\vec{b}\right)\vec{a}}{\left|\vec{a}\right|^2}$$

$$\mathsf{C.} \frac{\left(\vec{a}.\,\vec{b}\right)\!\left(\vec{b}\times\vec{a}\right)}{\left|\vec{b}\right|^2}$$

D.
$$\frac{\left(\vec{a}.\vec{b}\right)\left(\vec{b}\times\vec{a}\right)}{\left|\vec{b}\times\vec{a}\right|}$$

Answer: c

Watch Video Solution

39. $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{j} + 2\hat{j} - \hat{k}, \vec{c} = \hat{i} + \hat{j} - 2\hat{k}$. A vector coplanar with

 \vec{b} and \vec{c} . Whose projection on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is

A.
$$2\hat{i} + 3\hat{j} - 3\hat{k}$$

$$B. -2\hat{i} - \hat{j} + 5\hat{k}$$

$$\mathsf{C.}\ 2\hat{i}\ +\ 3\hat{j}\ +\ 3\hat{k}$$

$$D. 2\hat{i} + \hat{j} + 5\hat{k}$$

Answer: b

Watch Video Solution

40. If P is any arbitary point on the circumcurcle of the equilateral

triangle of side length I units, then $\begin{vmatrix} \overrightarrow{PA} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{PB} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{PC} \end{vmatrix}^2$ is always equal to

B.
$$2\sqrt{3}l^2$$

C.
$$l^2$$

D.
$$3l^2$$

Answer: a

41. If \vec{r} and \vec{s} are non-zero constant vectors and the scalar b is chosen such that $|\vec{r} + b\vec{s}|$ is minimum, then the value of $|b\vec{s}|^2 + |\vec{r} + b\vec{s}|^2$ is equal to

A.
$$2|\vec{r}|^2$$

B.
$$|\vec{r}|^2/2$$

C.
$$3|\vec{r}|^2$$

D.
$$|\vec{r}|^2$$

Answer: d

Watch Video Solution

vector that if equally inclined to \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ is equal to

42. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit

A.
$$\frac{1}{\sqrt{2}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

$$\mathsf{C.} \frac{1}{\sqrt{3}} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

D.
$$\frac{1}{3} \left(\vec{a} + \vec{b} + \vec{a} \times \vec{b} \right)$$

B. $\frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{a} + \vec{b} \right)$

Answer: a

43.

Watch Video Solution

Given

$$\left| \left(\vec{a} \cdot \vec{q} \right) \vec{p} \cdot \left(\vec{p} \cdot \vec{q} \right) \vec{a} \right|$$
 is equal to

(a)2 $|\vec{p}\vec{q}|$ (b)(1/2) $|\vec{p}.\vec{q}|$ (c) $|\vec{p}\times\vec{q}|$ (d) $|\vec{p}.\vec{q}|$

that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors

 $\vec{a} + \vec{b} = \mu \vec{p}$, \vec{b} . $\vec{q} = 0$ and $|\vec{b}|^2 = 1$ where μ is a sclar.

such

that

Then

A.
$$2\left|\vec{p}\,\vec{q}\,\right|$$

$$\mathsf{B.}\,(1/2)\big|\vec{p}.\,\vec{q}\,\big|$$

C.
$$|\vec{p} \times \vec{q}|$$

D.
$$\left| \vec{p} \cdot \vec{q} \right|$$

Answer: d

Watch Video Solution

44. The position vectors of the vertices A, B and C of a triangle are three unit vectors \vec{a} , \vec{b} and \vec{c} respectively. A vector \vec{d} is such that \vec{d} . $\hat{a} = \vec{d}$. $Hatb = \vec{d}$. \hat{c} and $\vec{d} = \lambda (\hat{b} + \hat{c})$. Then triangle ABC is

- A. acute angled
- B. obtuse angled
- C. right angled
- D. none of these

Answer: a

45. If a is real constant A, BandC are variable angles and $\sqrt{a^2 - 4} \tan A + a \tan B + \sqrt{a^2 + 4} \tan c = 6a$, then the least vale of $\tan^2 A + \tan^2 b + \tan^2 Cis 6$ b. 10 c. 12 d. 3

- A. 6
- B. 10
- C. 12

D. 3

Answer: d

Watch Video Solution

46. The vertex A triangle ABC is on the line $\vec{r} = \hat{i} + \hat{j} + \lambda \hat{k}$ and the vertices BandC have respective position vectors $\hat{i}and\hat{j}$. Let Delta be the area of the triangle and $Delta\left[3/2,\sqrt{33}/2\right]$. Then the range of values of λ corresponding to a is $[-8,4] \cup [4,8]$ b. [-4,4] c. [-2,2] d. $[-4,-2] \cup [2,4]$

Answer: c

Watch Video Solution

47. A non-zero vecto \vec{a} is such that its projections along vectors

$$\frac{\hat{i}+\hat{j}}{\sqrt{2}}, \frac{-\hat{i}+\hat{j}}{\sqrt{2}}$$
 and \hat{k} are equal, then unit vector along \vec{a} us

A.
$$\frac{\sqrt{2}\hat{j} - \hat{k}}{\sqrt{3}}$$

B.
$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$$

B.
$$\frac{\hat{j} - \sqrt{2}\hat{k}}{\sqrt{3}}$$
C.
$$\frac{\sqrt{2}}{\sqrt{3}}\hat{j} + \frac{\hat{k}}{\sqrt{3}}$$
D.
$$\frac{\hat{j} - \hat{k}}{\sqrt{2}}$$

Answer: a

Watch Video Solution

48. Position vector \hat{k} is rotated about the origin by angle 135 ° in such a way that the plane made bt it bisects the angle between \hat{i} and \hat{j} . Then its new position is

$$A. \pm \frac{\hat{i}}{\sqrt{2}} \pm \frac{\hat{j}}{\sqrt{2}}$$

$$B. \pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$$

$$\mathsf{C.}\; \frac{\hat{i}}{\sqrt{2}} - \frac{\hat{k}}{\sqrt{2}}$$

D. none of these

Answer: d

49. In a quadrilateral ABCD, $\vec{A}C$ is the bisector of $\vec{A}Band\vec{A}D$, angle between $\vec{A}Band\vec{A}D$ is $2\pi/3$, $15|\vec{A}C| = 3|\vec{A}B| = 5|\vec{A}D|$. Then the angle

between $\vec{A}Band\vec{A}D$ is $2\pi/3$, $15\left|\vec{A}C\right| = 3\left|\vec{A}B\right| = 5\left|\vec{A}D\right|$. Then the angle between $\vec{B}Aand\vec{C}D$ is $\frac{\cos^{-1}\left(\sqrt{14}\right)}{7\sqrt{2}}$ b. $\frac{\cos^{-1}\left(\sqrt{21}\right)}{7\sqrt{3}}$ c. $\frac{\cos^{-1}2}{\sqrt{7}}$ d.

$$\frac{\cos^{-1}\left(2\sqrt{7}\right)}{14}$$

A.
$$\cos^{-1} \frac{\sqrt{14}}{7\sqrt{2}}$$
B. $\cos^{-1} \frac{\sqrt{21}}{7\sqrt{3}}$
C. $\cos^{-1} \frac{2}{\sqrt{7}}$
D. $\cos^{-1} \frac{2\sqrt{7}}{14}$

Answer: c

Watch Video Solution

50. In AB, DE and GF are parallel to each other and AD, BG and EF ar parallel to each other . If CD: CE = CG:CB = 2:1 then the value of area

(
$$\triangle$$
 AEG): area(\triangle ABD) is equal to (a) 7/2 (b)3 (c)4 (d)9/2

B. 3

C. 4

D.9/2

Answer: b

51. Vectors
$$\hat{a}$$
 in the plane of $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that it is equally inclined to \vec{b} and \vec{d} where $\vec{d} = \hat{j} + 2\hat{k}$ the value of \hat{a} is (a) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$

(b)
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$
 (c) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$ (d) $\frac{2\hat{i} + \hat{j}}{\sqrt{5}}$
A. $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$

B.
$$\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$$

C.
$$\frac{2i + \frac{1}{\sqrt{5}}}{\sqrt{5}}$$
D.
$$\frac{2\hat{i} + \frac{1}{\sqrt{5}}}{\sqrt{5}}$$

Answer: b

Watch Video Solution

- **52.** Let ABCD be a tetrahedron such that the edges AB, ACandAD are
- mutually perpendicular. Let the area of triangles ABC, ACDandADB be 3, 4 and 5sq. units, respectively. Then the area of triangle BCD is a. $5\sqrt{2}$ b. 5
- c. $\frac{\sqrt{5}}{2}$ d. $\frac{5}{2}$
 - **A.** $5\sqrt{2}$

B. 5

Answer: a

53. Let
$$f(t) = [t]\hat{i} + (t - [t])\hat{j} + [t + 1]\hat{k}$$
, where[.] denotes the greatest integer

function. Then the vectors $f\left(\frac{5}{4}\right)$ and f(t), 0 < t < 1 are (a) parallel to each other (b) perpendicular (c) inclined at $\cos^{-1}2\left(\sqrt[4]{7\left(1-t^2\right)}\right)$ (d) inclined at

$$\cos^{-1}\left(\frac{8+t}{\sqrt{1+t^2}}\right);$$

A. parallel to each other

B. perpendicular to each other

C. inclined at
$$\frac{\cos^{-1}2}{\sqrt{7}(1-t^2)}$$

D. inclined at
$$\frac{\cos^{-1}(8+t)}{9\sqrt{1+t^2}}$$

Answer: d

54. If \vec{a} is parallel to $\vec{b} \times \vec{c}$, then $(\vec{a} \times \vec{b})$. $(\vec{a} \times \vec{c})$ is equal to (a) $|\vec{a}|^2 (\vec{b}.\vec{c})$

- (b) $|\vec{b}|^2 (\vec{a}.\vec{c})$ (c) $|\vec{c}|^2 (\vec{a}.\vec{b})$ (d) none of these
 - A. $|\vec{a}|^2 (\vec{b}. \vec{c})$
 - B. $\left| \vec{b} \right|^2 \left(\vec{a} \cdot \vec{c} \right)$
 - C. $|\vec{c}|^2 (\vec{a}. \vec{b})$
 - D. none of these

Answer: a

Watch Video Solution

55. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

A. 1/3

B. 4

C.
$$(3\sqrt{3})/4$$

D.
$$4\sqrt{3}$$

Answer: d

Watch Video Solution

56. If
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} + \vec{c} \times \vec{a}$$
 is a non-zero vector and

 $\left| \left(\vec{d}. \vec{c} \right) \left(\vec{a} \times \vec{b} \right) + \left(\vec{d}. \vec{a} \right) \left(\vec{b} \times \vec{c} \right) + \left(\vec{d}. \vec{b} \right) \left(\vec{c} \times \vec{a} \right) = 0 \text{ then}$

A.
$$\left| \vec{a} \right| = \left| \vec{b} \right| = \left| \vec{c} \right|$$

$$B. \left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \left| \vec{d} \right|$$

C. \vec{a} , \vec{b} and \vec{c} are coplanar

D. none of these

Answer: c

57. If $|\vec{a}| = 2$ and $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 0$, then $(\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))))$

is equal to the given diagonal is $\vec{c}=4\hat{k}=8\hat{k}$ then , the volume of a parallelpiped is

- A. 48 \hat{b}
- B. - $48\hat{b}$
- C. 48â
- D. -48â

Answer: a

Watch Video Solution

58. If two diagonals of one of its faces are $6\hat{i} + 6\hat{k}$ and $4\hat{j} + 2\hat{k}$ and of the edges not containing the given diagonals is $\vec{c} = 4\hat{j} - 8\hat{k}$, then the volume of a parallelpiped is

A. 60

- B. 80
- C. 100
- D. 120

Answer: d

Watch Video Solution

59. The volume of a tetrahedron fomed by the coterminus edges \vec{a}, \vec{b} and \vec{c} is 3 . Then the volume of the parallelepiped formed by the coterminus edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ and $\vec{c} + \vec{a}$ is

- A. 6
- B. 18
- C. 36
- D. 9

Answer: c

60. If \vec{a} , \vec{b} and \vec{c} are three mutually orthogonal unit vectors , then the triple product $\begin{bmatrix} \vec{a} + \vec{b} + \vec{c} & \vec{a} + \vec{b} & \vec{b} + \vec{c} \end{bmatrix}$ equals

B. 1 or -1

C. 1

D. 3

Answer: b

Watch Video Solution

61. vector \vec{c} are perpendicular to vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(1,-2,3)$ and satisfies the condition \vec{c} . $(\hat{i}+2\hat{j}-7\hat{k})=10$ then vector \vec{c} is equal to (a)(7,5,1) (b)(-7,-5,-1) (c)(1,1,-1) (d) none of these

(, ,

C. 1,1,-1

A. 7,5,1

D. none of these

Answer: a

Watch Video Solution

62. Given $\vec{a} = x\hat{i} + y\hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j}$, $\vec{a} \perp \vec{b}$, $\vec{a} \cdot \vec{c} = 4$ then

find the value of
$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$
.

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]^2 = \left|\vec{a}\right|$$

B.
$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} \vec{a} \end{vmatrix}$$
C. $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = 0$

$$D.\left[\vec{a}\vec{b}\vec{c}\right] = 0$$

Answer: d

63. Let
$$\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$$
, $\vec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k}$ and $\vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and $\vec{b}is\pi/6$ then the value of

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 is

A. 0

B. 1

C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

D.
$$\frac{3}{4} \left(a_1^2 + a_2^2 + a_3^2 \right) \left(b_1^2 + b_2^2 + b_3^2 \right)$$

Answer: c

64. Let
$$\vec{r}$$
, \vec{a} , \vec{b} and \vec{c} be four non-zero vectors such that \vec{r} . $\vec{a} = 0$, $|\vec{r} \times \vec{b}| = |\vec{r}| |\vec{b}|$, $|\vec{r} \times \vec{c}| = |\vec{r}| |\vec{c}|$ then

$$\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} =$$

B.
$$-|a||b||c|$$

D. none of these

Answer: c

65. If
$$\vec{a}$$
, \vec{b} and \vec{c} are such that $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 1$, $\vec{c} = \lambda \left(\vec{a} \times \vec{b} \right)$, angle between \vec{c} and \vec{b} is $2\pi/3$, $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = \sqrt{3}$ and $|\vec{c}| = \frac{1}{\sqrt{3}}$ then the angle between \vec{a} and \vec{b} is

A. (a)
$$\frac{\pi}{6}$$

B. (b)
$$\frac{\pi}{4}$$

C. (c)
$$\frac{\pi}{3}$$

D. (d)
$$\frac{\pi}{2}$$

Answer: b

Watch Video Solution

66. If
$$4\vec{a} + 5\vec{b} + 9\vec{c} = 0$$
 then $(\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$ is equal to

A. a vector perpendicular to the plane of \vec{a} , \vec{b} and \vec{c}

B. a scalar quantity

 \vec{C} , $\vec{0}$

D. none of these

Answer: c

67. Value of
$$\begin{bmatrix} \vec{a} \times \vec{b}, \vec{a} \times \vec{c}, \vec{d} \end{bmatrix}$$
 is always equal to (a) (\vec{c} a \vec{c} d) [\vec{c} a \vec{c} b) (\vec{c} a \vec{c} b) [\vec{c} a

A.
$$\left(\vec{a}.\vec{d}\right)\left[\vec{a}\vec{b}\vec{c}\right]$$

B. '(veca.vecc)[veca vecb vecd]

$$\mathsf{C.}\left(\vec{a}.\,\vec{b}\right)\left[\vec{a}\,\vec{b}\,\vec{d}\right]$$

D. none of these

Answer: a

Watch Video Solution

68. Let \hat{a} and \hat{b} be mutually perpendicular unit vectors. Then for ant arbitrary \vec{r} .

A.
$$\vec{r} = (\vec{r}.\hat{a})\hat{a} + (\vec{r}.\hat{b})\hat{b} + (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

B.
$$\vec{r} = (\vec{r}.\hat{a}) - (\vec{r}.\hat{b})\hat{b} - (\vec{r}.(\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

C.
$$\vec{r} = (\vec{r} \cdot \hat{a})\hat{a} - (\vec{r} \cdot \hat{b})\hat{b} - (\vec{r} \cdot (\vec{a} \times \hat{b}))(\hat{a} \times \hat{b})$$

D. none of these

Answer: a

Watch Video Solution

69. Let \vec{a} and \vec{b} be unit vectors that are perpendicular to each other, then

$$\left[\vec{a} + \left(\vec{a} \times \vec{b}\right) + \left(\vec{a} \times \vec{b}\right)\right]$$
 is equal to

A. 1

B. 0

C. - 1

D. none of these

Answer: a

70. \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 4$ and \vec{a} . Vecb = 2. If $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{a}| = 1$.

A.
$$\frac{\pi}{3}$$
B. $\frac{\pi}{6}$

c.
$$\frac{3\pi}{4}$$

D. $\frac{5\pi}{6}$

Watch Video Solution

71. If \vec{b} and \vec{c} are unit vectors, then for any arbitary vector \vec{a} , $(((\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})) \times (\vec{b} \times \vec{c}))$. $(\vec{b} - \vec{c})$ is always equal to

72. If \vec{a} . $\vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is

A.
$$\frac{\left(\beta \vec{a} - \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$
B.
$$\frac{\left(\beta \vec{a} + \vec{a} \times \vec{c}\right)}{\left|\vec{a}\right|^{2}}$$

C.
$$\frac{\left(\beta\vec{c} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

D.
$$\frac{\left(\beta\vec{c} + \vec{a} \times \vec{c}\right)}{|\vec{a}|^2}$$

Answer: a

Watch Video Solution

non-zerp , then vector \vec{lpha}, \vec{eta} and γ are

73. If $a(\vec{\alpha} \times \vec{\beta}) \times (\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = 0$ and at leasy one of a,b and c is

A. parallel

B. coplanar

C. mutually perpendicular

D. none of these

Answer: b

Watch Video Solution

- **74.** If $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \vec{b}$, where \vec{a} , \vec{b} and \vec{c} are non zero vectors then
- (A) \vec{a} , \vec{b} and \vec{c} canbecoplanar(B)veca,vecb and vecc μ stbecoplanar(C)

veca,vecb and vecc cannot be coplanar (D) none of these

- A. \vec{a} , \vec{b} and \vec{v} can be coplanar
- B. \vec{a} , \vec{b} and \vec{c} must be coplanar
- C. \vec{a} , \vec{b} and \vec{c} cannot be coplanar
- D. none of these

Answer: c

75. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$ for some non zero vector \vec{r} and \vec{a} , \vec{b} , \vec{c} are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is

- A. $\left| \left[\vec{a} \vec{b} \vec{c} \right] \right|$
- B. $|\vec{r}|$
- C. $\left| \left[\vec{a}\vec{b}\vec{c} \right] \vec{r} \right|$
- D. none of these

Answer: c

Watch Video Solution

76. A vector of magnitude 10 along the normal to the curve $3x^2 + 8xy + 2y^2 - 3 = 0$ at its point P(1, 0) can be (a). $6\hat{i} + 8\hat{j}$ (b). $-8\hat{i} + 3\hat{j}$ (c). $6\hat{i} - 8\hat{j}$ (d). $8\hat{i} + 6\hat{j}$

A.
$$6\hat{i} + 8\hat{j}$$

$$B. -8\hat{i} + 3\hat{j}$$

D.
$$8\hat{i} + 6\hat{j}$$

Answer: a

Watch Video Solution

77. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\frac{\pi}{3}$ then

 $\left\{\vec{a} \times \left(\vec{b} + \vec{a} \times \vec{b}\right)\right\}$. \vec{b} is equal to (a) $-\frac{3}{4}$ (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{1}{2}$

A.
$$\frac{-3}{4}$$

B.
$$\frac{1}{4}$$

B.
$$\frac{-}{4}$$

D.
$$\frac{1}{2}$$

78. If \vec{a} and \vec{b} are othogonal unit vectors, then for a vector \vec{r} non-coplanar with \vec{a} and \vec{b} vector $\vec{r} \times \vec{a}$ is equal to

A.
$$\left[\vec{r}\,\vec{a}\,\vec{b}\,\right]\vec{b}$$
 - $\left(\vec{r}.\,\vec{b}\right)\left(\vec{b}\times\vec{a}\right)$

$$\mathsf{B.}\left[\vec{r}\vec{a}\vec{b}\right]\!\!\left(\vec{a}+\vec{b}\right)$$

C.
$$\left[\vec{r}\vec{a}\vec{b}\right]\vec{a} + \left(\vec{r}.\vec{a}\right)\vec{a} \times \vec{b}$$

D. none of these

Answer: a

Watch Video Solution

79. If $\vec{a} + \vec{b}$, \vec{c} are any three non-coplanar vectors then the equation

$$\left[\vec{b} \times \vec{c} \,\vec{c} \times \vec{a} \,\vec{a} \times \vec{b}\right] x^2 + \left[\vec{a} + \vec{b} \,\vec{b} + \vec{c} \,\vec{c} + \vec{a}\right] x + 1 + \left[\vec{b} - \vec{c} \,\vec{c} - \vec{c} - \vec{a} \,\vec{a} - \vec{b}\right] = 0$$

has roots

A. real and distinct

B. real

C. equal

D. imaginary

Answer: c

80.

Watch Video Solution

Sholve

$$\vec{x}$$
 and $\vec{y} : \vec{x} + \vec{c} \times \vec{y} = \vec{a}$ and $\vec{y} + \vec{c} \times \vec{x} = \vec{b}$, $\vec{c} \neq 0$

simultasneous

vector equations

for

the

A.
$$\vec{x} = \frac{\vec{b} \times \vec{c} + \vec{a} + (\vec{c}.\vec{a})\vec{c}}{1 + \vec{c}.\vec{c}}$$

B.
$$\vec{x} = \frac{\vec{c} \times \vec{b} + \vec{b} + (\vec{c}.\vec{a})\vec{c}}{1 + \vec{c}.\vec{c}}$$

$$\vec{a} \times \vec{c} + \vec{b} + (\vec{c}.\vec{b})\vec{c}$$

$$C. \vec{y} = \frac{\vec{a} \times \vec{c} + \vec{b} + (\vec{c}. \vec{b})\vec{c}}{1 + \vec{c}. \vec{c}}$$

D. none of these

Answer: b

is

Watch Video Solution

81. The condition for equations $\vec{r} \times \vec{a} = \vec{b}$ and $\vec{r} \times \vec{c} = \vec{d}$ to be consistent

$$\mathbf{A}.\,\vec{\mathbf{b}}.\,\vec{\mathbf{c}}=\vec{\mathbf{a}}.\,\vec{\mathbf{d}}$$

$$B. \vec{a}. \vec{b} = \vec{c}. \vec{d}$$

C.
$$\vec{b}$$
. $\vec{c} + \vec{a}$. $\vec{d} = 0$

D.
$$\vec{a}$$
. \vec{b} + \vec{c} . \vec{d} = 0

Answer: c

Watch Video Solution

82. If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$, then $\left[\vec{a}\vec{b}\vec{c}\right] =$

 $\vec{a} = 2\hat{i} + \hat{j} + \hat{k}, \ \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}, \ \vec{c} = \hat{i} + \hat{j} + 2\hat{k} \text{ and } (1 + \alpha)\hat{i} + \beta(1 + \alpha)\hat{j} + \gamma(1 + \alpha)(1 + \alpha)\hat{i}$

$$= 2i + j + k, b$$

A. -2, -4,
$$-\frac{2}{3}$$

B. 2, -4, $\frac{2}{3}$

C. -2, 4, $\frac{2}{3}$

D. 2, 4,
$$-\frac{2}{3}$$

Answer: a

Watch Video Solution

A. collinear for unique value of x

B. perpendicular for infinte values of x.

variable vectors $(x \in R)$. Then $\vec{a}(x)$ and b(x) are

84. Let $(\vec{a}(x) = (\sin x)\hat{i} + (\cos x)\hat{j}$ and $\vec{b}(x) = (\cos 2x)\hat{i} + (\sin 2x)\hat{j}$ be

If

C. zero vectors for unique value of x

D. none of these

Answer: b

Watch Video Solution

85. For vectors any

 \vec{a} and \vec{b} , $(\vec{a} \times \hat{i}) + (\vec{b} \times \hat{i}) + (\vec{a} \times \hat{j})$. $(\vec{b} \times \hat{j}) + (\vec{a} \times \hat{k})$. $(\vec{b} \times \hat{k})$ is always equal to

A. \vec{a} . \vec{b}

B. 2a. Vecb

C. zero

D. none of these

Answer: b

86. If \vec{a} , \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then $(\vec{x} \vec{b})$, $(\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) =$

(A)
$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}$$
 (B) $2 \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}\vec{r}$ (C) $3 \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}\vec{r}$ (D) $4 \begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix}\vec{r}$

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$$

$$\mathsf{B.}\,2\Big[\vec{a}\vec{b}\vec{c}\,\Big]\vec{r}$$

C.
$$3\left[\vec{a}\vec{b}\vec{c}\right]\vec{r}$$

D. none of these

Answer: b

Watch Video Solution

87. If $\vec{P} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$. $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ and $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, where \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors then the value of the expression

$$(\vec{a} + \vec{b} + \vec{c}). (\vec{q} + \vec{q} + \vec{r})$$
 is

- A. 3
- B. 2
- C. 1
- D. 0

Answer: a

Watch Video Solution

88. $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ are the vertices of triangle ABC and $R(\vec{r})$ is any point in the plane of triangle ABC, then \vec{r} , $(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})$ is always equal to

- A. zero
- B. $\left[\vec{a}\vec{b}\vec{c}\right]$
- C. $\left[\vec{a}\vec{b}\vec{c}\right]$
- D. none of these

Answer: b

Watch Video Solution

89. If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors and $\vec{a} \times \vec{c}$ is perpendicular to $\vec{a} \times (\vec{b} \times \vec{c})$, then the value of $[\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c}$ is equal to

- A. $\left[\vec{a}\vec{b}\vec{c}\right]\vec{c}$
- B. $\left[\vec{a}\vec{b}\vec{c}\right]\vec{b}$
- \vec{C} . $\vec{0}$
- D. $\left[\vec{a}\vec{b}\vec{c}\right]\vec{a}$

Answer: c

Watch Video Solution

90. If V be the volume of a tetrahedron and V' be the volume of another tetrahedran formed by the centroids of faces of the previous tetrahedron

and V = KV', thenK is equal to a. 9 b. 12 c. 27 d. 81

A. 9

B. 12

C. 27

D. 81

Answer: c

Watch Video Solution

(where
$$\vec{a}$$
, \vec{b} and \vec{c} are non - zero non- colanar vectors). $(a) \left[\vec{a} \vec{b} \vec{c} \right]^2$

$$(b) \left[\vec{a} \vec{b} \vec{c} \right]^3 (c) \left[\vec{a} \vec{b} \vec{c} \right]^4 (d) \left[\vec{a} \vec{b} \vec{c} \right]$$

91. $\left[\left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \left(\vec{b} \times \vec{c} \right) \times \left(\vec{c} \times \vec{a} \right) \left(\vec{c} \times \vec{a} \right) \times \left(\vec{a} \times \vec{b} \right) \right]$ is equal to

A.
$$\left[\vec{a}\vec{b}\vec{c}\right]^2$$

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]^3$$

C.
$$\left[\vec{a}\vec{b}\vec{c}\right]^4$$

D.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

Answer: c

Watch Video Solution

92.

If

$$\vec{r} = x_1 (\vec{a} \times \vec{b}) + x_2 (\vec{b} \times \vec{a}) + x_3 (\vec{c} \times \vec{d})$$
 and $4 [\vec{a}\vec{b}\vec{c}] = 1$ then $x_1 + x_2 + x_3$

is equal to

A.
$$\frac{1}{2}\vec{r}$$
. $(\vec{a} + \vec{b} + \vec{c})$

$$B. \frac{1}{4}\vec{r}. \left(\vec{a} + \vec{b} + \vec{c}\right)$$

$$\mathsf{C.}\,2\vec{r}.\left(\vec{a}+\vec{b}+\vec{c}\right)$$

D.
$$4\vec{r}$$
. $(\vec{a} + \vec{b} + \vec{c})$

Answer: d

93. If $\vec{a} \perp \vec{b}$ then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations

$$\vec{v}$$
. Veca = 0 nad \vec{v} . Vecb = 1 and $[\vec{a}\vec{a}\vec{b}] = 1$ is

A.
$$\frac{\vec{b}}{\left|\vec{b}\right|^2} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^2}$$

B.
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|^2}$$

C.
$$\frac{\vec{b}}{\left|\vec{b}\right|} + \frac{\vec{a} \times \vec{b}}{\left|\vec{a} \times \vec{b}\right|}$$

D. none of these

Answer: a

Watch Video Solution

94. If $\vec{a}' = \hat{i} + \hat{j}$, $\vec{b}' = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{c}' = 2\hat{i} - \hat{j} - \hat{k}$ then the altitude of the parallelepiped formed by the vectors, \vec{a} , \vec{b} and \vec{c} having base formed by \vec{b} and \vec{c} is (where \vec{a}' is recipocal vector \vec{a}) (a)1 (b)3 $\sqrt{2}/2$ (c)1/ $\sqrt{6}$ (d)1/ $\sqrt{2}$

- B. $3\sqrt{2}/2$
- C. $1/\sqrt{6}$
- D. $1/\sqrt{2}$

Answer: d

- **95.** If $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = \hat{j} + \hat{k}$, $\vec{c} = \hat{k} + \hat{i}$ then in the reciprocal system of vectors
- \vec{a} , \vec{b} , \vec{c} reciprocal \vec{a} of vector \vec{a} is

A.
$$\frac{\hat{i} + \hat{j} + \hat{k}}{2}$$

B.
$$\frac{\hat{i} - \hat{j} + \hat{k}}{2}$$

$$\mathsf{C.}\,\frac{-\hat{i}-\hat{j}+\hat{k}}{2}$$

D.
$$\frac{\hat{i} + \hat{j} - \hat{k}}{2}$$

Answer: d

Watch Video Solution

96. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that

 $\left| \vec{a} - \vec{b} \right| < 1$ and $0 \le \theta \le \pi$, then θ lies in the interval

A.
$$[0, \pi/6)$$

C.
$$[\pi/6, \pi/2]$$

B. $(5\pi/6, \pi]$

D.
$$(\pi/2, 5\pi/6]$$

Answer: a,b

97.
$$\vec{b}$$
 and \vec{c} are non-collinear if $\vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b})\vec{b} = (4 - 2x - \sin y)\vec{b} + (x^2 - 1)\vec{c}nad(\vec{a} \cdot \vec{c})\vec{a} = \vec{a}$ then

a. x =1 b. x = -1 c. y =
$$(4n + 1)\frac{\pi}{2}$$
, $n \in I$ d. $y(2n + 1)\frac{\pi}{2}$, $n \in I$

A.
$$x = 1$$

C.
$$y = (4n + 1)\frac{\pi}{2}, n \in I$$

$$D. y(2n+1)\frac{\pi}{2}, n \in I$$

Answer: a,c

98. Unit vectors
$$\vec{a}$$
 and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and \vec{b} . If $\alpha \vec{a} + \beta \vec{b} + \gamma (\vec{a} \times \vec{b})$ then.

A.
$$\alpha = \beta$$

B.
$$v^2 = 1 - 2\alpha^2$$

$$C. \gamma^2 = -\cos 2\theta$$

$$D. \beta^2 = \frac{1 + \cos 2\theta}{2}$$

Watch Video Solution

99. If vectors \vec{a} and \vec{b} are two adjecent sides of a paralleogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is

A.
$$\frac{\left(\vec{a}.\vec{b}\right)}{|\vec{a}|^2}\vec{a}-\vec{b}$$

B.
$$\frac{1}{|\vec{a}|^2} \left\{ |\vec{a}|^2 \vec{b} - (\vec{a}. \vec{b}) \vec{a} \right\}$$

C.
$$\frac{\vec{a} \times \left(\vec{a} \times \vec{b}\right)}{|\vec{a}|^2}$$

D.
$$\frac{\vec{a} \times (\vec{b} \times \vec{a})}{|\vec{b}|^2}$$

Answer: a,b,c

100. If $\vec{a} \times (\vec{b} \times \vec{c})$ is perpendicular to $(\vec{a} \times \vec{b}) \times \vec{c}$, we may have

A.
$$(\vec{a}.\vec{b})|\vec{b}|^2 = (\vec{a}.\vec{b})(\vec{b}.\vec{c})$$

$$\mathbf{B}.\,\vec{a}.\,\vec{b}=0$$

C.
$$\vec{a}$$
. $\vec{c} = 0$

D.
$$\vec{b}$$
. $\vec{c} = 0$

Answer: a,c

Watch Video Solution

101. Let \vec{a} , \vec{b} and \vec{c} be vectors forming right- hand triad . Let

$$\vec{P} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}, \vec{q} \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]} \text{ and } \vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]} Ifx \cup R^+ \text{ then}$$

A.
$$x \left[\vec{a} \vec{b} \vec{c} \right] + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x}$$
 has least value 2

B.
$$x^2 \left[\vec{a} \vec{b} \vec{c} \right]^2 + \frac{\left[\vec{p} \vec{q} \vec{r} \right]}{x^2}$$
 has least value $\left(3/2^{2/3} \right)$

C.
$$[\vec{p}\vec{q}\vec{r}] > 0$$

D. none of these

each other

Answer: a,c

Watch Video Solution

102. $a_1, a_2, a_3 \in R$ - {0} and $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ " for all " x in R then (a) vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = 4 \hat{i} + 2 \hat{j} + \hat{k}$ are perpendicular to each other (b)vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 2 \hat{k}$ are parallel to each each other (c)if vector $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ is of length $\sqrt{6}$ units, then on of the ordered trippplet $(a_1, a_2, a_3) = (1, -1, -2)$ (d)if $2a_1 + 3a_2 + 6a_3 = 26$, then $|\vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k}| is 2\sqrt{6}$

A. vectors $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ and $\vec{b}=4\hat{i}+2\hat{j}+\hat{k}$ are perpendicular to each other

B. vectors $\vec{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+2\hat{k}$ are parallel to each

C. if vector $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ is of length $\sqrt{6}$ units, then on of the

ordered trippplet
$$(a_1, a_2, a_3) = (1, -1, -2)$$

D. if
$$2a_1 + 3a_2 + 6a_3 + 6a_3 = 26$$
, then $\left| \vec{a}\hat{i} + a_2\hat{j} + a_3\hat{k} \right| is 2\sqrt{6}$

Answer: a,b,c,d

Watch Video Solution

103. If \vec{a} and \vec{b} are two vectors and angle between them is θ , then

A.
$$|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2$$

B.
$$|\vec{a} \times \vec{b}|^2 + (\vec{a} \cdot \vec{b})^2$$
, if $\theta = \pi/4$

C.
$$\vec{a} \times \vec{b} = (\vec{a}. Vecb)\hat{n}$$
 (where \hat{n} is a normal unit vector) if $\theta f = \pi/4$

D.
$$(\vec{a} \times \vec{b})$$
. $(\vec{a} + \vec{b}) = 0$

Answer: a,b,c,d

104. Let \vec{a} and \vec{b} be two non-zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b} = \vec{a}$ can be

A.
$$\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$$

$$B. 2\vec{b} - \frac{\vec{a} \times \vec{b}}{\left|\vec{b}\right|^2}$$

C.
$$\left| \vec{a} \right| \vec{b} - \frac{\vec{a} \times \vec{b}}{\left| \vec{b} \right|^2}$$

D.
$$\left| \vec{b} \right| \vec{b} - \frac{\vec{a} \times \vec{b}}{\left| \vec{b} \right|^2}$$

Answer: a,b,cd,

Watch Video Solution

105. If vector $\vec{b} = \left(tan\alpha, -1, 2\sqrt{\sin\alpha/2}\right)$ and $\vec{c} = \left(tan\alpha, tan\alpha, -\frac{3}{\sqrt{\sin\alpha/2}}\right)$ are orthogonal and vector $\vec{a} = (1, 3, \sin2\alpha)$ makes an obtuse angle with the z-axis, then the value of α is

A.
$$\alpha = (4n + 1)\pi + \tan^{-1}2$$

B.
$$\alpha = (4n + 1)\pi - \tan^{-1}2$$

C.
$$\alpha = (4n + 2)\pi + \tan^{-1}2$$

D.
$$\alpha = (4n + 2)\pi - \tan^{-1}2$$

Answer: b,d

106. Let
$$\vec{r}$$
 be a unit vector satisfying $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}$ and $|\vec{b}| = \sqrt{2}$, then $(a)\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$ (b)

$$\vec{r} = \frac{1}{3} \left(\vec{a} + \vec{a} \times \vec{b} \right) (c) \vec{r} = \frac{2}{3} \left(\vec{a} - \vec{a} \times \vec{b} \right) (d) \vec{r} = \frac{1}{3} \left(-\vec{a} + \vec{a} \times \vec{b} \right)$$

A.
$$\vec{r} = \frac{2}{3} \left(\vec{a} + \vec{a} \times \vec{b} \right)$$

B.
$$\vec{r} = \frac{1}{3} \left(\vec{a} + \vec{a} \times \vec{b} \right)$$

$$C. \vec{r} = \frac{2}{3} \left(\vec{a} - \vec{a} \times \vec{b} \right)$$

D.
$$\vec{r} = \frac{1}{3} \left(-\vec{a} + \vec{a} \times \vec{b} \right)$$

Answer: b.d

Watch Video Solution

If $ec{a}$ and $ec{b}$ are unequal unit vectors 107. that such $(\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b}$ then angle θ between \vec{a} and \vec{b} is

A. 0

 $B.\pi/2$

 $C. \pi/4$

 $D. \pi$

Answer: b,d

Watch Video Solution

108. If \vec{a} and \vec{b} are two unit vectors perpenicualar to each other and $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$, then which of the following is (are) true?

$$A. \lambda_1 = \vec{a}. \vec{c}$$

$$\mathbf{B.}\,\lambda_2 = \left| \vec{b} \times \vec{c} \right|$$

$$C. \lambda_3 = \left| \left(\vec{a} \times \vec{b} \right| \times \vec{c} \right|$$

D.
$$\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})$$

Answer: a,d

Watch Video Solution

109. If vectors
$$\vec{a}$$
 and \vec{b} are non collinear then $\frac{\vec{a}}{\left|\vec{a}\right|} + \frac{\vec{b}}{\left|\vec{b}\right|}$ is (A) a unit vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$

A. a unit vector

B. in the plane of \vec{a} and \vec{b}

C. equally inclined to \vec{a} and \vec{b}

D. perpendicular to $\vec{a} \times \vec{b}$

Answer: b,c,d

Watch Video Solution

110. If \vec{a} and \vec{b} are non - zero vectors such that $|\vec{a} + \vec{b}| = |\vec{a} - 2\vec{b}|$ then

$$A. \, 2\vec{a}. \, \vec{b} = \left| \vec{b} \right|^2$$

$$B. \vec{a}. \vec{b} = \left| \vec{b} \right|^2$$

C. least value of
$$\vec{a}$$
. Vecb + $\frac{1}{|\vec{b}|^2 + 2}$ is $\sqrt{2}$

D. least value of
$$\vec{a} \cdot \vec{b} + \frac{1}{\left|\vec{b}\right|^2 + 2}$$
 is $\sqrt{2} - 1$

Answer: a,d

Watch Video Solution

111. Let $\vec{a}\vec{b}$ and \vec{c} be non-zero vectors aned

 $\vec{V}_1 = \vec{a} \times \left(\vec{b} \times \vec{c} \right) \text{ and } \vec{V}_2 = \left(\vec{a} \times \vec{b} \right) \times \vec{c}. \text{vectors } \vec{V}_1 \text{ and } \vec{V}_2 \text{ are equal }.$

Then

A. \vec{a} and \vec{b} ar orthogonal

B. \vec{a} and \vec{c} are collinear

C. \vec{b} and \vec{c} ar orthogonal

D. $\vec{b} = \lambda (\vec{a} \times \vec{c})$ when λ is a scalar

Answer: b,d

Watch Video Solution

112. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A} + \vec{B} = \vec{a}, \vec{A} \times \vec{B} = \vec{b}$ and $\vec{A}. \vec{a} = 1$. where veca and \vec{b} are given vectosrs, are

A.
$$\vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) - \vec{a}}{a^2}$$
B. $\vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) + \vec{a}\left(a^2 - 1\right)}{a^2}$

$$C. \vec{A} = \frac{\left(\vec{a} \times \vec{b}\right) + \vec{a}}{a^2}$$

$$D. \vec{B} = \frac{\left(\vec{b} \times \vec{a}\right) - \vec{a}\left(a^2 - 1\right)}{a^2}$$

Answer: b,c,

Watch Video Solution

113. A vector
$$(\vec{d})$$
 is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$ let \vec{x} , \vec{y} , \vec{z} be three in the plane of

$$\vec{a}$$
, \vec{b} , \vec{c} , \vec{c} , \vec{c} , \vec{a} respectively, then

A.
$$\vec{x} \cdot \vec{d} = -1$$

$$\mathbf{B}.\,\vec{y}.\,\vec{d}=1$$

D. vecr.vecd=0, " where " vecr=lambda vecx + mu vecy +deltavecz`

Answer: c.d

114. Vectors Perpendicular to
$$\hat{i} - \hat{j} - \hat{k}$$
 and in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ are

A.
$$\hat{i} + \hat{k}$$

$$B. 2\hat{i} + \hat{j} + \hat{k}$$

$$\mathsf{C.}\,3\hat{i}+2\hat{j}+\hat{k}$$

D.
$$-4\hat{i} - 2\hat{j} - 2\hat{k}$$

Answer: b,d

 $\stackrel{
ightharpoonup}{\to}$ 115. if side AB of an equilateral triangle ABC lying in the x-y plane is $3\hat{i}$.

Then side *CB* can be

$$A. -\frac{3}{2} \left(\hat{i} - \sqrt{3} \hat{j} \right)$$

C.
$$-\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})$$

D. $\frac{3}{2}(\hat{i} + \sqrt{3}\hat{j})$

 $B. - \frac{3}{2} \left(\hat{i} - \sqrt{3} \hat{j} \right)$

Answer: b,d

116. The angles of a triangle , two of whose sides are respresented by vectors $\sqrt{3}(\hat{a} \times \vec{b})$ and \hat{b} - $(\hat{a}. Vecb)\hat{a}$ where \vec{b} is a non - zero vector and

$$\vec{a}$$
 is a unit vector in the direction of \vec{a} . Are

A.
$$\tan^{-1}\left(\sqrt{3}\right)$$

B.
$$\tan^{-1}\left(1/\sqrt{3}\right)$$

C.
$$\cot^{-1}(0)$$

Answer: a,b,c

117. \vec{a} , \vec{b} and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicualt to them, $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{k}$, and the angle between \vec{a} and \vec{b} is 30° then \vec{c} is

A.
$$(\hat{i} - 2\hat{j} + 2\hat{k})/3$$

$$B.\left(-\hat{i}+2\hat{j}-2\hat{k}\right)/3$$

$$C.\left(-\hat{i}+2\hat{j}-\hat{k}\right)/3$$

D.
$$\left(-2\hat{i}-2\hat{j}+\hat{k}\right)/3$$

Answer: a,b

118. If
$$\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$$
 then $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$

A.
$$2(\vec{a} \times \vec{b})$$

$$\mathsf{B.6}\Big(\vec{b}\times\vec{c}\,\Big)$$

C.
$$3(\vec{c} \times \vec{a})$$

D.
$$\vec{0}$$

Answer: c,d

Watch Video Solution

119. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b}$ and

$$\vec{v} = \vec{a} \times \vec{b}$$
, then $|\vec{v}|$ is

A.
$$|\vec{u}|$$

B.
$$\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{b} \right|$$

C.
$$\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{a} \right|$$

D. none of these

Answer: b,d

120. if
$$\vec{a} \times \vec{b} = \vec{c}$$
, $\vec{b} \times \vec{c} = \vec{a}$, where $\vec{c} \neq \vec{0}$ then (a) $|\vec{a}| = |\vec{c}|$ (b) $|\vec{a}| = |\vec{b}|$

(c)
$$|\vec{b}| = 1$$
 (d) $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$

A.
$$\left| \vec{a} \right| = \left| \vec{c} \right|$$

$$B. \left| \vec{a} \right| = \left| \vec{b} \right|$$

C.
$$\left| \vec{b} \right| = 1$$

D.
$$|\vec{a}| = \vec{b}| = |\vec{c}| = 1$$

Answer: a,c

Watch Video Solution

121. Let \vec{a} , \vec{b} , and \vec{c} be three non-coplanar vectors and \vec{d} be a non-zero ,

which

perpendicular

to

$$(\vec{a} + \vec{b} + \vec{c})$$
. Now $\vec{d} = (\vec{a} \times \vec{b})\sin x + (\vec{b} \times \vec{c})\cos y + 2(\vec{c} \times \vec{a})$. Then

A.
$$\frac{\vec{d} \cdot (\vec{a} + \vec{c})}{\left[\vec{a}\vec{b}\vec{c}\right]} = 2$$

B.
$$\frac{\vec{d}. (\vec{a} + \vec{c})}{\left[\vec{a}\vec{b}\vec{c}\right]} = -2$$

C. minimum value of $x^2 + y^2 i s \pi^2 / 4$

D. minimum value of $x^2 + y^2 is 5\pi^2/4$

Answer: b.d

122.

Watch Video Solution

If \vec{a} , \vec{b} and \vec{c} are three

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$$
, then $(\vec{b} \text{ and } \vec{c} \text{ being non parallel})$

unit

vectors

such

that

A. angle between \vec{a} and $bis\pi/3$

B. angle between \vec{a} and \vec{c} is $\pi/3$

C. angle between \vec{a} and $\vec{b}is\pi/2$

D. angle between \vec{a} and \vec{c} is $\pi/2$

Answer: b,c

Watch Video Solution

123. If in triangle ABC, $\overrightarrow{AB} = \frac{\overrightarrow{u}}{\left|\overrightarrow{u}\right|} - \frac{\overrightarrow{v}}{\left|\overrightarrow{v}\right|}$ and $\overrightarrow{AC} = \frac{2\overrightarrow{u}}{\left|\overrightarrow{u}\right|}$, where $\left|\overrightarrow{u}\right| \neq \left|\overrightarrow{v}\right|$, then $(a)1 + \cos 2A + \cos 2B + \cos 2C = 0$ (b) $\sin A = \cos C$ (c) projection of AC on BC is equal to BC (d) projection of AB on BC is equal to AB

A.
$$1 + \cos 2A + \cos 2B + \cos 2C = 0$$

$$B. \sin A = \cos C$$

C. projection of AC on BC is equal to BC

D. projection of AB on BC is equal to AB

Answer: a,b,c

124. $\left[\vec{a} \times \vec{b} \quad \vec{c} \times \vec{d} \quad \vec{e} \times \vec{f} \right]$ is equal to

(a)
$$\left[\vec{a}\vec{b}\vec{d}\right] \left[\vec{c}\vec{e}\vec{f}\right] - \left[\vec{a}\vec{b}\vec{c}\right] \left[\vec{d}\vec{e}\vec{f}\right]$$

(b)
$$\left[\vec{a}\vec{b}\vec{e}\right]\left[\vec{f}\vec{c}\vec{d}\right]$$
 - $\left[\vec{a}\vec{b}\vec{f}\right]\left[\vec{e}\vec{c}\vec{d}\right]$

$$(\mathsf{c}) \left[\vec{c} \, \vec{d} \, \vec{a} \, \right] \left[\vec{b} \, \vec{e} \, \vec{f} \, \right] - \left[\vec{a} \, \vec{d} \, \vec{b} \, \right] \left[\vec{a} \, \vec{e} \, \vec{f} \, \right]$$

(d)
$$\left[\vec{a}\vec{c}\vec{e}\right]\left[\vec{b}\vec{d}\vec{f}\right]$$

$$\mathsf{A.} \left[\vec{a} \vec{b} \vec{d} \right] \left[\vec{c} \vec{e} \vec{f} \right] - \left[\vec{a} \vec{b} \vec{c} \right] \left[\vec{d} \vec{e} \vec{f} \right]$$

B.
$$\left[\vec{a}\vec{b}\vec{e} \right] \left[\vec{f}\vec{c}\vec{d} \right] - \left[\vec{a}\vec{b}\vec{f} \right] \left[\vec{e}\vec{c}\vec{d} \right]$$

C.
$$\left[\vec{c}\vec{d}\vec{a}\right]\left[\vec{b}\vec{e}\vec{f}\right]$$
 - $\left[\vec{a}\vec{d}\vec{b}\right]\left[\vec{a}\vec{e}\vec{f}\right]$

D.
$$\left[\vec{a}\vec{c}\vec{e}\right]\left[\vec{b}\vec{d}\vec{f}\right]$$

Answer: a,b,c

Watch Video Solution

125. The scalars I and m such that $l\vec{a}+m\vec{b}=\vec{c}$, where \vec{a},\vec{b} and \vec{c} are given vectors, are equal to

A.
$$l = \frac{\left(\vec{c} \times \vec{b}\right) \cdot \left(\vec{a} \times \vec{b}\right)}{\left(\vec{a} \times \vec{b}\right)^2}$$

$$\left(\vec{c} \times \vec{a}\right) \cdot \left(\vec{b} \times \vec{a}\right)$$

B.
$$l = \frac{\left(\vec{c} \times \vec{a}\right).\left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$$

$$\left(\vec{c} \times \vec{a}\right).\left(\vec{b} \times \vec{a}\right)$$

C.
$$m = \frac{\left(\vec{c} \times \vec{a}\right) \cdot \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)^2}$$
D. $m = \frac{\left(\vec{c} \times \vec{a}\right) \cdot \left(\vec{b} \times \vec{a}\right)}{\left(\vec{b} \times \vec{a}\right)}$

126. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$. $(\vec{a} \times \vec{d}) = 0$ then which of the following may be

A. \vec{a} , \vec{b} and \vec{d} are nenessarily coplanar

B. \vec{a} lies iin the plane of \vec{c} and \vec{d}

C. $\vec{v}b$ lies in the plane of \vec{a} and \vec{d}

D. \vec{c} lies in the plane of \vec{a} and \vec{d}

Answer: b,c,d

Watch Video Solution

127. A,B C and dD are four points such that

$$\overrightarrow{AB} = m\left(2\hat{i} - 6\hat{j} + 2\hat{k}\right)\overrightarrow{BC} = \left(\hat{i} - 2\hat{j}\right) \text{ and } \overrightarrow{CD} = n\left(-6\hat{i} + 15\hat{j} - 3\hat{k}\right). \quad \text{If} \quad CD$$

intersects AB at some points E, then

A.
$$m \ge 1/2$$

B.
$$n \ge 1/3$$

Answer: a,b

128. If the vectors \vec{a} , \vec{b} , \vec{c} are non -coplanar and l, m, n are distinct scalars such that

$$\left[l\vec{a} + m\vec{b} + n\vec{c} \quad l\vec{b} + m\vec{c} + n\vec{a} \quad l\vec{c} + m\vec{a} + n\vec{b} \right] = 0 \text{ then}$$

A.
$$l + m + n = 0$$

B. roots of the equation $lx^2 + mx + n = 0$ are equal

C.
$$l^2 + m^2 + n^2 = 0$$

D.
$$l^3 + m^2 + n^3 = 3lmn$$

Answer: a,b,d

Watch Video Solution

129. Let $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$, $\vec{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\vec{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplnar vectors with $a \neq b$, and $\vec{v} = \hat{i} + \hat{j} + \hat{k}$. Then \vec{v} is perpendicular to

$$\vec{A}$$
. $\vec{\alpha}$

$$\mathbf{B}.\,\vec{\boldsymbol{\beta}}$$

$$\vec{C}$$
. $\vec{\gamma}$

D. none of these

Answer: a,b,c

Watch Video Solution

130. If vectors
$$\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{B} = \hat{i} + \hat{j} + 5\hat{k}$ and \vec{C} form a left handed system then \vec{C} is (A) $11\hat{i} - 6\hat{j} - \hat{k}$ (B) $-11\hat{i} + 6\hat{j} + \hat{k}$ (C) $-11\hat{i} + 6\hat{j} - \hat{k}$ (D)

$$-11\hat{i} + 6\hat{j} - \hat{k}$$

A.
$$11\hat{i} - 6\hat{j} - \hat{k}$$

B. -
$$11\hat{i}$$
 - $6\hat{j}$ - \hat{k}

C. -
$$11\hat{i}$$
 - $6\hat{j}$ + \hat{k}

D. -
$$11\hat{i} + 6\hat{j} - \hat{k}$$

Answer: b,d

If
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$
, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$ and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$,

then
$$\vec{a} \times (\vec{b} \times \vec{c})$$
 is

(a)parallel to
$$(y-z)\hat{i} + (z-x)\hat{j} + (x-y)\hat{k}$$
 (b)orthogonal to $\hat{i} + \hat{j} + \hat{k}$ (c)orthogonal to $(y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$ (d)orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

A. parallel to
$$(y - z)\hat{i} + (z - x)\hat{j} + (x - y)\hat{k}$$

B. orthogonal to
$$\hat{i} + \hat{j} + \hat{k}$$

C. orthogonal to
$$(y + z)\hat{i} + (z + x)\hat{j} + (x + y)\hat{k}$$

D. orthogonal to
$$x\hat{i} + y\hat{j} + z\hat{k}$$

Answer: a,b,c,d

132. If
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$
 then

A.
$$(\vec{c} \times \vec{a}) \times \vec{b} = \vec{0}$$

$$B. \ \vec{c} \times \left(\vec{a} \times \vec{b} \right) = \vec{0}$$

$$\mathsf{C.}\;\vec{b}\times\left(\vec{c}\times\vec{a}\right)=\vec{0}$$

D.
$$\vec{c} \times \vec{a} \times \vec{b} = \vec{b} \times (\vec{c} \times \vec{a}) = \vec{0}$$

Answer: a,c,d

Watch Video Solution

 \vec{a} , \vec{b} , \vec{c} , \vec{c} , \vec{c} , \vec{a} respectively, then

133. A vector
$$(\vec{d})$$
 is equally inclined to three vectors $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = 3\hat{j} - 2\hat{k}$ let $\vec{x}, \vec{y}, \vec{z}$ be three in the plane of

vectors

$$\mathbf{A}.\ \vec{\mathbf{z}}.\ \vec{\mathbf{d}}=\mathbf{0}$$

$$A. 2. u - 0$$

$$\mathbf{B.}\ \vec{x}.\ \vec{d}=1$$

C. \vec{v} . $\vec{d} = 32$

D.
$$\vec{r} \cdot \vec{d} = 0$$
, where $\vec{r} = \lambda \vec{x} + \mu \vec{y} + \gamma \vec{z}$

Answer: a,d

134. A parallelogram is constructed on the vectors

$$\vec{a} = 3\vec{\alpha} - \vec{\beta}$$
, $\vec{b} = \vec{\alpha} + 3\vec{\beta}$. If $|\vec{\alpha}| = |\vec{\beta}| = 2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is

A.
$$4\sqrt{5}$$

B.
$$4\sqrt{3}$$

C.
$$4\sqrt{7}$$

D. none of these

Answer: b,c

Watch Video Solution

Reasoning type

1. (a) Statement 1: Vector $\vec{c} = -5\hat{i} + 7\hat{j} + 2\hat{k}$ is along the bisector of angle

between
$$\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\vec{b} = 8\hat{i} + \hat{j} - 4\hat{k}$.

Statement 2: \vec{c} is equally inclined to \vec{a} and \vec{b} .

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: b

Watch Video Solution

2. Statement1: A component of vector $\vec{b} = 4\hat{i} + 2\hat{j} + 3\hat{k}$ in the direction perpendicular to the direction of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}is\hat{i} - \hat{j}$

 $\vec{a} = \hat{i} + \hat{j} + \hat{k}is2\hat{i} + 2\hat{j} + 2\hat{k}$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

Statement 2: A component of vector in the direction

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: c

3. Statement 1: Distance of point D(1,0,-1) from the plane of points A(1,-2,0), B (3, 1,2) and C(-1,1,-1) is $\frac{8}{\sqrt{229}}$

Statement 2: volume of tetrahedron formed by the points A,B, C and D is $\sqrt{229}$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: d

Watch Video Solution

4. Let \vec{r} be a non - zero vector satisfying \vec{r} . $\vec{a} = \vec{r}$. $\vec{b} = \vec{r}$. $\vec{c} = 0$ for given non-zero vectors $\vec{a}\vec{b}$ and \vec{c}

Statement 1: $\left[\vec{a} - \vec{b}\vec{b} - \vec{c}\vec{c} - \vec{a}\right] = 0$

Statement 2: $\left[\vec{a}\vec{b}\vec{c}\right] = 0$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: b

Watch Video Solution

5. Statement 1: If $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b}\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are three mutually perpendicular unit vectors then $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ and $a_3\hat{i} + b_3\hat{j} + c_3\hat{k}$ may be mutually perpendicular unit vectors.

Statement 2: value of determinant and its transpose are the same.

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: a

Watch Video Solution

6. Statement 1:
$$\vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
, $\vec{B} = \hat{u} + \hat{j} - 2\hat{k}$ and $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$ then

$$\left| \vec{A} \times \left(\vec{A} \times \left(\vec{A} \times \vec{B} \right) \right) \cdot \vec{C} \right| = 243$$

Statement 2:
$$|\vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \cdot \vec{C}| = |\vec{A}|^2 |[\vec{A}\vec{B}\vec{C}]|$$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: d

Watch Video Solution

7. Statement 1: \vec{a} , \vec{b} and \vec{c} arwe three mutually perpendicular unit vectors and \vec{d} is a vector such that \vec{a} , \vec{b} , \vec{c} and \vec{d} are non-coplanar. If $\left[\vec{d}\vec{b}\vec{c}\right] = \left[\vec{d}\vec{a}\vec{b}\right] = \left[\vec{d}\vec{c}\vec{a}\right] = 1$, then $\vec{d} = \vec{a} + \vec{b} + \vec{c}$

Statement 2: $\vec{d}\vec{b}\vec{c}$ = $\vec{d}\vec{a}\vec{b}$ = $\vec{d}\vec{c}\vec{a}$ $\Rightarrow \vec{d}$ is equally inclined to \vec{a} , \vec{b} and \vec{c} .

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: b

Watch Video Solution

8. Consider three vectors \vec{a} , \vec{b} and \vec{c}

Statement 1: $\vec{a} \times \vec{b} = ((\hat{i} \times \vec{a}). \vec{b})\hat{i} + ((\hat{j} \times \vec{a}). \vec{b})\hat{j} + (\hat{k} \times \vec{a}). \vec{b})\hat{k}$

Statement 2: $\vec{c} = (\hat{i}.\vec{c})\hat{i} + (\hat{j}.\vec{c})\hat{j} + (\hat{k}.\vec{c})\hat{k}$

A. Both the statements are true and statement 2 is the correct explanation for statement 1.

B. Both statements are true but statement 2 is not the correct explanation for statement 1.

C. Statement 1 is true and Statement 2 is false

D. Statement 1 is false and Statement 2 is true.

Answer: a

Watch Video Solution

Comprehension type

1. Let
$$\vec{u}$$
, \vec{v} and \vec{w} be three unit vectors such that

$$\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$$
 and

Vector \vec{w} is

A.
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$

B.
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

C.
$$2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$$

D.
$$\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$$

Answer: b

Watch Video Solution

2. Let \vec{u} , \vec{v} and \vec{w} be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{a}$, $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$, $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}$, \vec{a} . $\vec{u} = 3/2$, \vec{a} . $\vec{v} = 7/4$ and

Vector
$$\vec{w}$$
 is

A. (a)
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$

B. (b)
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

C. (c)
$$2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$$

D. (d)
$$\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$$

Answer: c

3. Let \vec{u} , \vec{v} and \vec{w} be three unit vectors such that

$$\vec{u} + \vec{v} + \vec{w} = \vec{a}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{c}, \vec{a}. \vec{u} = 3/2, \vec{a}. \vec{v} = 7/4$$
 and Vector \vec{u} is

A. (a)
$$\vec{a} - \frac{2}{3}\vec{b} + \vec{c}$$

B. (b)
$$\vec{a} + \frac{4}{3}\vec{b} + \frac{8}{3}\vec{c}$$

C. (c) $2\vec{a} - \vec{b} + \frac{1}{3}\vec{c}$

D. (a)
$$\frac{4}{3}\vec{a} - \vec{b} + \frac{2}{3}\vec{c}$$

Answer: d

4. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .

5. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$, find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} .

A.
$$\frac{1}{2} \left[\left(\vec{a} + \vec{c} \right) \times \vec{b} - \vec{b} - \vec{a} \right]$$

$$B. \frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{b} + \vec{b} + \vec{a} \right]$$

$$C. \frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} + \vec{a} \right]$$

D.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{a} + \vec{b} - \vec{a} \right]$$

Answer: c

Watch Video Solution

6. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$. Find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} , \vec{c} .

A.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{c} \right) \times \vec{c} - \vec{b} + \vec{a} \right]$$

B.
$$\frac{1}{2} \left[\left(\vec{a} - \vec{b} \right) \times \vec{c} + \vec{b} - \vec{a} \right]$$

$$C. \frac{1}{2} \left[\vec{c} \times \left(\vec{a} - \vec{b} \right) + \vec{b} + \vec{a} \right]$$

Answer: b

Watch Video Solution

7. If
$$\vec{x} \times \vec{y} = \vec{a}$$
, $\vec{y} \times \vec{z} = \vec{b}$, \vec{x} . $\vec{b} = \gamma$, \vec{x} . $\vec{y} = 1$ and \vec{y} . $\vec{z} = 1$ then find x,y,z in terms of \vec{a} , \vec{b} and γ .

A.
$$\frac{1}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

B.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} - \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$
C.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} \times \vec{b} + \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

D. none of these

Answer: b

8. If
$$\vec{x} \times \vec{y} = \vec{a}$$
, $\vec{y} \times \vec{z} = \vec{b}$, \vec{x} . $\vec{b} = \gamma$, \vec{x} . $\vec{y} = 1$ and \vec{y} . $\vec{z} = 1$ then find x,y,z in terms of \vec{a} , \vec{b} and γ .

A.
$$\frac{\vec{a} \times \vec{b}}{\gamma}$$

B.
$$\vec{a} + \frac{\vec{a} \times \vec{b}}{v}$$

$$C. \vec{a} + \vec{b} + \frac{\vec{a} \times \vec{b}}{\gamma}$$

Answer: a

Watch Video Solution

9. Vectors \vec{x} , \vec{y} , \vec{z} each of magnitude $\sqrt{2}$ make angles of 60^0 with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$. Find \vec{x} , \vec{y} , \vec{z} in terms of \vec{a} , \vec{b} , \vec{c} .

A.
$$\frac{\gamma}{\left|\vec{a}\times\vec{b}\right|^{2}}\left[\vec{a}+\vec{b}\times\left(\vec{a}\times\vec{b}\right)\right]$$

B.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} + \vec{b} - \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$
C.
$$\frac{\gamma}{\left|\vec{a} \times \vec{b}\right|^{2}} \left[\vec{a} + \vec{b} + \vec{a} \times \left(\vec{a} \times \vec{b}\right)\right]$$

Answer: c

Watch Video Solution

the vector satisfying the equation
$$\vec{P} \times \vec{B} = \vec{A} - \vec{P}$$
. then

10. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be

$$(\vec{P} \times \vec{B}) \times \vec{B}$$
 is equal to

A.
$$\vec{P}$$

$$\mathsf{B.-}\vec{P}$$

 $\mathsf{D}.\,\vec{A}$

Answer: b

Watch Video Solution

11. Given two orthogonal vectors \vec{A} and \vec{B} each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then

 $ec{P}$ is equal to

A.
$$\frac{\vec{A}}{2} + \frac{\vec{A} \times \vec{B}}{2}$$

$$B. \frac{\vec{A}}{2} + \frac{\vec{B} \times \vec{A}}{2}$$

$$\mathsf{C.}\,\frac{\vec{A}\times\vec{B}}{2}-\frac{\vec{A}}{2}$$

$$\mathsf{D}.\,\vec{A}\times\vec{B}$$

Answer: b

12. Given two orthogonal vectors \vec{A} and VecB each of length unity. Let \vec{P} be the vector satisfying the equation $\vec{P} \times \vec{B} = \vec{A} - \vec{P}$. then which of the following statements is false ?

A. vectors \vec{P} , \vec{A} and $\vec{P} \times \vec{B}$ ar linearly dependent.

B. vectors \vec{P} , \vec{B} and $\vec{P} \times \vec{B}$ ar linearly independent

C. \vec{P} is orthogonal to \vec{B} and has length $\frac{1}{\sqrt{2}}$.

D. none of these

Answer: d

Watch Video Solution

13. Let $\vec{a}=2\hat{i}+3\hat{j}-6\hat{k}$, $\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}$ and $\vec{c}=-2\hat{i}+3\hat{j}+6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then \vec{a}_2 is equal to

A.
$$\frac{943}{49} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$$

B.-41/7

D. 287

Watch Video Solution

B. $\frac{943}{49^2} \left(2\hat{i} - 3\hat{j} - 6\hat{k} \right)$

C. $\frac{943}{49} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$

D. $\frac{943}{49^2} \left(-2\hat{i} + 3\hat{j} + 6\hat{k} \right)$

14. Let $\vec{a} = 2\hat{i} + 3\hat{j} - 6\hat{k}$, $\vec{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$ and $\vec{c} = -2\hat{i} + 3\hat{j} + 6\hat{k}$. Let \vec{a}_1 be

the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then

Answer: b

 \vec{a}_1 . \vec{b} is equal to

A. -41

Answer: a

15. Let
$$\vec{a}=2\hat{i}+3\hat{j}-6\hat{k}$$
, $\vec{b}=2\hat{i}-3\hat{j}+6\hat{k}$ and $\vec{c}=-2\hat{i}+3\hat{j}+6\hat{k}$. Let \vec{a}_1 be the projection of \vec{a} on \vec{b} and \vec{a}_2 be the projection of \vec{a}_1 on \vec{c} . Then \vec{a}_2 is equal to

- A. \vec{a} and $vcea_2$ are collinear
- B. \vec{a}_1 and \vec{c} are collinear
- C. $\vec{a}m\vec{a}_1$ and \vec{b} are coplanar
- D. \vec{a} , \vec{a}_1 and a_2 are coplanar

Answer: c

Watch Video Solution

16. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3, 0, 1), B(-1, 4, 1), C(5, 3, 2) and D(0, -5, 4) Let G be

the point of intersection of the medians of the triangle BCD. The length –

of the vector AG is

A. $\sqrt{17}$

B. $\sqrt{51}/3$

c. $3/\sqrt{6}$

D. $\sqrt{59}/4$

Answer: b

Watch Video Solution

17. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3,0,1), B(-1,4,1), C(5,3,2) and D(0,-5,4) Let G be the point of intersection of the medians of the triangle BCD. The length — of the vector AG is

A. 24

B.
$$8\sqrt{6}$$

C.
$$4\sqrt{6}$$

Answer: c

Watch Video Solution

18. Consider a triangular pyramid ABCD the position vectors of whose agular points are A(3,0,1), B(-1,4,1), C(5,3,2) and D(0,-5,4) Let G be the point of intersection of the medians of the triangle BCD. The length — of the vector AG is

A.
$$14/\sqrt{6}$$

B.
$$2/\sqrt{6}$$

$$c.3/\sqrt{6}$$

D. none of these

Answer: a

Watch Video Solution

- 19. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (
- 1,2,3) and D (x,y,z) The distance between the parallel lines AB and CD is
 - A. $\sqrt{6}$
 - B. $3\sqrt{6/5}$
 - $C. 2\sqrt{2}$
 - D. 3

Answer: c

- **20.** Vertices of a parallelogram taken in order are A(2,-1,4)B(1,0,-1)C(1,2,3)
- and D.

Distance of the point P (8, 2,-12) from the plane of the parallelogram is

B.
$$\frac{32\sqrt{6}}{9}$$

$$\mathsf{C.} \; \frac{16\sqrt{6}}{9}$$

D. none

Answer: b

- 21. Vertices of a parallelogram taken in order are A, (2,-1,4), B (1,0,-1), C (
- 1,2,3) and D (x,y,z) The distance between the parallel lines AB and CD is
 - A. 14, 4,2
 - B. 2,4,14
 - C. 4,2,14
 - D. 2,14,4

Answer: d

Watch Video Solution

22. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane

such

that

$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$

and

 $P_1 = \max \left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}, P_2 = \min \left\{ \left| \vec{r} + 2\hat{i} - 3\hat{j} \right|^2 \right\}.$ A tangenty line is

drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line

cuts the x-axis at a point B.

A. 9

 p_2 is equal to

B. $2\sqrt{2} - 1$

C. $6\sqrt{6} + 3$

D. 9 - $4\sqrt{2}$

Answer: d

23. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane

such

that

 $\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$

and

 $P_1 = \max\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}, P_2 = \min\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$. A tangenty line is drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line cuts the x-axis at a point B.

 p_2 is equal to

A. 2

B. 10

C. 18

D. 5

Answer: c

24. Let \vec{r} be a position vector of a variable point in Cartesian OXY plane $\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$ that such

such that
$$\vec{r} \cdot \left(10\hat{j} - 8\hat{i} - \vec{r}\right) = 40$$
 and $P_1 = \max\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$, $P_2 = \min\left\{\left|\vec{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}$. A tangenty line is drawn to the curve $y = 8/x^2$ at point .A with abscissa 2. the drawn line cuts the x-axis at a point B.

$$p_2$$
 is equal to

A. 1

B. 2

C. 3

D. 4

Answer: c

Watch Video Solution

25. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector \vec{a} . The vector of the faces containing vertices A, B , C and

A, B, D are \vec{b} and \vec{c} , respectively, i.e. $\overrightarrow{AB} \times \overrightarrow{AC}$ and $\overrightarrow{AD} \times \overrightarrow{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

B. $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$

C. $\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$

D. none of these

Answer: a

vector AD is

Watch Video Solution

26. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away

from it is vector \vec{a} . The vector of the faces containing vertices A, B , C and

A, B, D are \vec{b} and \vec{c} , respectively , i.e. $\vec{AB} \times \vec{AC} = \vec{b}$ and $\vec{AD} \times \vec{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

vector AB is

B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$
C.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

D. none of these

Answer: b

Watch Video Solution

27. Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away

from it is vector \vec{a} . The vector of the faces containing vertices A, B , C and

A, B, D are \vec{b} and \vec{c} , respectively, i.e. $\vec{AB} \times \vec{AC} = \vec{b}$ and $\vec{AD} \times \vec{AB} = \vec{c}$ the projection of each edge AB and AC on diagonal vector \vec{a} is $\frac{|\vec{a}|}{3}$

→ vector *AB* is

A.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2}$$

$$\vec{a} \times (\vec{b} - \vec{c}) \qquad 36$$

B.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} + \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$
C.
$$\frac{1}{3}\vec{a} + \frac{\vec{a} \times (\vec{b} - \vec{c})}{|\vec{a}|^2} - \frac{3(\vec{b} \times \vec{a})}{|\vec{a}|^2}$$

D. none of these

Answer: c

Watch Video Solution

Martrix - match type

View Text Solution

2.

View Text Solution

3.

View Text Solution

4. Given two vectors $\vec{a} = -\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} - 2\hat{j} - \hat{k}$

Find

a. $\vec{a} \times \vec{b}$ then use this to find the area of the triangle.

b. The area of the parallelogram

- c. The area of a paralleogram whose diagonals are
- 2 veca and 4vecb

Watch Video Solution

- **5.** Given two vectors $\vec{a} = -\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} + 2\hat{k}$ find $|\vec{a} \times \vec{b}|$
 - Watch Video Solution

- 6.
 - View Text Solution

- 7. find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a})(\vec{x} + \vec{a})$ =12

9.

10.

Integer type

1. If \vec{a} and \vec{b} are any two unit vectors, then find the greatest postive integer in the range of $\frac{3\left|\vec{a}+\vec{b}\right|}{2}+2\left|\vec{a}-\vec{b}\right|$

2. Let \vec{u} be a vector on rectangular coodinate system with sloping angle 60° suppose that $|\vec{u} - \hat{i}|$ is geomtric mean of $|\vec{u}|$ and $|\vec{u} - 2\hat{i}|$, where \hat{i} is the unit vector along the x-axis . Then find the value of $(\sqrt{2} - 1)|\vec{u}|$

3. Find the absolute value of parameter t for which the area of the triangle whose vertices the A(-1, 1, 2); B(1, 2, 3) and C(5, 1, 1) is minimum.

4. If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ and

$$\begin{bmatrix} 3\vec{a} + \vec{b} & 3\vec{b} + \vec{c} & 3\vec{c} + \vec{a} \end{bmatrix} = \lambda \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 then find the value of $\frac{\lambda}{4}$

5. Let $\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \hat{i} + 2\alpha\hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \alpha\hat{j} + \hat{k}$. Find the value of

Watch Video Solution

6α. Such that $\left\{ \left(\vec{a} \times \vec{b} \right) \times \left(\vec{b} \times \vec{c} \right) \right\} \times \left(\vec{c} \times \vec{a} \right) = 0$

6. If , \vec{x} , \vec{y} are two non-zero and non-collinear vectors satisfying $\left[(a-2)\alpha^2 + (b-3)\alpha + c \right] \vec{x} + \left[(a-2)\beta + c \right] \vec{y} + \left[(a-2)\gamma^2 + (b-3)\gamma + c \right] (\vec{x} \times \vec{y}) =$

are three distinct distinct real numbers, then find the value of

7. Let \vec{u} and \vec{v} be unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$.

Find the value of $[\vec{u}\vec{v}\vec{w}]$

8. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \lambda\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic units if the value of λ is

Watch Video Solution

9. Given that

 $\vec{u} = \hat{i} + 2\hat{j} + 3\hat{k}, \ \vec{v} = 2\hat{i} + \hat{k} + 4\hat{k}, \ \vec{w} = \hat{i} + 3\hat{j} + 3\hat{k} \text{ and } (\vec{u}.\vec{R} - 15)\hat{i} + (\vec{c}.\vec{R} - 30)\hat{j}$

. Then find the greatest integer less than or equal to
$$\left| \vec{R} \right|$$
 .

10. Let a three- dimensional vector $ec{V}$ satisfy the condition , $2\vec{V} + \vec{V} \times (\hat{i} + 2\hat{j}) = 2\hat{i} + \hat{k}$. If $3|\vec{V}| = \sqrt{m}$. Then find the value of m.

11. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} . $\vec{b} = 0 = \vec{a}$. \vec{c} and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$

Watch Video Solution

12. Let $\vec{O}A = \vec{a}$, $\vec{O}B = 10\vec{a} + 2\vec{b}$ and $\vec{O}C = \vec{b}$, where \vec{O} , $\vec{O}A$ are non-collinear points. Let \vec{D} denotes the area of quadrilateral $\vec{O}ACB$, and let \vec{D} denote the area of parallelogram with $\vec{O}A$ and $\vec{O}C$ as adjacent sides. If \vec{D} \vec{D} \vec{D} then find \vec{D}

Watch Video Solution

13. Find the work done by the force $F = 3\hat{i} - \hat{j} - 2\hat{k}$ acrting on a particle such that the particle is displaced from point $A(-3, -4, 1) \top o \in tB(-1, -1, -2)$

14. If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$

then find the value of $(2\vec{a} + \vec{b})$. $[(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$

15. Let $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = i + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$ then find the value of $\vec{r} \cdot \vec{b}$.

16. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 9$ then find the value of $|2\vec{a} + 5\vec{b} + 5\vec{c}|$.

17. $Let\vec{a}, \vec{b}$, and \vec{c} be three non-coplanar ubit vectors such the angle

between every pair of them is $\frac{\pi}{3}$. if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$, where p,q and r are scalars , then the value of $\frac{p^2 + 2q^2 + r^2}{q^2}$ is

Subjective type

1. from a point O inside a triangle ABC, perpendiculars, OD, OE and OF are drawn to the sides, BC, CA and AB respectively, prove that the perpendiculars from A, B and C to the sides EF, FD and DE are concurrent.

2. A_1, A_2, \dots, A_n are the vertices of a regular plane polygon with n sides

and O ars its centre. Show that $\sum_{i=1}^{n-1} \left(\overrightarrow{OA}_i \times \overrightarrow{OA}_{i+1} \right) = (n-1) \left(\overrightarrow{OA}_1 \times \overrightarrow{OA}_2 \right)$

3. If c is a given non - zero scalar, and \vec{A} and \vec{B} are given non-zero , vectors such that $\vec{A} \perp \vec{B}$. Then find vector, \vec{X} which satisfies the equations \vec{A} . $\vec{X} = c$ and $\vec{A} \times \vec{X} = \vec{B}$.

- **4.** A, B, C and D are any four points in the space, then prove that $\left| \vec{A}B \times \vec{C}D + \vec{B}C \times \vec{A}D + \vec{C}A \times \vec{B}D \right| = 4$ (area of ABC.)
 - Watch Video Solution

- **5.** If vectors \vec{a} , \vec{b} and \vec{c} are coplanar, show that $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \end{vmatrix} = \vec{0}$ $\begin{vmatrix} \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix}$
 - Watch Video Solution

6. $\vec{A} = (2\vec{i} + \vec{k}), \vec{B} = (\vec{i} + \vec{j} + \vec{k}) \text{ and } \vec{C} = 4\vec{i} - \vec{3}j + 7\vec{k} \text{ determine a } \vec{R}$ satisfying $\vec{R} \times \vec{B} = \vec{C} \times \vec{B} \text{ and } \vec{R}, \vec{A} = 0$

- **7.** Determine the value of c so that for the real x, vectors $cx\hat{i} 6\hat{j} 3\hat{k}$ and $x\hat{i} + 2\hat{j} + 2cx\hat{k}$ make an obtuse angle with each other .
 - Watch Video Solution

8. Prove that:

$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c}) = -2 [\vec{b} \vec{c} \vec{d}] \vec{a}$$

Watch Video Solution

9. The position vectors of the vertices A, B and C of a tetrahedron ABCD are $\hat{i} + \hat{j} + \hat{k}$, \hat{k} , \hat{i} and $\hat{3}i$,respectively. The altitude from vertex D to the

opposite face ABC meets the median line through Aof triangle ABC at a point E. If the length of the side AD is 4 and the volume of the tetrahedron is $2\sqrt{2}/3$, find the position vectors of the point E for all its possible positions

Watch Video Solution

10. Let \vec{a} , \vec{b} and \vec{c} be non - coplanar unit vectors, equally inclined to one another at an angle θ . If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$, find scalars p, q and r in terms of θ .

Watch Video Solution

If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $|\vec{b}| = |\vec{c}|$ 11. then $\left\{ \left(\vec{a} + \vec{b}\right) \times \left(\vec{a} + \vec{c}\right) \right\} \times \left(\vec{b} \times \vec{c}\right) \cdot \left(\vec{b} + \vec{c}\right) =$

12. For any two vectors \vec{u} and \vec{v} prove that

$$(1 + |\vec{u}|^2)(1 + |\vec{v}|^2) = (1 - \vec{u}. \vec{v})^2 + |\vec{u} + \vec{v} + (\vec{u} \times \vec{v})|^2$$

13. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w} + \vec{w} \times \vec{u} = \vec{v}$, then prove that $\left| \left(\vec{u} \times \vec{v} \right) . \vec{w} \right| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v} .

14. Find 3-dimensional vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 satisfying $\vec{v}_1 \cdot \vec{v}_1 = 4$, $\vec{v}_1 \cdot \vec{v}_2 = -2$, $\vec{v}_1 \cdot \vec{v}_3 = 6$,

$$\vec{v}_2 \cdot \vec{v}_2 = 2, \vec{v}_2 \cdot \vec{v}_3 = -5, \vec{v}_3 \cdot \vec{v}_3 = 29$$

15. Let V be the volume of the parallelepied formed by the vectors,

$$\vec{a}=a_1\hat{i}=a_2\hat{j}+a_3\hat{k}, \ \vec{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k} \ \ \text{and} \ \ \vec{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}. \ \ \ \text{if} \ \ a_rb_rnadc_r$$
 are non-negative real numbers and

are non-negative real numbers and
$$\sum_{r=1}^{3} r = 1 \left(a_r + b_r + c_r \right) = 3L \text{ show that } V \leq L^3$$

16.
$$\vec{u}$$
, \vec{v} and \vec{w} are three nono-coplanar unit vectors and α , β and γ are the angles between \vec{u} and \vec{u} , \vec{v} and \vec{w} and \vec{w} and \vec{u} , respectively and \vec{x} , \vec{y} and \vec{z} are unit vectors along the bisectors of the angles α , β and γ . respectively, prove that $[\vec{x} \times \vec{y}\vec{y} \times \vec{z}\vec{z} \times \vec{x}] = \frac{1}{16} [\vec{u}\vec{v}\vec{w}]^2 \frac{\sec^2\alpha}{2} \frac{\sec^2\beta}{2} \frac{\sec^2\gamma}{2}$.

17. If
$$\vec{a}$$
, \vec{b} , \vec{c} and \vec{d} ar distinct vectors such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$. Prove

 $(\vec{a} \times \vec{d}).(\vec{b}.\vec{c}) \neq 0$, i. e., $\vec{a}.\vec{b} + \vec{d}.\vec{c} \neq \vec{d}.\vec{b} + \vec{a}.\vec{c}$.

18. $P_1 ndP_2$ are planes passing through origin $L_1 andL_2$ are two lines on $P_1 andP_2$, respectively, such that their intersection is the origin. Show that there exist points A, B and C, whose permutation A', B' and C', respectively, can be chosen such that A is on L_1 , B on P_1 but not on L_1 and C not on P_1 ; A' is on L_2 , B' on P_2 but not on L_2 and C' not on P_2

19. about to only mathematics

fill in the blanks

1. Let \vec{A} , \vec{B} and \vec{C} be vectors of legth , 3,4and 5 respectively. Let \vec{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$ then the length of vector $\vec{A} + \vec{B} + \vec{C}$ is _____.

2. The unit vector perendicular to the plane determined by P (1,-1,2) ,C(3,-1,2) is

3. The area of the triangle whose vertices are A (1,-1,2), B (1,2,-1), C (3,-1, 2) is

4. If \vec{A}, \vec{B} and \vec{C} are three non - coplanar vectors, then

$$\frac{\vec{A}.\vec{B} \times \vec{C}}{\vec{C} \times \vec{A}.\vec{B}} + \frac{\vec{B}.\vec{A} \times \vec{C}}{\vec{C}.\vec{A} \times \vec{B}} = \underline{\qquad}$$

5. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors the vector \vec{B} satisfying the equations $\vec{A}\times\vec{B}=\vec{C}$ and $\vec{A}.\vec{B}=3$ is

6. Let $\vec{b} = 4\hat{i} + 3\hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy- plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c} , respectively, are given by _____

7. The components of a vector \vec{a} along and perpendicular to a non-zero vector \vec{b} are and , respectively.

8. A unit vector coplanar with $\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{i} + 2\vec{j} + \vec{k}$ and perpendicular to $\vec{i} + \vec{j} + \vec{k}$ is

9. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors \vec{i} , \vec{i} + \vec{j} and thepane determined by the vectors \vec{i} - \vec{j} , \vec{i} + \vec{k} then angle between \vec{a} and \vec{i} - $2\vec{j}$ + $2\vec{k}$ is = (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

10. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$,

where
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

11. let \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1, 1 and 2, respectively, if $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0}$, then the acute angle between \vec{a} and \vec{c} is _____

12. A, B C and D are four points in a plane with position vectors, \vec{a} , \vec{b} \vec{c} and \vec{d} respectively, such that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$ then point D is the _____ of triangle ABC.

13. Let $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = 10\vec{a} + 2\vec{b}$ and $\overrightarrow{OC} = \vec{b}$ where , O, A and C are non-

collinear points. Let p denote that area of the quadrilateral OABC. And let q denote the area of the parallelogram with OA and OC as adjacent sides.

14. If $\vec{a} = \hat{j} + \sqrt{3}\hat{k} = -\hat{j} + \sqrt{3}\hat{k}$ and $\vec{c} = 2\sqrt{3}\hat{k}$ form a triangle , then the angle of the triangle between \vec{a} and \vec{b} internal is

True and false

1. Let \vec{A} , \vec{B} and \vec{C} be unit vectors such that \vec{A} . $\vec{B} = \vec{A}$. $\vec{C} = 0$ and the angle between \vec{B} and \vec{C} be $\pi/3$. Then $\vec{A} = \pm 2(\vec{B} \times \vec{C})$.

2. If
$$\vec{X}$$
. $\vec{A}=0$, \vec{X} . $\vec{B}=0$ and \vec{X} . $\vec{C}=0$ for some non-zero vector $\vec{x}1$, then[vecA vecB vecC] =0`

3. for any three vectors,
$$\vec{a}$$
, \vec{b} and \vec{c} , $(\vec{a} - \vec{b})$. $(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) =$

single correct answer type

1. The scalar
$$\vec{A}$$
. $(\vec{B}, \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals

A. 0

B.
$$\begin{bmatrix} \vec{A}\vec{B}\vec{C} \end{bmatrix} + \begin{bmatrix} \vec{B}\vec{C}\vec{A} \end{bmatrix}$$

C.
$$\left[\vec{A}\vec{B}\vec{C} \right]$$

D. none of these

Answer: a

Watch Video Solution

2. For non-zero vectors \vec{a} , \vec{b} and \vec{c} , $\left| \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \left| \vec{c} \right|$ holds if and only if

A.
$$\vec{a}$$
. $\vec{b} = 0$, \vec{b} . $\vec{c} = 0$

B.
$$\vec{b}$$
. $\vec{c} = 0$, \vec{c} , $\vec{a} = 0$

C.
$$\vec{c}$$
. $\vec{a} = 0$, \vec{a} , $\vec{b} = 0$

D.
$$\vec{a}$$
. $\vec{b} = \vec{b}$. $\vec{c} = \vec{c}$. $\vec{a} = 0$

Answer: d

3. The volume of he parallelepiped whose sides are given by

$$\vec{O}A = 2i - 2, j, \vec{O}B = i + j - kand\vec{O}C = 3i - k$$
 is a. $4/13$ b. 4 c. $2/7$ d. 2

- A.4/13
- B. 4
- C. 2/7
- D. 2

Answer: d

(C) 2 (D) 3

Watch Video Solution

4. Let \vec{a} , \vec{b} , \vec{c} be three noncolanar vectors and \vec{p} , \vec{q} , \vec{r} are vectors defined

by the relations $\vec{p} = \frac{\vec{b} \times \vec{c}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{\left[\vec{a}\vec{b}\vec{c}\right]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{\left[\vec{a}\vec{b}\vec{c}\right]}$ then the value of

the expression $(\vec{a} + \vec{b})$. $\vec{p} + (\vec{b} + \vec{c})$. $\vec{q} + (\vec{c} + \vec{a})$. \vec{r} . is equal to (A) 0 (B) 1

Answer: d

5. Let
$$\vec{a} = \hat{i} - \hat{j}$$
, $\vec{b} = \hat{j} - \hat{k}$, $\vec{c} = \hat{k} - \hat{i}$. If \hat{d} is a unit vector such that

$$\vec{a} \cdot \hat{d} = 0 = \left[\vec{b} \vec{c} \vec{d} \right]$$
 then \hat{d} equals

A.
$$\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$

$$B. \pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$

$$\mathsf{C.}\pm\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$$

$$\mathsf{D}.\pm\hat{k}$$

Watch Video Solution

6. If \vec{a} , \vec{b} and \vec{c} are non coplanar and unit vectors such that

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$$
 then the angle between *vea* and \vec{b} is (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$

(C)
$$\frac{\pi}{2}$$
 (D) π

A.
$$3\pi/4$$

$$B.\pi/4$$

$$C. \pi/2$$

D.
$$\pi$$

Answer: a

$$\left| \vec{u} \right| = 3$$
, $\left| \vec{v} \right| = 4$ and $\left| \vec{w} \right| = 5$ then $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$ is

Let \vec{u} , \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = 0$ if

then

7.

D. 25

Answer: b

8. If \vec{a} , \vec{b} and \vec{c} are three non-coplanar vectors, $(\vec{a} + \vec{b} + \vec{c}).[(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})]$ equals

B.
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

 $C. 2 \left[\vec{a} \vec{b} \vec{c} \right]$

D. -
$$\left[\vec{a}\vec{b}\vec{c}\right]$$

Answer: d

Watch Video Solution

9. \vec{p} , \vec{q} and \vec{r} are three mutually prependicular vectors of the same magnitude . If vector \vec{x} satisfies the equation $\vec{p}s \times ((\vec{x} - \vec{q}) \times \vec{p}) + \vec{q} \times ((\vec{x} - \vec{r}) \times \vec{q}) + \vec{r} \times ((\vec{x} - \vec{p}) \times \vec{r}) = \vec{0}$ then \vec{x} is given by

A.
$$\frac{1}{2} (\vec{p} + \vec{q} - 2\vec{r})$$

$$B. \frac{1}{2} \left(\vec{p} + \vec{q} + \vec{r} \right)$$

$$C. \frac{1}{3} \left(\vec{p} + \vec{q} + \vec{r} \right)$$

D.
$$\frac{1}{3} (2\vec{p} + \vec{q} - \vec{r})$$

Answer: b

10. Let
$$\vec{a} = 2\hat{i} + \hat{j} + \hat{k}$$
, and $\vec{b} = \hat{i} + \hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and $\vec{i} \approx 30$ °, then

$$\left| \left(\vec{a} \times \vec{b} \right) \right| \times \vec{c} \, |$$
 is equal to

A.2/3

Answer: b

11. Let
$$\vec{a}=2i+j+k$$
, $\vec{b}=i+2j-k$ and a unit vector \vec{c} be coplanar. If \vec{c} is pependicular to \vec{a} . Then \vec{c} is

$$A. \frac{1}{\sqrt{2}}(-j+k)$$

$$B. \frac{1}{\sqrt{3}}(i-j-k)$$

$$C. \frac{1}{\sqrt{5}}(i-2j)$$

$$D. \frac{1}{\sqrt{3}}(i-j-k)$$

Answer: a

Watch Video Solution

12. If the vectors \vec{a} , \vec{b} and \vec{c} form the sides, BC , CA and AB, respectively, of triangle ABC, then

A.
$$\vec{a}$$
. \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} = 0

$$\mathbf{B}.\ \vec{a}\times\vec{b}=\vec{b}\times\vec{c}=\vec{c}\times\vec{a}$$

$$C. \vec{a}. \vec{b} = \vec{b}. \vec{c} = \vec{c}. \vec{a}$$

$$D. \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$$

Answer: b

13. Let vectors \vec{a} , $\vec{b}\vec{a}$ and \vec{d} be such that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$. Let P_1 and P_2 be planes determined by the pairs of vectors \vec{a} , \vec{b} and \vec{c} , \vec{d} , respectively. Then the angle between P_1 and P_2 is

A. 0

 $B.\pi/4$

C. $\pi/3$

 $D. \pi/2$

Answer: a

Watch Video Solution

14. If \vec{a} , \vec{b} , \vec{c} are unit coplanar vectors then the scalar triple product

$$\left[2\vec{a} - \vec{b}, 2\vec{b} - c, \vec{2}c - \vec{a} \right]$$
 is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

A. 0

 $C. -\sqrt{3}$

D. $\sqrt{3}$

Answer: a

Watch Video Solution

15. if \hat{a} , \hat{b} and \hat{c} are unit vectors. Then $\left|\hat{a} - \hat{b}\right|^2 + \left|\hat{b} - \hat{c}\right|^2 + \left|\vec{c} - \vec{a}\right|^2$ does not exceed

A. 4

B. 9

C. 8

D. 6

Answer: b

16. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2\vec{b}$ and $5\vec{a}-4\vec{b}$ are perpendicualar to each other, then the angle between \vec{a} and \vec{b} is

- **A.** 45 °
- B. 60°
- C. $\cos^{-1}(1/3)$
- D. $\cos^{-1}(2/7)$

Answer: b

Watch Video Solution

17. Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$. if \vec{U} is a unit vector, then the maximum value of the scalar triple product $\left[\vec{U}\vec{V}\vec{W}\right]$ is

- **A.** 1
- $B.\sqrt{10}+\sqrt{6}$

C.
$$\sqrt{59}$$

D.
$$\sqrt{60}$$

Watch Video Solution

18. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

B. 3

C. $1/\sqrt{3}$

D. $\sqrt{3}$

Answer: c

19. If
$$\vec{a} = (\hat{i} + \hat{j} + \hat{k})$$
, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then \vec{b} is $(a)\hat{i} - \hat{j} + \hat{k}$ (b)

$$2\hat{i} - \hat{k}$$
 (c) \hat{i} (d) $2\hat{i}$

A.
$$\hat{i} - \hat{j} + \hat{k}$$

B.
$$2\hat{i} - \hat{k}$$

20. The unit vector which is orthogonal to the vector $5\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ is (a) $\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$ (b) $\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$ (c)

$$\frac{3\hat{j} - \hat{k}}{\sqrt{10}}$$
 (d) $\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$

A.
$$\frac{2\hat{i} - 6\hat{j} + \hat{k}}{\sqrt{41}}$$

B.
$$\frac{2\hat{i} - 3\hat{j}}{\sqrt{13}}$$
C.
$$\frac{3\hat{i} - \hat{k}}{\sqrt{10}}$$

D.
$$\frac{4\hat{i} + 3\hat{j} - 3\hat{k}}{\sqrt{34}}$$

21. If
$$\vec{a}$$
, \vec{b} and \vec{c} are three non-zero, non-coplanar vectors and

$$\vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \ \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \ \vec{c}_1 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1,$$

$$|\vec{a}|^{2} \qquad |\vec{a}|^{2} \qquad |\vec{a}|^{2} \qquad |\vec{a}|^{2} \qquad |\vec{c}|$$

$$\vec{c}_{2} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} - \frac{\vec{b} \vec{c}}{|\vec{b}_{1}|^{2}} \vec{b}_{1}, \ \vec{c}_{3} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1},$$

$$\vec{c}_4 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} = \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1$$
, then the set of mutually orthogonal vectors is

A. (a)
$$(\vec{a}, \vec{b}_1, \vec{c}_3)$$

B. (b)
$$(\vec{a}, \vec{b}_1, \vec{c}_2)$$

C. (c)
$$\left(\vec{a}, \vec{b}_1, \vec{c}_1\right)$$

D. (d)
$$(\vec{a}, \vec{b}_2, \vec{c}_2)$$

Watch Video Solution

- **22.** Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{j} \hat{k}$ A vector in the plane of
- \vec{a} and \vec{b} whose projections on \vec{c} is $1/\sqrt{3}$ is
 - A. $4\hat{i} \hat{i} + 4\hat{k}$
 - B. $3\hat{i} + \hat{i} 3\hat{k}$
 - C. $2\hat{i} + \hat{j} 2\hat{k}$
 - D. $4\hat{i} + \hat{j} 4\hat{k}$

Answer: a

23. Let two non-collinear unit vectors \vec{a} and \vec{b} form an acute angle. A

point P moves so that at any time t, time position vector, OP (where O is the origin) is given by $\hat{a}\cot t + \hat{b}\sin t$. When p is farthest fro origing o, let M

be the length of OP and \hat{u} be the unit vector along OP .then

A.,
$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} + \hat{b}\right|}$$
 and $M = \left(1 + \hat{a} \cdot \hat{b}\right)^{1/2}$

B.,
$$\hat{u} = \frac{\hat{a} + \hat{b}}{\left|\hat{a} - \hat{b}\right|}$$
 and $M = \left(1 + \hat{a} \cdot \hat{b}\right)^{1/2}$

C.
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + 2\hat{a}. \hat{b})^{1/2}$

$$\begin{vmatrix} \hat{a} - b \\ \end{vmatrix}$$
C. $\hat{u} = \frac{\hat{a} + \hat{b}}{\begin{vmatrix} \hat{a} + \hat{b} \\ \end{vmatrix}}$ and $M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{1/2}$
D. $\hat{u} = \frac{\hat{a} - \hat{b}}{\begin{vmatrix} \hat{a} - \hat{b} \\ \end{vmatrix}}$ and $M = \left(1 + 2\hat{a} \cdot \hat{b}\right)^{1/2}$

Answer: a

Watch Video Solution

24. If \vec{a} , \vec{c} , \vec{c} and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b})$. $(\vec{c} \times \vec{d}) = 1$ and \vec{a} . $\vec{b} = \frac{1}{2}$ then

- A. \vec{a} , \vec{b} and \vec{c} are non-coplanar
- B. \vec{b} , \vec{c} and \vec{d} are non-coplanar
- C. \vec{b} and \vec{d} are non-parallel
- D. \vec{a} and \vec{d} are parallel and \vec{b} and \vec{c} are parallel

Watch Video Solution

- **25.** Two adjacent sides of a parallelogram ABCD are given by $\vec{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}and\vec{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$ The side AD is rotated by an
- The 21 × 10g × 11kanaris 1 × 2g × 2k The side 1 is rotated by an

If AD' makes a right angle with the side AB, then the cosine of the angel

acute angle lpha in the plane of the parallelogram so that AD becomes $AD^{'}$

$$\alpha$$
 is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

- A. $\frac{8}{9}$
- B. $\frac{\sqrt{17}}{9}$

C.
$$\frac{1}{9}$$
D. $\frac{4\sqrt{9}}{9}$

Answer: b

Watch Video Solution

- 26. Let P,Q, R and S be the points on the plane with postion vectors $-2\hat{i} - \hat{j}$, $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and $-3\hat{j} + 2\hat{j}$, respectively, the quadrilateral PQRS must
- be a

A. Parallelogram, which is neither a rhombus nor a rectangle

B. square

C. rectangle, but not a square

D. rhombus, but not a square.

Answer: a

27. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is given by

A.
$$\hat{i}$$
 - $3\hat{j}$ + $3\hat{k}$

$$B. -3\hat{i} - 3\hat{j} + \hat{k}$$

C.
$$3\hat{i} - \hat{j} + 3\hat{k}$$

D.
$$\hat{i} + 3\hat{j} - 3\hat{k}$$

Answer: c

Watch Video Solution

28. Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS. And $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be onther vector. Then the volume of the parallelepiped determined by the vectors \overrightarrow{PT} , \overrightarrow{PQ} and \overrightarrow{PS} is

- A. 5
- B. 20
- C. 10
- D. 30

Watch Video Solution

Multiple correct answers type

1. Let $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\pi/6$ then the value of

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 is

B. 1

C.
$$\frac{1}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right)$$

D.
$$\frac{3}{4} \left(a_1^2 + a_2^2 + a_2^2 \right) \left(b_1^2 + b_2^2 + b_2^2 \right) \left(c_1^2 + c_2^2 + c_2^2 \right)$$

Answer: c

Watch Video Solution

- 2. The number of vectors of unit length perpendicular to vectors
- $\vec{a} = (1, 1, 0)$ and $\vec{b} = (0, 1, 1)$ is a. one b. two c. three d. infinite
 - A. one
 - B. two
 - C. three
 - D. infinite

Answer: b

3.
$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\vec{b} = \hat{j} + 2\hat{j} - \hat{k}$, $\vec{c} = \hat{i} + \hat{j} - 2\hat{k}$. A vector coplanar with \vec{b} and \vec{c} . Whose projection on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is

$$A.\ 2\hat{i} + 3\hat{j} - 3\hat{k}$$

$$B. 2\hat{i} + 3\hat{j} + 3\hat{k}$$

$$\mathsf{C.} - 2\hat{i} - \hat{j} + 5\hat{k}$$

$$D. 2\hat{i} + \hat{j} + 5\hat{k}$$

Answer: a,c

Watch Video Solution

4. For three vectors, \vec{u} , \vec{v} and \vec{w} which of the following expressions is not equal to any of the remaining three ?

A.
$$\vec{u}$$
. $(\vec{v} \times \vec{w})$

- B. $(\vec{v} \times \vec{w})$. \vec{u}
- C. \vec{v} . $(\vec{u} \times \vec{w})$
 - D. $(\vec{u} \times \vec{v})$. \vec{w}

Watch Video Solution

5. Which of the following expressions are meaningful? $\vec{u} \cdot (\vec{v} \times \vec{w})$ b.

- $(\vec{u}.\vec{v}).\vec{w}$ c. $(\vec{u}.\vec{v}).\vec{w}$ d. $\vec{u} \times (\vec{v}.\vec{w})$
 - A. \vec{u} . $(\vec{v} \times \vec{w})$
 - B. $(\vec{u}. \vec{v}). \vec{w}$
 - C. $(\vec{u}. \vec{v})\vec{w}$
 - D. $\vec{u} \times (\vec{v}. Vecw)$

Answer: a,c

6. If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors and \vec{u} and \vec{v} are any two vectors.

Prove that
$$\vec{u} \times \vec{v} = \frac{1}{\left[\vec{a}\vec{b}\vec{c}\right]} \begin{vmatrix} \vec{u}. & \vec{a} & \vec{v}. & \vec{a} & \vec{a} \\ \vec{u}. & \vec{b} & \vec{v}. & \vec{b} & \vec{b} \\ \vec{u}. & \vec{c} & \vec{v}. & \vec{c} & \vec{c} \end{vmatrix}$$

A.
$$|\vec{u}| + \vec{u} \cdot (\vec{a}x\vec{b})$$

B.
$$\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{a} \right|$$

C.
$$\left| \vec{u} \right| + \left| \vec{u} \cdot \vec{b} \right|$$

D.
$$|\vec{u}| + \vec{u} \cdot (\vec{a} + \vec{b})$$

Answer: a,c

Watch Video Solution

7. Vector $\frac{1}{3} (2\hat{i} - 2\hat{j} + \hat{k})$ is

A. a unit vector

B. makes an angle
$$\pi/3$$
 with vector $(2\hat{i} - 4\hat{j} + 3\hat{k})$

C. parallel to vector
$$\left(-\hat{i}+\hat{j}-\frac{1}{2}\hat{k}\right)$$

D. perpendicular to vector $3\hat{i} + 2\hat{j} - 2\hat{k}$

Answer: a,c,d

Watch Video Solution

8. Let \vec{A} be a vector parallel to the line of intersection of planes P_1 and P_2

. Plane P_1 is parallel to vectors

 $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}nadP_2$ is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$. Then the angle

between vector
$$\vec{A}$$
 and a given vector $2\hat{i} + \hat{j} - 2\hat{k}$ is

A.
$$\pi/2$$

$$C. \pi/6$$

D.
$$3\pi/4$$

Answer: b,d

Watch Video Solution

9. The vector(s) which is /are coplanar with vectors

$$\hat{i} + \hat{j} + 2\hat{k}$$
 and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$, is /are

A.
$$\hat{j}$$
 - \hat{k}

B.
$$-\hat{i} + \hat{j}$$

C.
$$\hat{i} - \hat{j}$$

D.
$$-\hat{j} + \hat{k}$$

Answer: a,d

Watch Video Solution

10. Let \vec{x} , \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle

between each pair of them is $\frac{\pi}{3}$ if \vec{a} is a non-zero vector perpendicular

to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a non-zero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then

$$A. \vec{b} = (\vec{b}. \vec{z})(\vec{z} - \vec{x})$$

$$B. \vec{a} = (\vec{a}. \vec{y})(\vec{y} - \vec{z})$$

$$C. \vec{a}. \vec{b} = -(\vec{a}. \vec{y})(\vec{b}. \vec{z})$$

D.
$$\vec{a} = (\vec{a} \cdot \vec{y})(\vec{z} - \vec{y})$$

Answer: a,b,c

11.

$$\vec{a} = QR$$
, $\vec{b} = RP$ and $\vec{c} = PQ$. if $|\vec{a}| = 12$, $|\vec{b}| = 4\sqrt{3}$ and \vec{b} . $\vec{c} = 24$ then which of the following is (are) true?

Let PQR be a triangle

Let

A.
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 12$$

B.
$$\frac{|\vec{c}|^2}{2} - |\vec{a}| = 30$$

$$C. \left| \vec{a} \times \vec{b} + \vec{c} \times \vec{a} \right| = 48\sqrt{3}$$

D.
$$\vec{a} \cdot \vec{b} = -72$$

Answer: a,c,d

