

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

GRAPHS OF TRIGONOMETRIC FUNCTIONS

Illustration

1. Plot $y = \sin x$ and $y = \sin 2x$.

2. Plot
$$y = \sin x$$
 and $y = \sin\left(\frac{x}{2}\right)$

3. Draw the graph of $y = \tan(3x)$

4. Draw the graph of $y = \sec^2 x - \tan^2 x$. Is f(x) periodic? If yes, what is its fundamental period?

5. Draw the graph of $y = \sec^2 x - \tan^2 x$. Is f(x) periodic? If yes, what is its fundamental period?

Watch Video Solution

6. Which of the following is highest?

- (a) cosec 1 (b) cosec 2
- (c) cosec 4 (d) cosec (-6)

7. Draw the graph of the function $y=f(x)=\lim_{n
ightarrow\infty}\cos^{2n}x$ and find its period.

8. Find the number of solution to the equation $x^2 an x = 1, x \in [0, 2\pi].$

- **9.** Solve $\tan x > \cot x$, where $x \in [0, 2\pi]$.
 - Watch Video Solution

10. Let $f(x)=x\sin\pi x,\ x>0$. Then for all natural numbers $n,\ f'(x)$ vanishes at (a) A unique point in the interval $\left(n,\ n+\frac{1}{2}\right)$ (b) a unique point in the interval $\left(n+\frac{1}{2},\ n+1\right)$ (c) a unique point in the interval $(n,\ n+1)$ (d) two points in the interval $(n,\ n+1)$

11. If $0<\alpha<\frac{\pi}{3}$, then prove that $\alpha(\sec\alpha)<\frac{2\pi}{3}$.

12. Draw the graph of $y=[\sin x], x\in [0,2\pi], ext{ where}$

 $[z_1, z_2, z_3], z_3 = [z_3, z_3], z_4 = [z_3, z_3], z_5 = [z_3,$

represents the greatest integer function.

13. Draw the graph of
$$f(x) = [an x], \, 0 \leq x \leq 5\pi/12$$
, where $[\,\cdot\,\,]$

represents the greatest integer function.

14. Draw the graph of $f(x) = e^{\sin x}$.

15. Draw the graph of $y = \sin^2 x$.

Watch Video Solution

16. Draw the graph of $y=(\sin 2x)\sqrt{1+\tan^2 x}$, find its domain and range.

17. Draw the graph $y = \sin^2 x$.

18. Draw the graph of $y = \sin^3 x$.

Watch Video Solution

19. Draw the graph of

 $f(x) = |\sin x| + |\cos x|, x \in R.$

20. Draw the graph of $f(x) = \sqrt{\sin x}$.

21. Draw the graph of
$$y=\dfrac{\cos\left(|x|+\frac{\pi}{2}\right)}{\sin x}$$
 . Is the function periodic ?

22. Draw the graph of $f(x) = \cos \pi[x]$, where $[\cdot]$ represents the greatest integer function. Find the period of the function.

23. Draw the graph of
$$f(x) = \sec x + \csc \ x, \, x \in (0, 2\pi) - \{\pi/2, \pi, 3\pi/2\}$$

Also find the values of 'a' for which the equation $\sec x + \csc \ x = a$ has two distinct roots and four distinct roots.

24. Draw the graph of
$$f(x)=\frac{\sin x}{\sqrt{1+\tan^2 x}}-\frac{\cos x}{\sqrt{1+\cot^2 x}}.$$
 Then find the range of f(x).

25. Find the area bounded by the following curve:

(i)
$$f(x)=\sin x, g(x)=\sin^2 x, 0\leq x\leq 2\pi$$

(ii)
$$f(x)=\sin x, g(x)=\sin^4 x, 0\leq x\leq 2\pi$$

Watch Video Solution

26. Write the equivalent (piecewise) definition of $f(x) = sgn(\sin x).$

Watch Video Solution

27. Draw the graph of $f(x) = \{\sin x\}$, where $\{\cdot\}$ represents the fractional part function.

28. Draw a graph of $f(x) = \sin\{x\}$, where $\{x\}$ represents the greatest integer function.

29. Draw the graph of f(x) maximum $\{2\sin x, 1-\cos x\}, x\in (0,\pi).$ Also find the range of

$$g(x) \quad ext{min} \quad \{2\sin x, 1-\cos x\}, \, x \in (0,\pi)$$

30. Draw the graph of $y = \log_e(\sin x)$.

31. Draw the graph of $[y]=\sin x, x\in [0,2\pi]$ where

- $[\ \cdot\]$ denotes the greatest integer function
 - Watch Video Solution

32. Draw the graph of $y = x \sin x$.

33. Draw the graph of $y = e^x \sin 2\pi x$.

34. Let [x] denotes the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is

35. Evaluate : $\left[\lim_{x\to 0}\frac{\sin x}{x}\right]$, where $[\cdot]$ represents the greatest integer function.

$$f(x)=rac{x}{1+x an x}, x\in \left(0,rac{\pi}{2}
ight)$$

Watch Video Solution

37. Find the values of a if equation $1-\cos x=rac{\sqrt{3}}{2}|x|+a,x\in(0,\pi),$ has exactly one solution.

Watch Video Solution

38. Find the number of solution to the equation $\sin x = x^2 + 2x + 1$.

39. Prove that
$$\sin x + 2x \geq \frac{3x(x+1)}{\pi}, \ orall x \in \left[0, \frac{\pi}{2}\right]$$
 (Justify the inequality, if any used).

40. Find the ratio of the areas of two regions of the curve $C_1\equiv 4x^2+\pi^2y^2=4\pi^2$ divided by the curve $C_2\equiv y=-\left(sgn\left(x-\frac{\pi}{2}\right)\right)\cos x$ (where sgn (x) = signum (x)).

41. Solve $\tan x < 2$.

Watch Video Solution

42. Solve $\sin x > -\frac{1}{2}$ or find the domain of $f(x) = \frac{1}{\sqrt{1+2\sin x}}$

43. Solve : $2\cos^2\theta+\sin\theta\leq 2$, where $\frac{\pi}{2}\leq \theta\leq \frac{3\pi}{2}$.

44. Solve $\sin \theta + \sqrt{3}\cos \theta \geq 1, \ -\pi < \theta < \pi$

Watch Video Solution

45. Let
$$f(x)= egin{cases} x^2+3x, & -1 \leq x < 0 \ -\sin x, & 0 \leq x < \pi/2 \ -1-\cos x, & rac{\pi}{2} \leq x \leq \pi \end{cases}$$
 .

Draw the graph of the function and find the following

- (a) Range of the function
- (b) Point of inflection
- (c) Point of local minima

46. If $0 < x_1 < x_2 < x_3 < \pi$, then prove that

$$\sin\!\left(rac{x_1+x_2+x_3}{3}
ight)<rac{\sin x_1+\sin x_2+\sin x_3}{3}$$

Hence or otherwise prove that if A,B,C are angles of a triangle, then the maximum value of $\sin A + \sin B + \sin C$ is $\frac{3\sqrt{3}}{2}$

Exercises

1. Draw the graph of $y = \csc^2 x - \cot^2 x$. Is f(x) periodic? If yes, what is its fundamental period?

2. Draw the graph of
$$y=\cos\pi x$$
.

3. Draw the graph of $y = \cos^2 x$.

 $f(x) = \sqrt{\sin x - \cos x}$ is defined, $x \in [0, 2\pi)$

4. Find the value of x for which

5. Draw the graph of $y = \tan^2 x$.

Watch Video Solution

6. Draw the graph of $y=\sin x+\cos x, \, x\in [0,2\pi].$

Watch Video Solution

7. Draw the graph of $y=[\cos x], x\in [0,2\pi],$ where

 $[\cdot]$ represents the greatest integer function.

8. Draw the graph of $y = \sin \pi \sqrt{x}$.

Watch Video Solution

9. Find the number of roots of the equation $x\sin x=1, x\in [-2\pi,0)\cup (0,2\pi].$

10. Evaluate : $\left[\lim_{x\to 0}\frac{\tan x}{x}\right]$, where $[\cdot]$ represents the greatest integer function.

11. For $f(x) = \sin x - x^2 + 1$, check weather the function is increasing, decreasing or has a point of extremum?

Watch Video Solution

12. Draw the graph of the function $f(x)=max\sin x,\cos 2x, x\in [0,2\pi]$. Write the equivalent definition of f(x) and find the range of the function.

- **13.** Draw the graph of $[y]=\cos x, \, x\in [0,2\pi], \,$ where
- $[\cdot]$ denotes the greatest integer function.

- **14.** The total number of solution of $\sin\{x\}=\cos\{x\}$ (where $\{\}$ denotes the fractional part) in $[0,2\pi]$ is equal to 5 (b) 6 (c) 8 (d) none of these
 - Watch Video Solution

15. Draw the graph of $f(x) = |\tan x| + |\cot x|$.

valcii video Solution

16. Find the number of solutions to $\cos x = \frac{x}{10}, \, x > 0.$

Watch Video Solution

17. The number of solutions of $an x-mx=0, m>1, ext{ in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ext{ is 1 (b) 2 (c)}$

3 (d) m

18. Find the number of solutions to $\log_e |\sin x| = -x^2 + 2x$ in $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$.

19. Solve : $\cos x \leq -\frac{1}{2}$.

20. Prove that the least positive value of x, satisfying $\tan x = x+1$, lies in the interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

21. Draw the graph of $y=rac{x^2}{10}\sin x$.

Watch Video Solution

22. Draw the graph of $y=rac{\sin x}{x}$.

