

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

GRAPHS OF ELEMENTARY FUNCTIONS

Illustrations

1. The equation of a tangent to the parabola $y^2=8xisy=x+2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is (1) (-1, 1) (2) (0, 2) (3) (2, 4) (4) (-2, 0)

Watch Video Solution

- **2.** Draw the graph of $f(x) = \frac{x^3 x}{x^2 1}$.
 - Watch Video Solution

3. Graph of y=f(x) and y=g(x) is given in the following figure. If h(x)=f(g(x)), then find the value of $h^{\,\prime}(2)$.

4. Let $f(x) = \left(1-x
ight)^2 \sin^2 x + x^2$ for all $\mathsf{x} \in \mathsf{R}$, and let

$$g(x) = \int \!\! \left(rac{2(t-1)}{t+1} - \ln t
ight)\! f(t) dt$$
 for $\mathsf{t} \in$ [1, x] for all $\mathsf{x} \in$ (1,

 ∞).Which of the following is true ?

5. Sketch the regions satisfying the following inequalities:

- (a) x > 2
- (b) $|y| \ge 1$

6. Shade the regions where points satisfy |x-y|<1.

7. Plot the region satisfying $|x| + |y| \le 2$ and |x| + |y| > 2.

8. If x < 2, then find the values of x^2 graphically.

9. If x < -1, then find the values of x^2 graphically.

10. Draw the graph of $f(x) = \left\{ egin{aligned} x^3, & x^2 < 1 \\ x, & x^2 \geq 1 \end{aligned}
ight.$

Maria Maria Calantan

watch video Solution

11. If x>2, then find the values of 1/x graphically.

12. If x<-1, then find the values of 1/x graphically.

13. When x>-2, find the values of 1/x.

15. Draw the graph of $\frac{1}{x} + \frac{1}{y} = 1$.

16. Draw the graph of $y=rac{1}{x^2}$.

17. Draw the graphs of following quadratic functions.

(i)
$$y = x^2 + x + 1$$

(ii)
$$y = x^2 - 2x - 3$$

(iii)
$$y = 2 + x - x^2$$

(iv)
$$y = x - 1 - x^2$$

Watch Video Solution

18. The following figure shows the graph $f(x) = ax^2 + bx + c$, find the signs of $a,b \,\, {
m and} \,\, c$.

of

Watch Video Solution

19. Let $f(x)=2x(2-x), 0\leq x\leq 2$. Then find the number of solutions of $f(f(f(x)))=rac{x}{2}$.

20.
$$f\colon R o R$$
 is defined as $f(x)=egin{cases} x^2+kx+3,& ext{ for }x\geq 0\ 2kx+3,& ext{ for }x<0 \end{cases}$. If $f(x)$ is injective,

then find the values of k.

21. If $f(x)=x^3+4x^2+\lambda x+1$ is a monotonically decreasing function of x in the largest possible interval $\left(-2,\,-\frac{2}{3}\right)$.

Then (a) $\lambda=4$ (b) $\lambda=2$ $\lambda=-1$ (d) λ has no real value

22. For what real values of a do the roots of the equation $x^2-2x-\left(a^2-1\right)=0$ lie between the roots of the equation $x^2-2(a+1)x+a(a-1)=0.$

23. Find the value of a for which $ax^2+(a-3)x+1<0$ for at least one positive real x.

24. Consider the inequation $9^x - a3^x - a + 3 \le 0$, where a is real parameter.

The given inequality has at least one negative solution for $a\in$ (a) $(-\infty,2)$ (b) $(3,\infty)$ (c) $(-2,\infty)$ (d) (2,3)

25. Let a,b,c be real. If $ax^2+bx+c=0$ has two real roots lpha andeta,wherelpha<-1andeta>1 , then show that $1+rac{c}{a}+\left|rac{b}{a}\right|<0$

26. If b>a, then the equation (x-a)(x-b)-1=0 has

- (a) Both roots in (a,b) (b) Both roots in $(-\infty,a)$
- (c) Both roots in $(b, +\infty)$ (d) One root in $(-\infty, a)$

and the other in $(b, +\infty)$

27. When x>-2, find the values of |x| graphically.

28. When x < 3, find the values of |x| graphically.

29. If $2 \leq |x| \leq 5$, then find the values of x from the graph of y = |x|.

watch video Solution

31. Draw the graph of x+|y|=2y and check the differentiability.

32. Draw the graph of f(x) = (x + 2)|x - 1|.

33. Draw the graph of the function $f(x)=x-\left|x-x^2\right|,\;-1\leq x\leq 1$ and find the points of non-differentiability.

34. Solve : $x^2 - |x+2| + x > 0$

35. Draw the graph of f(x)=|2x-1|+|2x-3|. Find the range of the function.

36. Draw the graph of f(x) = |x| - |2x - 3|. Find the range of the function.

37. Let f(x) = x + 2|x+1| + 2|x-1|. Find the values of k if

f(x) = k

- (i) has exactly one real solution,
- (ii) has two negative solutions,
- (iii) has two solutions of opposite sign.

38. $f(x)=|ax-b|+c|x|\ \forall x\in (-\infty,\infty),$ where a>0, b>0, c>0. Find the condition if f(x) attains the minimum value only at one point.

Watch Video Solution

A. On the left of x=c

B. On the right of x=c

C. At no point

D. At all points

Answer:

constant.

Watch Video Solution

40. If a continuous function f defined on the real line R assume positive and negative values in R, then the equation f(x)=0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum value is negative, then the equation f(x)=0 has a root in R. Consider $f(x)=ke^x-x$, for all real x where k is a real

The positive value of k for which $ke^x-x=0$ has only one root is

- A. No point
- B. One point
- C. Two points
- D. More than two points

Answer:

41. If a continuous function f defined on the real line R assume positive and negative values in R, then the equation f(x)=0 has a root in R. For example, if it is known that a continuous function f on R is positive at some point and its minimum

value is negative, then the equation f(x)=0 has a root in R.

Consider $f(x)=ke^x-x$, for all real x where k is a real constant.

For k > 0, the set of all values of k for which $y=ke^x-x=0$ has two distinct roots is

A. a.
$$\frac{1}{e}$$

B. b. 1

 $\mathsf{C.\,c.}\,e$

D. d. $\log_e 2$

Answer:

Watch Video Solution

42. If x and y are arbitrary extensive variables, then

B.
$$\left(\frac{1}{e},1\right)$$
C. $\left(\frac{1}{e},\infty\right)$

A. $\left(0, \frac{1}{e}\right)$

D. (0, 1)

Answer:

Watch Video Solution

43. Find the number of solution of $2^x+3^x+4^x-5^x=0$

45. Find the number of roots of the equation $x \log_e x = 1$.

46. If the graphs of the functions $y = \log_e x$ and y = ax intersect at exactly two points, then find the value of a.

47. draw the graph of f(x) = x + [x], [.] denotes greatest integer function.

48. Draw the graph of the function $f(x)=x-|x2-x|-1\leq x\leq 1$, where $[\,\cdot\,]$ denotes the greatest integer function. Find the points of discontinuity and non-differentiability.

49. Draw the graph of $f(x)=\left[x^2\right], x\in [0,2)$, where $[\,\cdot\,]$ denotes the greatest integer function.

50. Draw the graph of $f(x) = \left[\sqrt{x}\right], x \in [0, 16)$, where $[\cdot]$ denotes the greatest ineger function.

51. Draw the graph of $y=[x]+\sqrt{x-[x]}$, where $[\cdot]$ denotes the greatest ineger function.

Watch Video Solution

52. Draw the graph of $f(x) = [\log_e x], e^{-2} < x < 10$, where

- $[\;\cdot\;]$ represents the greatest integer function.
 - Watch Video Solution

53. Solve $x^2 - 4x - [x] = 0$ (where [] denotes the greatest integer function).

Watch Video Solution

54. Sketch the region of relation $[x]+[y]=5, x,y\geq 0$, where

 $[\cdot]$ denots the greatest integer function.

55. Draw the graph of $f(x)=\{2x\}$, where $\{\,\cdot\,\,\}$ represents the fractional part function.

56. Find the domain of $f(x)=\sqrt{|x|-\{x\}}$ (where $\{\,\cdot\,\}$ denots the fractional part of x.

57. Solve : $x^2 = \{x\}$, where $\{x\}$ represents the fractional part function.

58. Draw the graph of $y^2=\{x\}$, where $\{\,\cdot\,\}$ represents the fractional part function.

59. Draw the graph of $y=\frac{1}{\{x\}}$, where $\{\,\cdot\,\}$ denotes the fractional part function.

60. Solve : $4\{x\}=x+[x]$ (where $[\ \cdot\]$ denotes the greatest integer function and $\{\ \cdot\ \}$ denotes the fractional part function.

Watch Video Solution

61. Given the graph of the function y=f(x), draw the graph of $y=\mathrm{sgn}(x)$.

62. Draw the graph of $f(x) = \operatorname{sgn}(x^3 - x)$.

Watch Video Solution

63. Draw the graph of $f(x) = \operatorname{sgn}(\log_e x)$.

Watch Video Solution

64. Let a function f(x) be defined in $[\,-2,2]$ as

$$f(x) = egin{cases} \{x\}, & -2 \leq x < -1 \ |\mathrm{sgn}\ x|, & -1 \leq x \leq 1 \ \{-x\}, & 1 < x \leq 2 \end{cases}$$
 where $\{x\}$ and $\mathrm{sgn}\ x$

denote fractional part and signum functions, respectively. Then find the area bounded by the graph of f(x) and the x-axis.

65. Let $f:R\to R$ be defined as $f(x)=e^{\operatorname{sgn}\ x}+e^{x^2}$. Then find the range of the function, and also indentify the type of the function : one-one or many-one.

66. Draw the graph of the function $f(x) = \max \left\{ x, x^2 \right\}$ and write its equivalent definition.

67. Let $f\colon R o R$ be a function defined by $f(x)=\max{}.{\left\{x,x^3\right\}}.$ The set of all points where f(x) is NOT differenctiable is

(a)
$$\{-1,1\}$$

68. Find the equivalent definition

Watch Video Solution

(b) $\{-1,0\}$

(d) $\{-1, 0, 1\}$

(c) $\{0, 1\}$

$$f(x)=maxx^2,{(-x)}^2,2x(1-x)whre0\leq x\leq 1$$

Watch Video Solution

 $h(x)=\left\{egin{array}{ll} \max\ \{f(x),g(x)\} & ext{if} & x\leq 0 \ \min\ \{f(x),g(x)\} & ext{if} & x>0 \end{array}
ight.$ then number of point at which b(x) is not different in

then number of point at which h(x) is not differentiable is

 $f(x) = |x| + 1 \, ext{ and } \, g(x) = x^2 + 1 ig).$ Define $h \colon\! R o R$ by

69. Let $f:R \to R$ and $g:R \to R$ be respectively given by

of

JIULIOII

70. Sketch the region of the points satisfying \max . $\{|x|,|y|\} \leq 4$.

in the plane. Then the area of the region $A\cap B$ is

- **72.** Draw the graphs of the following parabolas :
- (i) $x=y^2-2y-3$
 - (ii) $x = 6 + y y^2$

73. Find the number of roots of the equation $e^x = \sqrt{-x}$.

74. Let $g(x)=\sqrt{x-2k},\ orall 2k\leq x<2(k+1),\ \ ext{where}\ \ k\in$ integer. Check whether g(x) is periodic or not.

75. Plot the region in the first quadrant in which points are nearer to the origin than to the line $x\,=\,3.$

76. Draw the graph of $y=\sqrt{x^2-1}$

77. Draw the graph of $y=-\sqrt{6-3x^2}$

78. The eccentricity of the ellipse
$$9x^2 + 25y^2 - 18x - 100y - 116 = 0$$
 is a. $\frac{25}{16}$ b. $\frac{4}{5}$ c. $\frac{16}{25}$ d. $\frac{5}{4}$

79. Find the area enclosed by the curves $y=\sqrt{x}$ and $x=-\sqrt{y}$ and the circle $x^2+y^2=2$ above the

x-axis.

Watch Video Solution

Consider a square with vertices 80. at $(1,1),(\,-1,1),(\,-1,\,-1),\,and(1,\,-1)$. Set $\,S\,$ be the region consisting of all points inside the square which are nearer to the origin than to any edge. Sketch the region S and find its area.

Watch Video Solution

Exercises

1. Draw the graph of $y = \frac{1}{(1/x)}$.

watch video Solution

2. (a) Draw the graph of
$$f(x)=\begin{cases}1,&|x|\geq1\\\frac{1}{n^2},&\frac{1}{n}<|x|<\frac{1}{n-1},n=2,3,...\\0,&x=0\end{cases}$$

$$\left(egin{array}{ll} n & x = 0 \ 0, & x = 0 \end{array}
ight)$$
 (b) Sketch the region $y \leq -1$.

(c) Sketch the region $\left|x
ight|<3$.

3. Sketch the regions which points satisfy $|x+y| \geq 2$.

4. Sketch the region satisfying |x|<|y|.

5. For a point P in the plane, let $d_1(P)andd_2(P)$ be the distances of the point P from the lines x-y=0andx+y=0 respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_1(P) + d_2(P) \leq 4$, is

6. Draw the graph of $y = \frac{x-1}{x-2}$.

7. The following figure shows the graph of $f(x) = ax^2 + bx + c$, then find the sign of values of

a, b and c.

Watch Video Solution

8. The entire graph of the equation $y=x^2+kx-x+9$ in strictly above the x-axis if and only if (a)k<7 (b) -5< k<7 (c).k>-5 (d) none of these

 ${\rm A.}\,k<7$

B. -5 < k < 7

 $\mathsf{C}.\,k>\,-\,5$

D. None of these

Answer:

- **9.** If $x^2+2ax+a<0\, orall x\in [1,2],\,$ the find the values of a.
 - Watch Video Solution

- **10.** Draw the graph of f(x) = x|x|.
 - Watch Video Solution

11. Draw the graph of the function: Solve $\left|\frac{x^2}{x-1}\right| \leq 1$ using the graphical method.

12. Draw the graph of $y=\left|x^{2}-2x\right|-x$.

13. Draw the graph of $y= \left\{ egin{array}{ll} 2^x, & x^2-2x \leq 0 \ 1+3.5x-x^2 & x^2-2x > 0 \end{array}
ight.$

14. Draw the graph of f(x) = |x-1| + |2x-3|. Find the range of the function.

15. Draw the graph of
$$f(x)=y=|x-1|+3|x-2|-5|x-4|$$
 and find the values of λ for which the equation $f(x)=\lambda$ has roots of opposite sign.

16. Find the set of real value(s) of a for which the equation

|2x+3|+|2x-3|=ax+6 has more than two solutions.

18. Draw the graph of $y=x^{rac{1}{\log_e x}}.$

19. Find the number of solutions to the equation $x + \log_e x = 0.$

20. Draw the graph of f(x)=x+[x], [.] denotes greatest integer function.

21. Given f(x) is a periodic function with period 2 and it is defined as

$$f(x) = egin{cases} \left[\cosrac{\pi x}{2}
ight] + 1, & 0 < x < 1 \ 2 - x, & 1 \leq x < 2 \end{cases}$$

Here $[\,\cdot\,]$ represents the greatest integer $\le x.$ If f(0)=1, then draw the graph of the function for $x\in[\,-2,\,2].$

22. Draw the region of relation $[x][y]=6, x,y\geq 0$. Here $[\ \cdot\]$ denotes the greatest integer function.

23. $\lim_{x \to c} f(x)$ does not exist for wher [.] represent greatest integer function $\{.\}$ represent

fractional part function

Watch Video Solution

24. Let $f(x)=rac{[x]+1}{\{x\}+1}$ for $f{:}\left[0,rac{5}{2}
ight)
ightarrow\left(rac{1}{2},3
ight]$, where $[\ \cdot\]$

represents the greatest integer function and $\{\,\cdot\,\}$ represents the fractional part of x.

Draw the graph of y=f(x). Prove that y=f(x) is bijective.

Also find the range of the function.

Watch Video Solution

25. Draw the graph of $y=2^{\{x\}}$, where $\{\,\cdot\,\}$ represents the fractional part function.

Watch Video Solution

26. Find the area of the region containing the points (x,y) satisfying $4 \le x^2 + y^2 \le 2(|x| + |y|)$.

27. Draw the graph of
$$y=\ -\sqrt{x^2+2}$$

28. Draw the graph of $y=\left|x
ight|^{1/2}$ for $-1\leq x\leq 1$.

29. Draw the graph of $f(x) = \operatorname{sgn}(\log_{0.5} x)$.

vateri video Solution

30. The graph of y=f(x) is as shown in the following figure.

Draw the graph of y = [f(x)].

31. The function $y=f(x)=\lim_{n o\infty} rac{x^{2n}-1}{x^{2n}+1}.$ Is this function same as the function $g(x)=\mathrm{sgn}(|x|)-1).$

Watch Video Solution

32. An even periodic function $f\!:\!R o R$ with period 4 is such that

$$f(x)=egin{cases} \max \ .\ (|x|,x^2), & 0\leq x<1 \ x, & 1\leq x\leq 2 \end{cases}$$
 . Then draw the graph of $y=f(x)$ for $x\in R$

Watch Video Solution

The function

$$f(x)=\max\{(1-x),(1+x),2\},x\in(-\infty,\infty)$$
 is

A. Continuous at all points

B. Differentiable at all points

C. Differentiable at all points except at

$$x = 1 \text{ and } x = -1$$

D. Continuous at all points except at x=1 and x=-1, where it is discontinuous

Answer:

34. Check the differentiability if $f(x) = \min \{1, x^2, x^3\}$.

