

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

Dpp 12

1. The number of integral values of p for which

$$(p+1)\hat{i}-3\hat{j}+p\hat{k},p\hat{i}+(p+1)\hat{j}-3\hat{k}$$
 and

 $-3\hat{i}+p\hat{j}+(p+1)\hat{k}$ are linearly dependent

C. 2

Answer: B

2. The base vectors \overrightarrow{a}_1 , \overrightarrow{a}_2 and \overrightarrow{a}_3 are given in terms of base vectors \overrightarrow{b}_1 , \overrightarrow{b}_2 and \overrightarrow{b}_3 as $\overrightarrow{a}_1 = 2\overrightarrow{b}_1 + 3\overrightarrow{b}_2 - \overrightarrow{b}_3$,

$$\overrightarrow{a}_2 = \overrightarrow{b}_1 - 2\overrightarrow{b}_2 + 2\overrightarrow{b}_3$$
 and

$$\overrightarrow{a}_3=2\overrightarrow{b}_1+\overrightarrow{b}_2-2\overrightarrow{b}_3,$$
 if $\overrightarrow{F}=3\overrightarrow{b}_1-\overrightarrow{b}_2+2\overrightarrow{b}_3,$ then vector \overrightarrow{F} in terms of $\overrightarrow{a}_1,$ \overrightarrow{a}_2 and \overrightarrow{a}_3 is

3. The number of distinct real values of λ for which the vectors $\overrightarrow{a}=\lambda^3\hat{i}+\hat{k}, \overrightarrow{b}=\hat{i}-\lambda^3\hat{j}$ and $\overrightarrow{c}=\hat{i}+(2\lambda-\sin\lambda)\hat{j}-\lambda\hat{k}$ are coplanar is

- A. 0
- B. 1
- C. 2
- D. 3

Answer: A

Watch Video Solution

4. The coplanar points A,B,C,D are $(2-x,2,2),\,(2,2-y,2),\,(2,2,2-z)$ and

(1,1,1) respectively then

A.
$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$$

B. x + y + z = 1

C.
$$\frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z} = 1$$

D. none of these

Answer: A

5. If
$$a_1$$
 and a_2 are two values of a for which the unit vector $a\hat{i}+b\hat{j}+\frac{1}{2}\hat{k}$ is linearly dependent with $\hat{i}+2\hat{j}$ and $\hat{j}-2\hat{k}$,then $\frac{1}{a_1}+\frac{1}{a_2}$ is equal to

B.
$$\frac{1}{8}$$

$$C. - \frac{16}{11}$$

D.
$$-\frac{11}{16}$$

Answer: C

Watch Video Solution

6. Let a,b and c be distinct non-negative numbers and the vectors $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k},\,c\hat{i}+c\hat{j}+b\hat{k}$ lie in a plane, then the quadratic equation $ax^2+2cx+b=0$ has

A. real and equal roots

B. real unequal roots

C. unreal roots

D. both roots real and positive

Answer: A

Watch Video Solution

7. In the ΔOAB , M is the mid-point of AB,C is a point on OM, such that 2OC=CM. X is a point on the side OB such that OX=2XB. The line XC is produced to meet OA in Y. then, $\frac{OY}{YA}$ is equal to

B.
$$\frac{2}{7}$$

$$\frac{3}{2}$$

D. $\frac{2}{5}$

Answer: B

Watch Video Solution

8. Points X and Y are taken on the sides QR and RS, respectively of a parallelogram PQRS, so that QX=4XR and RY=4YS. The line XY cuts the line PR at Z. Then, PZ is

A.
$$\frac{21}{25}\overrightarrow{PR}$$

B.
$$\cfrac{16}{25}\overrightarrow{PR}$$
C. $\cfrac{17}{25}\overrightarrow{PR}$

D. None of these

Answer: A

9. On the xy plane where O is the origin, given points, A(1,0), B(0,1) and C(1,1). Let P,Q, and R be moving points on the line OA, OB, OC respectively such that

$$\overline{OP}=45t\overline{(OA)}, \overline{OQ}=60t\overline{(OB)}, \overline{OR}=(1-t)\overline{(OC)}$$
 with $t>0$. If the three points P,Q and R are

collinear then the value of t is equal to

A
$$\frac{1}{106}$$
B $\frac{7}{187}$
C $\frac{1}{100}$

D none of these

A.
$$\frac{1}{106}$$

B. $\frac{7}{187}$

C.
$$\frac{1}{100}$$

Answer: B

Watch Video Solution

10. Given three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are non-zero and non-coplanar vectors. Then which of the following are coplanar.

A.
$$\overrightarrow{a}$$
 + \overrightarrow{b} , \overrightarrow{b} + \overrightarrow{c} , \overrightarrow{c} + \overrightarrow{a}

$$\mathsf{B}.\ \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}$$

$$\mathsf{C}.\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}-\overrightarrow{c},\overrightarrow{c}-\overrightarrow{a}$$

D.
$$\overrightarrow{a} + \overrightarrow{b}$$
, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} - \overrightarrow{a}$

Answer: B::D

Watch Video Solution