

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

GRAPHS OF POLYNOMIAL AND RATIONAL FUNCTIONS

Illustration

1. Draw the rough sketch of the curve $y = (x-1)^2(x-3)^3$.

Watch Video Solution

2. Draw the rough sketch of the curve $y = (x-1)^2(x-2)(x-3)^3$.

3. Draw the rough sketch of the curve $y = x^4 - x^2$.

4. Draw the graph of the function $y=3x^4-4x^3$. Discuss the points of local extremum, inflection and intervals of monotonicity.

5. Draw the graph of f(x) = (x-1)|(x-2)(x-3)|.

6. Draw the graph of $y=x^3-x^2+x-2$ and find the number of real root(s) of the equation $x^3-x^2+x-2=0$. Also locate the root.

7. Sketch the graph of the following functions y=f(x) and find the number of real roots of the corresponding equation f(x)=0.

$$f(i)f(x)=2x^3-9x^2+12x-(9/2) \hspace{0.5cm} (ii)f(x)=2x^3-9x^2+12x-3$$

Watch Video Solution

8. Draw the graph of $y=x^4+2x^2-8x+3$ Find the number of real roots of the equation $x^4+2x^2-8x+3=0$.

Also find the sum of the integral parts of all real roots.

- **9.** Let $\mathsf{a} \in \mathsf{R}$ and $\mathsf{f} \colon R o R$ be given by $f(x) = x^5 5x + a$, then
- (a) f(x)=0 has three real roots if a>4
- (b) f(x)=0 has only one real root if a>4
- (c) f(x)=0 has three real roots if $a<\,-4$
- (d) f(x) = 0 has three real roots if -4 < a < 4

10. Find the values of p for which the equation
$$x^4-14x^2+24x-3-p=0$$
 has

- (a) Two distinct negative real roots
- (b) Two real roots of opposite sign
- (c) Four distinct real roots
- (d) No real roots

10.

- **11.** Find the area bounded by the curves $y=\sqrt{1-x^2}$ and $y=x^3-x$ without using integration.
 - **Watch Video Solution**

12. Draw the graph of $f(x)=4x^3-3x$ and hence draw the graph of $g(x) = \cos^{-1}(4x^3 - 3x).$

13. Let
$$f(x)=1+4x-x^2,\ orall x\in R$$

$$g(x) = \max \ \{f(t), x \leq t \leq (x+1), 0 \leq x < 3\} = \min \ \{(x+3), 3 \leq x \}$$

15. If t is a real number satisfying the equation $2t^3-9t^2+30-a=0$, then find the values of the parameter a for which the equation $x+rac{1}{x}=t$ gives six real and distinct values of x .

14. Find the value of k if $x^3 - 3x + a = 0$ has three real distinct roots.

16. Let $f(x)=x^3-9x^2+24x+c=0$ have three real and distinct roots $lpha,\,eta$ and $\lambda.$

- (i) Find the possible values of c.
- (ii) If $[\alpha] + [\beta] + [\lambda] = 8$, then find the values of c, where $[\cdot]$ represents the greatest integer function.
- (ii) If $[\alpha] + [\beta] + [\lambda] = 7$, then find the values of c, where $[\cdot]$ represents the greatest integer function.s

17. Draw the graph of
$$f(x)=rac{x^2-x+1}{x^2+x+1}$$
 .

18. Draw the graph of
$$y=rac{x-1}{x^2}$$
 and hence the graph of $y=rac{|x-1|}{x^2}$.

19. Write a possible rational function f that has a vertical asymptote at x = 2, a horizontal asymptote y = 3 and a zero at x = -5. Also draw the graph of the function.

20. Write a rational function g with vertical asymptotes at x = 3 and x = -3, a horizontal asymptote at y = -4 and with no x-intercept.

21. Draw the graph of
$$y=f(x)=rac{x+1}{x^2+1}$$

22. Draw the graph of the function
$$f\colon R-\{-1,1\} o R.\ f(x)=rac{x}{1-|x|}.$$

23. Draw the graph of $f(x)=rac{1}{x^2-2x+2}$.

- **24.** From the graph of $y=x^2-4$, draw the graph of $y=\dfrac{1}{x^2-4}$.
 - Watch Video Solution

- **25.** Draw the graph of $y=x^2+rac{1}{x^2}, x
 eq 0$.
 - Watch Video Solution

- **26.** Draw the graph of $f(x) = \left| \frac{x^2 2}{x^2 1} \right|$.
 - Watch Video Solution

27. Draw the graph of $y=\frac{1-x^2}{1+x^2}$ and hence draw the graph of $y=\cos^{-1}.$ $\frac{1-x^2}{1+x^2}.$

28. Write a rational function f with a slant asymptote y=x+4, a vertical asymptote at x = 5 and one of the zeros at x = 2.

29. Draw the graph of
$$y=\dfrac{(x-1)(6x-1)}{2x-1}$$
.

30. Draw the graph of $y= an^{-1}igg(rac{3x-x^3}{1-3x^2}igg)$.

31. Draw the graph of $y = \frac{x^3}{3(x+1)}$.

Watch Video Solution

32. Draw the graph of $y = \frac{1}{x} + \frac{1}{x-2}$.

Watch Video Solution

33. Find the greatest value of $f(x) \frac{1}{2ax - x^2 - 5a^2} \in [-3, 5]$ depending upon the parameter a

Watch Video Solution

Exercises

1. Draw the graph of $y=(x-1)ig(x^2-x+1ig)$.

2. Draw the graph of $y=\left(x^2-x^5
ight)\left(x-2
ight)^3$.

Watch Video Solution

3. Let P and Q be any two points. Find the coordinates of the point R which divides PQ externally in the ratio 2:1 and verify that Q is the mid point of PR .

Watch Video Solution

4. Draw the graphs of

(i)
$$y = x^2(x-1)|x-2|$$

(ii)
$$y = x^3(x-1)|x-2|$$

- 5. Write a possible rational function f that has a vertical asymptote at x = x
- 2, a horizontal asymptote y = 3 and a zero at x = -5. Also draw the graph of the function.
 - Watch Video Solution

- **6.** Draw the graph of $y=f(x)=rac{x^2}{x^2+1}$.
 - Watch Video Solution

- **7.** Draw graph of $y = \frac{x^2 6x + 4}{x^2 + 2x + 4}$.
 - Watch Video Solution

- **8.** Draw the graph of $f(x) = \frac{x^2 8x + 15}{x^2 2x}$.
 - Watch Video Solution

9. Draw the graph of $f(x)=rac{5x^2}{\left(x-1 ight)^3}.$

10. Draw the graph of $f(x)=rac{2|x-1|}{x^2+1}.$

11. Draw the graph of $y = \frac{1}{x+1} + \frac{1}{x} + \frac{1}{x-2}$.

- **12.** Draw the graph of $y=x+rac{1}{x}$
 - Watch Video Solution

13. Draw the graph of $y = \frac{(x+6)(x+2)x(x-2)}{(x-3)(x^2-x+1)}$.

Watch Video Solution

14. Draw graph of $y = \frac{1}{x^2} - x$.

15. Draw graph of $y = \frac{x^3 - 2x^2}{3(x+1)^2}$.

16. Draw graph of $y = \frac{x^3 - 5x}{x^2 - 1}$.

17. Given $C_1 < C_2 < C_3 < C_4 < C_5$ and the function y = f(x) is twice

differentiable.

f'(x)>0 for $x\in (C_2,C_4),$ $f'(C_2)=f'(C_4)=0$ and f'(x)<0 for all the remaining values. Also $f''(C_1)=f''(C_3)=f''(C_5)=0$ and f''(x)>0 for $x\in (C_1,C_3)\cup (C_5,\infty)$ and f''(x)<0 for remaining

(i) What is the minimum number of asymptotes parallel to the x-axis for

y = f(x)?

(ii) What is the maximum number of asymptotes parallel to the x-axis of y=f(x) ?

(iii) If the range of y=f(x) is $[a,b], a,b\in R$, then what is the minimum

number of asymptotes parallel to the x-axis of y=f(x) ?

(iv) If the range of y=f(x) is non-finite interval, then what is the maximum number of asymptotes parallel to the x-axis ?

values. Answer the following: