

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

GRAPHICAL TRANSFORMATIONS

Illustration

1. Plot
$$y = |x|, y + x - 2|, and y = |x|2|$$

2. Draw the graph of $y = \sin^{-1}(x-3)$.

Watch Video Solution

3. Draw the graph of $y = \log_e(x+3)$,

Watch Video Solution

Draw the graph of $y = \cot^{-1} x + \sec^{-1} x + \cos ec^{-1} x.$

5. Draw the graph of y = |x - 3| + 1.

Watch Video Solution

6. Solve |x - 1| - |x + 3| < 6 graphically

Watch Video Solution

7. For $a \leq 0$, determine all real roots of the equation (1986, 5M)

$$|x^2 - 2a|x - a| - 3a^2 = 0$$

Watch Video Solution

Consider the function 8. $f(x) = \left\{egin{array}{ll} x - [x] - rac{1}{2} & x
otin \ 0 & x
otin I \end{array}
ight. \quad ext{where} \quad ext{ [.]}$ denotes the fractional integral function and I is the set of integers. Then find $g(x) \, \max \, . \, \left\lceil x^2, f(x), |x|
ight
brace, \, -2 \leq x \leq 2.$

9. Draw the graph of $y = \log_e 3x$ and compare with $y = \log_e x$.

A. To draw the graph of $y = \log_e 3x$ we draw the graph of $y = \log_e x$ a

В.

C.

D.

Answer:

10. Draw the graph of $y = \cos^{-1}(x/4)$ and compare with $y = \cos^{-1} x$.

Watch Video Solution

11. Draw the graph of $y=0.5{\left(x-1
ight)}^2$ and compare with $y = (x - 1)^2$.

12. Plot $y = \sin x$ and $y = \sin 2x$.

Watch Video Solution

13. If $n \sin x = \log_e x$ has exactly 1 root, then find the possible value of $n(n \in N)$.

Watch Video Solution

14. Plot the curve $y = (\log_e(-x))$.

15. Draw the graph of $y = 2^{-x}$.

Watch Video Solution

16. Draw the graph of $y = \cot^{-1}(-x)$.

Watch Video Solution

17. Draw the graph of $y = -\cot^{-1} x$.

18. Draw the graph of $y = -\log_e x$.

Watch Video Solution

19. Draw the graph of y=2-|x-1|.

Watch Video Solution

20. Draw the graph of $y = \sin^{-1}(\cos x)$.

21. Given the graph of y = f(x).

Draw the graphs of the followin.

(a)
$$y=f(1-x)$$
 (b) $y=-2f(x)$

(c)
$$y=f(2x)$$
 (d) $y=1-f(x)$

22. Draw the graph of $y = |\log x|$.

Watch Video Solution

23. Draw the graph of $y = |\sin x|$ and hence the graph of $y = \sin^{-1}|\sin x|$.

Watch Video Solution

24. Draw the graph of $y = f(x) = \sqrt{1 - \cos x}$

25. Drew the graph of $y = |\sin x - 0.5|$.

Watch Video Solution

26. The number of solution of $2\cos x = |\sin x|$ where $x \in [0.4\pi]$ is/are

Watch Video Solution

27. Solve $|x^2 + 4x + 3| + 2x + 5 = 0$.

28. Solve $\cos 2x > |\sin x|, x \in \left(-\frac{\pi}{2}, \pi\right)$

Watch Video Solution

29. Prove that the equation $2\sin x = |x| + a$ has no solution for $a \in \left(\dfrac{3\sqrt{3}-\pi}{3}, \infty \right)$.

31. Discuss the differentiability of f(x)=mim. $\{|x|,|x-2|,2-|x-1|\}.$

32. If the equation $\left|x^2+bx+c\right|=k$ has four real roots, then a. $b^2-4c>0$ and $0< k< \frac{4c-b^2}{4}$ b. $b^2-4c<0$ and

Watch Video Solution

 $k>rac{4c-b^2}{4}$ d. none of these

 $0 < k < rac{4c - b^2}{4}$ c. $b^2 - 4c > 0$ and

33. Sketch the curve $y = \log |x|$

34. Draw the graph of $y=\sin \lvert x \rvert$.

35. Draw the graph of y = [|x|], where [.] denotes the greatest integer function.

Watch Video Solution

36. Draw the graph of $y = \sin^{-1}|x|$.

Watch Video Solution

37. Draw the graph of $y = \tan^{-1} |x|$.

38. Draw the graph of $y=\{|x|\}$, where $\{.\}$ represents the fractional part function.

Watch Video Solution

39. If $y=x^3-3x+2$, then draw the graph of the followings (i) $y=\left|x^3-3x+2\right|$

40. Draw the graph of
$$y = \left| 1 - \frac{1}{|x|-2} \right|$$
.

41. Draw the graph of $|y|=ig|2^{|x|}-3ig|.$

42. Find the total number of solutions to $\sin \pi x = |\ln|x||.$

43. Find the number of solutions to $7^{|x|}(|1-|x|\ |\)=1.$

Watch Video Solution

44. The graph of the function y=f(x) is shown.

Find the number of solutions to the equation

$$||f(x)|-1|=rac{1}{2}.$$

45.

Consider the function

$$f(x) = x^2 + bx + c$$
, where $D = b^2 - 4c > 0$

, then match the follwoing columns.

Column I	Column II
Values of b and c	Number of points of non- differentiability of $g(x) = f(x) $
(a) $b < 0, c > 0$	(p) 1
(b) $c = 0, b < 0$	(q) 2
(c) $c = 0, b > 0$	(r) 3
(d) $b = 0, c < 0$	(s) 5

Watch Video Solution

46. Draw the graph of $|y| = \sin x$.

47. Draw the graph of $|y| = \tan x$.

Watch Video Solution

48. Sketch the curve |y| = (x-1)(x-2).

Watch Video Solution

49. Draw the graph of $|y|=\{x\}$, where $\{.\}$ represents the fractional part function.

50. Draw the graph of |x| + |y| = 1 + x.

Watch Video Solution

51. Draw the graph of |x|-|y|=2 using graphical transformation.

52. Draw the graph of $y = \left|2^{|x|} - 3\right|$.

Watch Video Solution

53. The graph of the function y=f(x) is as shown in the figure.

Then draw the graphs of

(i)
$$|y| = sgn(f(x))$$
 (ii) $|y| = |f(x\mid)|$

(iii)
$$y = x^{sgn}(f(x))$$

54. Draw the graph and find the points of discontinuity $f(x) = [2\cos x]$, $x \in [0,2\pi]$.

([.] represents the greatest integer function.)

Watch Video Solution

55. Draw the graph and discuss the continuity of $f(x) = [\sin x + \cos x], x \in [0, 2\pi), ext{ where}$

[.] represents the greatest integer function.

56. Draw the graph and find the points of discontinuity for

$$f(x) = ig[x^2 - x - 1ig], x \in [-1, 2]$$
 ([.]

represents the greatest integer function).

Watch Video Solution

57. Draw the graph of $y = an^{-1} x + \cot^{-1} x$

58. Draw the graph of
$$y = \left| \frac{1}{|x|} - 2 \right|$$
.

59. Draw the graph of $y = \tan^{-1} x + \cos^{-1} x + \sin^{-1} x$.

60. Draw the graph of
$$|y|=(x-1)(x-2)(x-3).$$

61. Draw the graph of $y=2\sin^{-1}(x/3)$.

62. Draw the graph of $y = \cot^{-1}|x|$.

63. Draw the graph of $y = \sec^{-1}|x|$.

64. Draw the graph of $y = |\log_e(x+3)|$.

Watch Video Solution

65. Draw the graph of $y = |\log_e|x||$.

66. Draw the graph of $y = |\{x\} - 0.5|$, where

{. } represents the fractional part function.

Watch Video Solution

67. Draw the graph of $y = |\sin x| + \sin |x|$.

68. If the graph of y=|f(x)| is as shown in

figure

then the graph of y=f(x) may be

D. (d)

Answer:

Watch Video Solution

69. The number of real solutions of the equation

$$\sqrt{1+\cos 2x}=\sqrt{2}\sin^{-1}(\sin x),\;-\pi\leq x\leq\pi$$

is 0 (b) 1 (c) 2 (d) infinite

70. Find the number of real solutions to the equation $\log_{0.5} |x| = 2|x|$.

Watch Video Solution

71. Find the number of points where the function $f(x)=\max{(|\tan x|,\cos|x|)}$ is non-differentiable in the interval $(-\pi,\pi)$.

72. Find the number of points of non-diferentiability

$$f(x) = \max \{||x| - 1|, 1/2\}.$$

73. Let $f(x) = \max . \left\{ \left| x^2 - 2 |x| \right|, |x| \right\}$ then number of points where f(x) is non derivable, is :

74. Draw the graph of |y| = [x], where [.] represents the greatest integer function.

Watch Video Solution

75. Draw the graph of |2x| + |y| = 2 using graphical transformation.

76. Consider the function

Then draw the graph of the function
$$y=f(x), y=f(|x|) ext{ and } y=|f(x)|.$$

 $f(x) = \left\{2x + 3, x \leq 1 \,\, ext{and} \,\, -x^2 + 6, x > 1
ight\}$

77. The graph of y=f(x) is as shown in the following figure. Draw the graph of y=[f(x)]

Watch Video Solution

78. Draw the graph of $y=\left[4-x^2\right], |x|\leq 2$, where [.] represents the greatest integer function.

