MATHS # **BOOKS - CENGAGE MATHS (ENGLISH)** ## MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS #### Illustration - **1.** Check the nature of the following differentiable functions (i) $f(x) = e^x$ - +sin xc,x in R^+ (ii)f(x)=sinx+tan x-2x, $x \in (0, \pi/2)$ - O V - **2.** Prove that the function $f(x)=(\log)_e \left(x^2+1\right)-e^{-x}+1$ is strictly increasing $orall x\in R$. - Watch Video Solution **3.** Find the least value of k for which the function x^2+kx+1 is an increasing function in the interval (1,2) **4.** Find the range of values of a if $f(x)=2e^x-ae^{-x}+(2a+1)x-3$ is monotonically increasing for all values of x. **5.** If f(x) and g(x) are differentiable and increasing functions then which of the following functions always increases? A. f(x)+g(x) B. f(x)*g(x) C. f(x)-g(x) D. f(x)/g(x) Answer: A **Watch Video Solution** **6.** Let $$g(x) = (f(x))^3 - 3(f(x))^2 + 4f(x) + 5x + 3\sin x + 4\cos x \, orall x \in R$$ Then prove that g is increasing whenever is increasing. **7.** For each of the following graphs, comment whether f(x) is increasing or decreasing or neither increasing nor decreasing at x = a. #### **8.** Find the complete set of values of α for which the function $$f(x) = {(x + 1, x < 1)}$$ $$\alpha$$, x =1 , is strictly increasing x=1 $$x^2 - x + 3, x < 1$$ # **Watch Video Solution** f(x) = $\{-2x^3 + 3x^2 - 6x + 5, x < 0\}$ Prove that function 9. $-x^2-x+1, x\geq 0$ is decreasing for all x. **10.** If fogoh(x) is an increasing function, then which of the following is not possible? f(x),g(x),andh(x) are increasing f(x)andg(x) are decreasing and h(x) is increasing f(x),g(x),andh(x) are decreasing **11.** Let f(x)andg(x) be two continuous functions defined from RR, such that $f(x_1) > f(x_2)$ and $g(x_1) < g(x_2)$ f or $all\ x_1 > x_2$. Then what is the solution set of $f(g(\alpha^2 - 2\alpha) > f(g(3\alpha - 4))$ **12.** Let $f:[0,\infty)\overrightarrow{0,\infty} and g:[0,\infty)\overrightarrow{0,\infty}$ be non-increasing and non-decreasing functions, respectively, and h(x)=g(f(x)). If fand g are then show h(x) is always, identically zero. **13.** Find the values of p if $f(x) = \cos x - 2px$ is invertible. **14.** Find the critical points(s) and stationary points (s) of the function $f(x)=(x-2)^{2/3}(2x+1)$ differentiable for all points in their respective domains and h(0) = 0, 15. Separate the intervals of monotonocity of the following function: (i) $$f(x) = 3x^4 - 8x^3 - 6x^2 + 24x + 7$$ (ii) $$F(x) = -\sin^3 x + 3\sin^2 x + 5, x ext{in}(-\pi/2, \pi/2)$$ (iii) $$f(x) = (2^x - 1)(2^x - 2)^2$$ ## 16. अंतराल ज्ञात कीजिए जिन पर $$f(x) = rac{4\sin x - 2x - x\cos x}{2 + \cos x}$$ से प्रदत फलन f(i) निरंतर वर्धमान (ii) निरंतर हासमान है | # **View Text Solution** **17.** Find the interval of monotonocity of the function $f(x) = |x-1|x^2$. ## Watch Video Solution 18. Find the intervals of decrease and increase for the function $$f(x) = \cos\left(\frac{\pi}{x}\right)$$ **19.** Let g(x)=f(x)+f(1-x) and $f''(x)>0\,\forall\,x\in(0,1)$. Find the intervals of increase and decrease of g(x). **20.** Find the range of the function f(x) =x Si x- $\frac{1}{2}$ sin² x for xin $\left(0, \frac{\pi}{2}\right)$ **21.** Find the range of f(x)= $\frac{1}{\pi}\sin^{-1}x + \tan^{-1} + \frac{x+1}{x^2 + 2x + 5}$ **22.** Find the number of roots of the equation $\log_e(1+x)- rac{ an^{-1}x}{1+x}=0$ **23.** Find the number of roots of the function $f(x) = rac{1}{{{(x + 1)}^3}} - 3x + \sin x \cdot$ **24.** Prove that $\log_e(1+x) < xf$ or x>0 **25.** Let fandg be differentiable on R and suppose $f(0)=g(0)andf'(x)\leq g'(x)$ for all $x\geq 0$. Then show that $f(x)\leq g(x)$ for all $x\geq 0$. **26.** Show that $1+\xi n \Big(x+\sqrt{x^2+1}\Big) \geq \sqrt{1+x^2}$ for all $x\geq 0$. 27. If `a, b > 0a n d0 Watch Video Solution **28.** Prove that $|\cos \alpha - \cos \beta| \leq |\alpha - \beta|$ Watch Video Solution **29.** If P(1)=0 and $\frac{dP(x)}{dx}>P(x)$ for all x>=1. Prove that P(x)>0 for all x>1 Watch Video Solution **30.** For $0 < x < \frac{\pi}{2}$,prove that $x > \sin x$ Prove that $e^x \geq 1+x$ and $e^x + \sqrt{1+e^{2x}} \geq (1+x) + \sqrt{2+2x+x^2} \, orall \, \mathsf{x}$ in R hence Watch Video Solution 31. 32. Separate the intervals of concavity of the following functions - (i) $f(x)=\sin^{-1} x$,(ii) $f(x)=x+\sin x$ - Watch Video Solution **33.** If graph of the function f(x) = $3x^4 + 2x^3 + ax^2 - x + 2$ is concave upward for all real x, then find values of a, - **34.** Prove that for any two numbers x_1 and x_2 - $rac{2e^x + e^x}{3} > e rac{2x_1 + x_2}{3}$ **35.** If A+B+C= $$\pi$$ Prove that in triangle ABC, $\sin A + \sin B + C \leq \frac{3\sqrt{3}}{2}$ **36.** Prove that $$a_1^m+a_2^m+\ldots+a_n^m rac{a_1+a_2+\ldots+a_n}{n}< rac{a_1+a_2+\ldots+a_n}{(n)^m}$$ If $0< m<1$ and $a_i>0$ for all I. **37.** Find the points of inflection for $f(x) = \sin x$ $f(x) = 3x^4 - 4x^3$ **38.** Find the coordinates of the point of inflection of the curve $f(x) = e^{-(-x^2)}$ $f(x) = x^{\frac{1}{3}}$ **39.** The function $y = \frac{ax+b}{x-1}(x-4)$ has turning point at P(2,-1) Then find the values of a and b. **40.** How many ciritcal points function f(x)=(x-1)|x-3|-4x+12 has? How many of these are points of local extrema? **41.** Discuss the extremum of the function f(x)=(x-1)(x-2)(x-3). How many critical points f(x) has? **42.** Find the points of extrema of the function $f(x)=2 \sec x+3 \csc x$ **43.** Prove that for all a,b in the function f(X) $=3x^4-4x^3+6x^2+ax+b$ has exactly one extremium. **44.** The function $f(x)=\left(x^2-4\right)^n\left(x^2-x+1\right), n\in N,$ assumes a local minimum value at x=2. Then find the possible values of n **45.** Test $f(x)=\{x\}$ for the existence of alocal maximum and minimum at x=1, where{.} represents the fractional part function. **46.** Consider the following graphs of the functions. Check each for the extrema at x=a Watch Video Solution **47.** Let f(x)= $\left\{x^3+x^2+10x,x<0. ight\}$. Investigate x=0 for local $$-3\sin x, x \geq 0$$ maxima/minima. **48.** Let $f(x)= rac{a}{x}+x^2$. If it has a maximum at x=-3, then find the value of a. - **49.** Discuss the extremum of $f(x) = \sin x (1+\cos x), x \in \left(0, \frac{\pi}{2}\right)$ - Watch Video Solution - **50.** Find the points at which the function f given by $f(x)=(x-2)^4(x+1)^3$ has local maxima and local minima and points of inflexion. - Watch Video Solution **51.** Discuss the extremum of $f(x)=40ig(3x^4+8x^3-18x^2+60ig)$. **52.** Discuss extrema of the function $$f(x) = \int_{1}^{x} 2(x-1)(x-2)^{3} + 3(x-1)^{2}(x-2)^{2} dx$$ **53.** Let $f(x) = \sin^3 x + \lambda \sin^2 x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$ Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum. **54.** Let $f(x) = \sin^3 x + \lambda \sin^2 x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$ Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum. **55.** Discuss the extrema of $f(x)= rac{x}{1+x an x}, x\in\left(0, rac{\pi}{2} ight)$ Watch Video Solution **56.** Determine which is bigger, $\frac{1}{(\pi)^{\frac{1}{e}}}$ or $\frac{1}{(e)^{\frac{1}{\pi}}}$? Watch Video Solution 57. Discuss the extrema of the following functions $$(i)f(x)=|x|,(ii)f(x)=e^{-\,|x|},(iii)f(x)=x^{2\,/\,3}$$ Watch Video Solution **58.** If $1f(x) = \left\{x^2, x \leq 0. \text{Investigate} \right.$ the functions at x for maxima/manima **59.** Discuss the extremum of $f(x) = 2x + 3x^{\frac{2}{3}}$ Watch Video Solution **60.** $f(x) = \left\{ rac{\cos(\pi x)}{2}, x > 0x + a, x \leq 0 ight.$ Find the values of a if x = 0is a point of maxima. Watch Video Solution 61. about to only mathematics **Watch Video Solution** $f(x) = |ax - b| + c|x| \, \forall x \in (-\infty, \infty),$ 62. where $a>0,\,b>0,\,c>0.$ Find the condition if f(x) attains the minimum value only at one point. **63.** Let $f(x)=2x^3-9x^2+12x+6$. Discuss the global maxima and minima of $f(x)\in [0,2] and (1,3)$ and, hence, find the range of f(x) for corresponding intervals. **64.** Find the absolute maximum and absolute minimum values of $f(x)=3x^4-8x^3+12x^2-48x+25$ in $[0,\ 3]$ **65.** Find the range of the function $f(x) = 4\cos^3 x - 8\cos(2)x + 1$. ## **67.** A function y = f(x) is represented parametrically as following $$x = \phi(t) = t^5 - 20t + 7$$ $$y=\psi(t)=4t^3-3t^2-18t+3$$ where t in [-2,2] Find the intervals of monotonicity and also find the points of extreama. Also find the range of function. - **68.** Find how many roots of the equations $x^4 + 2x^2 8x + 3 = 0$. - Watch Video Solution - **69.** Draw the graph of $y= rac{x^2}{\sqrt{x+1}}$ - **Watch Video Solution** **70.** Draw the graph of $y = xe^x$. Find the range of the function. Also find the point of inflection. **71.** Minimum integral value of k for which the equation $e^x = kx^2$ has exactly three real distinct solution, **72.** Draw the graph of $f(x) = \log_e\!\left(\sqrt{1-x^2}\right)$. Find the range of the function . Also find the values of k if f(x) has two distinct real roots. **73.** Draw the graph of $f(x)= rac{x^2-5x+6}{x^2-x}$ **74.** Find the value of a if $x^3 - 3x + a = 0$ has three distinct real roots. Watch Video Solution **75.** Prove that there exist exactly two non-similar isosceles triangles ABCsuch that $\tan A + \tan B + \tan C = 100$. Watch Video Solution **76.** If t is a real number satisfying the equation $2t^3-9t^2+30-a=0,$ then find the values of the parameter a for which the equation $x + \frac{1}{x} = t$ gives six real and distinct values of x . 77. The tangent to the parabola $y=x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1,2]. Find x_0 for which the triangle bounded by the tangent, the axis of ordinates, and the straight line y=x02 has the greatest area. **78.** Find the point $(\alpha,)\beta$ on the ellipse $4x^2+3y^2=12,\,$ in the first quadrant, so that the area enclosed by the lines
$y=x,y=\beta,x=\alpha$, and the x-axis is maximum. **79.** LL' is the latus rectum of the parabola y^2 = 4ax and PP' is a double ordinate drawn between the vertex and the latus rectum. Show that the area of the trapezium PP'LL' is maximum when the distance PP' from the vertex is a/9. - Watch video Solution **80.** Find the points on the curve $5x^2-8xy+5y^2=4$ whose distance from the origin is maximum or minimum. **81.** Rectangles are inscribed inside a semi-circle of radius r. Find the rectangle with maximum area. **82.** A running track of 440 ft is to be laid out enclosing a football field, the shape of which is a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then find the length of its sides. **83.** If the sum of the lengths of the hypotenuse and another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is $\frac{\pi}{3}$. **Watch Video Solution** **84.** The tangent to the parabola $y=x^2$ has been drawn so that the abscissa x_0 of the point of tangency belongs to the interval [1,2]. Find x_0 for which the triangle bounded by the tangent, the axis of ordinates, and the straight line y=x02 has the greatest area. **Watch Video Solution** **85.** Find the point $(\alpha,)\beta$ on the ellipse $4x^2+3y^2=12, \,$ in the first quadrant, so that the area enclosed by the lines $y=x,y=\beta,x=\alpha$, and the x-axis is maximum. **86.** LL' is the latus rectum of the parabola y^2 = 4ax and PP' is a double ordinate drawn between the vertex and the latus rectum. Show that the area of the trapezium PP'LL' is maximum when the distance PP' from the vertex is a/9. **87.** Find the points on the curve $5x^2 - 8xy + 5y^2 = 4$ whose distance from the origin is maximum or minimum. **88.** A sheet of area $40m^2$ is used to make an open tank with square base. Find the dimensions of the base such that the volume of this tank is maximum. **89.** A sheet of area $40m^2$ is used to make an open tank with square base. Find the dimensions of the base such that the volume of this tank is maximum. **90.** The lateral edge of a regular hexagonal pyramid is 1cm. If the volume is maximum, then find its height. **91.** Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. **92.** Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle is one-third that of the cone and the greatest volume of cylinder is # Solved Examples 2. $\frac{4}{27}\pi h^3 \tan^2 \alpha$ **1.** Find the possible values of a such that $f(x)=e^{2x}-(a+1)e^x+2x$ is monotonically increasing for $x\in R$. $f(x)= rac{2}{\sqrt{3}} an^{-1}igg(rac{2x+1}{\sqrt{3}}igg)-\logig(x^2+x+1ig)ig(\lambda^2-5\lambda+3ig)x+10$ Of is a decreasing function for all $x \in R, \;$ find the permissible values of $\lambda.$ **3.** Let $f(x)=x^3+ax^2+bx+5\sin^2 x$ be an increasing function on the set R. Then find the condition on a and b. - **4.** Prove that $\left[\lim_{x\to 0}\frac{\sin x.\tan x}{x^2}\right]=1$,where [.] represents greatest integer function. - Watch Video Solution - **5.** Using the relation $2(1-\cos x){<}x^2$,x=0 or prove that $\sin(\tan x) \geq x, \ orall \epsilon \Big[0, rac{\pi}{4}\Big]$ - Watch Video Solution **6.** If f'(x)>0, f(x)>0 $orall x\in(0,1)$ and f(0)=0, f(1)=1,then prove that $f(x)f^{-1}(x)< x^2$ $orall x\in(0,1)$ **7.** Discuss the monotonocity of $$Q(x)$$, where $Q(x)=2figg(rac{x^2}{2}igg)+fig(6-x^2ig)\, orall x\in R$ It is given that $f^x>0\, orall x\in R$. Find also the point of maxima and minima of Q(x). **8.** Prove that $\left(\tan^{-1}\!\left(\frac{1}{e}\right)\right)^2+\frac{2e}{\sqrt{e^2+1}}\ < \left(\tan^{-1}e\right)^2+\frac{2}{\sqrt{e^2+1}}$ Watch Video Solution **9.** Prove that $\sin^2 \theta \theta$ sin(sintheta) for 0 **10.** Let $$f(x)=1+4x-x^2,\ orall x\in R$$ $g(x)=\max{\{f(t),x\leq t\leq (x+1),0\leq x<3\}}=\min{\{(x+3),3\leq x\}}$ Watch Video Solution Verify conntinuity of g(x), for all $x \in [0, 5]$ **11.** Show that $5x \leq 8\cos x - 2\cos 2x \leq 6x$ for $x \leq x \leq \frac{\pi}{3}$ **12.** Let $f(x), x \geq 0$, be a non-negative continuous function. If $$f'(x)\cos x \leq f(x)\sin x\, orall\, x\geq 0, ext{ then find } figg(rac{5\pi}{3}igg)$$ Watch Video Solution **14.** Prove that for $$x \in \left[0, rac{\pi}{2} ight], \sin x + 2x \geq rac{3x(x+1)}{\pi}.$$ **15.** Consider a curve $C\colon y=\cos^{-1}(2x-1)$ and a straight line $L\colon 2px-4y+2\pi-p=0.$ Statement 1: The set of values of p for which the line L intersects the curve at three distinct points is $[-2\pi, -4]$. Statement 2: The line L is always passing through point of inflection of the curve C: **16.** From a fixed point A on the circumference of a circle of radius r, the perpendicular AY falls on the tangent at $P\cdot$ Find the maximum area of triangle $APY\cdot$ **17.** PandQ are two points on a circle of centre C and radius α . The angle PCQ being 2θ , find the value of $\sin\theta$ when the radius of the circle inscribed in the triangle CPQ is maximum. **Watch Video Solution** 18. The lower corner of a leaf in a book is folded over so as to reach the inner edge of the page. Show that the fraction of the width folded over when the area of the folded part is minimum is: **Watch Video Solution** **19.** Let $Aig(p^2,\ -pig), Big(q^2,qig), Cig(r^2,\ -rig)$ be the vertices of triangle ABC. A parallelogram AFDE is drawn with D,E, and F on the line segments BC, CA and AB, respectively. Using calculus, show that the maximum area of such a parallelogram is $rac{1}{2}(p+q)(q+r)(p-r)$. **20.** A window of perimeter P (including the base of the arch) is in the form of a rectangle surrounded by a semi-circle. The semi-circular portion is fitted with the colored glass while the rectangular part is fitted with the clear glass that transmits three times as much light per square meter as the colored glass does. What is the ratio for the sides of the rectangle so that the window transmits the maximum light? # **Concept Application Exercise 6.1** Prove that the following functions are increasing: strictly $$f(x) = \log(1+x) - rac{2x}{2+x}$$ for x > -1 2. Separate the intervals of monotonocity for the following function: (a) $$f(x) = -2x^3 - 9x^2 - 12x + 1$$ (b) $$f(x) = x^2 e^{-x}$$ (c) $$f(x)=\sin x+\cos x, x\in(0,2\pi)$$ (d) $$f(x)=3\cos^4x+\cos x, x\in(0,2\pi)$$ (e) $$f(x) = \left(\log_e x\right)^2 + \left(\log_e x\right)$$ **3.** Discuss monotonocity of $f(x) = \frac{x}{\sin x} and$ `g(x)=x/(tanx),w h e r e Watch Video Solution **4.** A function y=f(x) is given by $x=\dfrac{1}{1+t^2}$ and $y=\dfrac{1}{t(1+t^2)}$ for all $$t>0$$ then f is Watch Video Solution the value of a for which $(a+2)x^3-3ax^2+9ax-1$ decreases montonically for all real $x\cdot$ function the decreases for all real values of x. 5. Find **7.** Discuss the monotonocity of function $$f(x) = 2\log \lvert x - 1 vert - x^2 + 2x + 3.$$ **8.** If $$f(x)=\sin x+\log_e|\sec x+\tan x|-2xf$$ or $x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ then check the monotonicity of f(x) **9.** Find the interval of the monotonicity of the function f(x)= $\log_e\left(\frac{\log_e x}{x}\right)$ **10.** Let $g(x) = f(\log x) + f(2 - \log x)$ and $f^{''}(x) < 0 \, \forall x \in (0,3)$. Then find the interval in which g(x) increases. # **Concept Application Exercise 6.2** - **1.** Find the range of f(X) = $an^{-1}x rac{1}{2} ext{log}_e \, x \in \left(rac{1}{\sqrt{3}}, \sqrt{3} ight)$ - Watch Video Solution Watch Video Solution **2.** Find the range of f(x) = $\frac{\sin x}{x} + \frac{x}{\tan x} \in \left(0, \frac{\pi}{2}\right)$ **3.** Column I, Column II Range of $f(x) = \sin^{-1} x + \cos^{-1} x + \cot^{-1} \xi s$, p. $$\left[0, rac{\pi}{2} ight]\cup\left[rac{\pi}{2},\pi ight]$$ Range of $f(x)=\cot^{-1}x+\tan^{-1}x+\cos ec^{-1}\xi s$, q. $\left[rac{\pi}{2}, rac{3\pi}{2} ight]$ Range of $f(x)=\cot^{-1}x+\tan^{-1}x+\cos^{-1}\xi s$, r. $\left[0,\pi ight]$ Range of $f(x)=\sec^{-1}x+\cos ec^{-1}x+\sin^{-1}\xi s$, s. $\left| rac{3\pi}{4}, rac{5\pi}{4} ight|$ **4.** Find the number of solution of the equation $x^3+2x+\cos x+\tan x=0\in\left(- rac{\pi}{2}, rac{\pi}{2} ight)$ - **5.** Show that $\dfrac{x}{(1+x)} < 1n(1+x)$ for x>0 iteli video Solution **6.** For $0 < x \leq rac{\pi}{2},$ show that $x - rac{x^3}{6} < \sin(x) < x$ **7.** Show that $an^{-1}x> rac{x}{1+ rac{x^2}{3}}$ if $x\in(0,\infty)$. **8.** Show that $2\sin x + \tan x \ge 3x$, where $0 \le x < \pi/2$ **9.** Prove that $f(x)= rac{\sin x}{x}$ is monotonically decreasing in $\left[0, rac{\pi}{2} ight]$. Hence, prove that `(2x)/pi 10. For '0 Watch Video Solution # **Concept Application Exercise 6.3** **1.** Show that graph of the function (x) = $\log_e(x-2)- rac{1}{x}$ always concave downwards. Watch Video Solution **2.** Separate the interval of convaity of y =x $\log_e x - rac{x^2}{2} + rac{1}{2}$ Watch Video Solution **3.** consider f(X)= $\cos 2x + 2x\lambda^2 + (2\lambda+1)(\lambda-1)x^2, \, \lambda \in R$ If $\alpha \neq \beta$ and $\frac{f(\alpha+\beta)}{2} < \frac{f(\alpha)+f(\beta)}{2}$ for α and β then find the values of λ # **Watch Video Solution** **4.** Find the values of x where function $f(X)m = (\sin x + \cos x)(e^x)$ in $(0, 2\pi)$ has point of inflection Watch Video Solution **5.** Prove that $a_{1^m}+a_{2^m}+\ldots+ rac{a_{n^m}}{n}>\left(rac{a_1+a_2+\ldots+a_n}{n} ight)$,if $\mathsf{m}<\mathsf{0}$ orm > 1 and $a_i > 0 \, \forall$ Watch Video Solution # **Concept Application Exercise 6.4** **1.** Find the least value of $\sec A + \sec B + \sec C$ in an acute angled triangle. **2.** Find the critical (stationary) points of the function f(X)= $\frac{x^5}{20}-\frac{x^4}{12}$ +5Name these points .Also find the point of inflection - 3. The curve $f(x)=\dfrac{x^2+ax+b}{x-10}$ has a stationary point at (4,1) . Find the
values of aandb . Also, show that f(x) has point of maxima at this point. - Watch Video Solution - **4.** If the function f(x) = axe^{bx^2} has maximum value at x=2 such that f(2) =1 , then find the values of a and b - Watch Video Solution **5.** Discuss the extremum of $$f(x) = \frac{1}{3} \left(x + \frac{1}{x} \right)$$ - **6.** Discuss the extremum of $f(x)=1+2\sin x+3\cos^2 x, x\leq x\leq rac{2\pi}{3}$ - Watch Video Solution - **7.** Discuss the extremum of $f(x)=\sin x+ rac{1}{2}\sin 2x+ rac{1}{3}\sin 3x, 0\leq x\leq \pi$ - Watch Video Solution - **8.** Let $f(x)=-\sin^3x+3\sin^2x+5on\Big[0, rac{\pi}{2}\Big]$. Find the local maximum and local minimum of f(x) . - Watch Video Solution **9.** discuss the extremum of $f(heta)=\sin^p heta \cos^q heta, p,q>0, 0< heta< rac{\pi}{2}$ **10.** Find the maximum and minimum values of the function $y=(\log)_eig(3x^4-2x^3-6x^2+6x+1ig)\ orall x\in(0,2)$ Given that $(3x^4-2x^3-6x^2+6x^2+6x+1)>0Ax\in(0,2)$ **11.** Discuss the extremum of $f(x) = x \left(x^2 - 4\right)^{-\frac{1}{3}}$ **12.** Discuss the maxima and minima of the function $f(x) = x^{ rac{2}{3}} - x^{ rac{4}{3}}$ Draw the graph of y=f(x) and find the range of f(x) 13. Discuss the extremum of $f(x)=\{|x^2-2|, -1|t=x\}$ $f(x) = \left\{1 + \sin x, x < 0x^2 - x + 1, x \geq 0atx = 0\right\}$ View Text Solution - **Discuss** the 14. extremum οf - Watch Video Solution **15.** Find the minimum value of $|x|+\left|x+ rac{1}{2}\right|+|x-3|+\left|x- rac{5}{2}\right|$ **16.** Let f(x) be defined as $f(x)=\frac{1}{2}$ **17.** Let $$f(x) = \left\{x^3 - x^2 + 10x - 5, x \le 1, -2x + (\log)_2(b^2 - 2), x > 1\right\}$$ Find the values of b for which f(x) has the greatest value at x=1. Watch Video Solution # **Concept Application Exercise 6.5** **1.** Draw the graph of $f(x)= rac{x^2-x+1}{x^2+x+1}$. **2.** Discuss the number of roots of the equation $e(k-x\log x)=1$ for different value of $k\cdot$ **3.** Draw the graph of $y = (x+1)^{2/3} + (x-1)^{2/3}$ **4.** Draw the graph of $f(X) = \log_e (1 - \log_e x)$. Find the point of inflection **5.** Draw and graph of $f(x) = rac{4\log_e x}{x^2}$. Also find the range. # **Concept Application Exercise 6.6** **1.** A private telephone company serving a small community makes a profit of Rs. 12.00 per subscriber, if it has 725 subscribers. It decides to reduce the rate by a fixed sum for each subscriber over 725, thereby reducing the profit by 1 paise per subscriber. Thus, there will be profit of Rs. 11.99 on each of the 726 subscribers, Rs. 11.98 on each of the 727 subscribers, etc. What is the number of subscribers which will give the company the maximum profit? 2. एक वृत्त और एक वर्ग के परिमाप का योग k है, जहां k एक अचर है सिद्ध कीजिए कि उनके क्षेत्रफल का योग निम्नतम है जब वर्ग की भुजा वृत्त की त्रिज्या की दुगनी है| **3.** A figure is bounded by the curves $y=x^2+1, y=0, x=0, and x=1.$ At what point (a,b) should a tangent be drawn to curve $y=x^2+1$ for it to cut off a trapezium of greatest area from the figure? **4.** Find the minimum length of radius vector of the curve $\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}=1$ **5.** Find the point at which the slope of the tangent of the function $f(x)=e^x\cos x$ attains minima, when $x\in[0,2\pi]$ **6.** An electric light is placed directly over the centre of a circular plot of lawn 100 m in diameter. Assuming that the intensity of light varies directly as the sine of the angle at which it strikes an illuminated surface and inversely as the square of its distance from its surface, how should the light be hung in order that the intensity may be as great as possible at the circumference of the plot? 7. A swimmer S is in the sea at a distance d km from the closest point A on a straight shore The house of the swimmer is on the shore at a distance Lkm from A He can swim at a speed of ukm/hr and walk at a speed of vkm/hr(v>u) At what point on the shore should he land so that he reaches his house in the shortest possible time? **8.** Let (h,k) be a fixed point, where $h>0,\,k>0$. A straight line passing through this point cuts the positive direction of the coordinate axes at the point PandQ. Find the minimum area of triangle $OPQ,\,O$ being the origin. **9.** A point P is given on the circumference of a circle of radius r. Chord QR is parallel to the tangent at P. Determine the maximum possible area of the triangle PQR. # **Concept Application Exercise 6.7** **1.** A metal box with a square base and vertical sides is to contain $1024cm^3$ of water, the material for the top and bottom costs Rs. $5percm^2$ and the material for the costs Rs. $2.\ 50percm^2$. Find the least cost of the box. **2.** $100cm^2$ आयतन बाले डिब्बे सभी बंद बेलनकार (लंब वृतीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए 3. The lateral edge of a regular rectangular pyramid is acmlong. The lateral edge makes an angle α with the plane of the base. Find the value of α for which the volume of the pyramid is greatest. **Watch Video Solution** 4. Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to 2/3 of the diameter of the sphere. **Watch Video Solution** 5. A regular square based pyramid is inscribed in a sphere of given radius R so that all vertices of the pyramid belong to the sphere. Find the greatest value of the volume of the pyramid. **Watch Video Solution Exercise** 1. A function is matched below against an interval where it is supposed to be increasing. Which of the following parts is incorrectly matched? Interval, Function [2, ∞) , $2x^3-3x^2-12x+6$ $(-\infty,\infty)$, $$x^3=3x^2+3x+3$$ $(-\infty-4)$, x^3+6x^2+6 $\left(-\infty, rac{1}{3} ight)$, $$3x^2 - 2x + 1$$ A. $$[2, \infty), 2x^3 - 3x^2 - 12x + 6$$ $$\mathsf{B}.\,[\,-\infty,\infty),x^3-3x^2-3x+3$$ C. $$[\,-\infty,\,-4), x^3-6x^2+6$$ D. $$\left[-\infty, \frac{1}{3}\right], 3x^2 - 2x + 1$$ #### Answer: 4 Watch Video Solution **2.** On which of the following intervals is the function $x^{100}+\sin x-1$ decreasing? $\left(,\frac{\pi}{2}\right)$ (b) $(0,1)\left(\frac{\pi}{2},\pi\right)$ (d) none of these A. $$(0, \pi/2)$$ B. (0,1) C. $(\pi/2, \pi)$ D. None of these #### Answer: 4 # Watch Video Solution # **3.** The function $f(x) = an^{-1}(\sin x + \cos x)$ is an increasing function in $\left(-\frac{\pi}{2},\frac{\pi}{4}\right)$ (b) $\left(0,\frac{\pi}{2}\right)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (d) $\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ A. $$(0, \pi/2)$$ $C.\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ $$\mathsf{B.}\left(0,\frac{\pi}{2}\right)$$ D. $$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$ # Answer: 1 - **4.** Assertion Consider the following statements in S and RS: Both $\sin x$ and $\cos x$ are decreasing function in the interval $\left(\frac{\pi}{2},\pi\right)Reason$ If a differentiable function decreases in an interval (a,b), then its derivative also decrease in (a,b). Which of the following it true? (a) Both S and R are wrong. (b) Both S and R are correct, but R is not the correct explanation of S. (c) S is correct and R is the correct explanation for S. (d) S is correct and R is wrong. - A. Both S and R are wrong - B. Both S and R are correct, but R is not the correct explanation of S. - C. S is correct and R is the correct explanation for S. - D. S is correct and R is wrong. #### Answer: 4 5. The length of the longest interval in which the function $$3\sin x - 4\sin^3 x$$ is increasing is $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π A. $$\frac{\pi}{3}$$ $$\operatorname{B.}\frac{\pi}{2}$$ $$\operatorname{C.}\frac{\pi}{2}$$ D. $$(\pi)$$ #### Answer: 1 # **Watch Video Solution** **6.** The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) $\left(0,\frac{1}{e}\right)$ (d) none of these $$\mathsf{C.}\left(0,\frac{1}{e}\right)$$ D. none of these #### Answer: 3 # **Watch Video Solution** **7.** Let $f(x)=x\sqrt{4ax-x^2},$ (a>0). Then f(x) is (a). increasing in (0,3a) decreasing in (3a, 4a) (b). increasing in (a, 4a) decreasing in $(5a,\infty)$ (c). increasing in (0,4a) (d). none of these - A. increasing in (0,3a) decreasing in (3a,4a) - B. increasing in (a,4a),decreasing in $(5a,\infty)$ - C. increasing in (0,4a) - D. none of these #### **Answer: 1** **8.** Function f(x) = |x| - |x-1| is monotonically increasing when (a) $$x < 0$$ (b) $x > 1$ (c) $x < 1$ (d) 0 < x < 1 $$\mathsf{A.}\,x<0$$ $$\mathbf{B}. x > 0$$ $$\mathsf{C.}\,x < 0$$ D. $$0 < x < 1$$ #### Answer: 4 **9.** If $$f'(x)=|x|-\{x\}$$, where $\{x\}$ denotes the fractional part of x , then $f(x)$ is decreasing in (a) $\left(-\frac{1}{2},0\right)$ (b) $\left(-\frac{1}{2},2\right)$ $\left(-\frac{1}{2},2\right)$ (d) $\left(\frac{1}{2},\infty\right)$ A. $$\left(\frac{-1}{2},0\right)$$ $$\mathsf{B.}\left(\frac{-1}{2},2\right)$$ C. $$\left(\frac{-1}{2},2\right)$$ D. $\left(\frac{1}{2},\infty\right)$ Answer: 1 Watch Video Solution 10. The length of the largest continuous interval in which the function $$f(x)=4x- an2x$$ is monotonic is (a) $rac{\pi}{2}$ (b) $rac{\pi}{4}$ (c) $rac{\pi}{8}$ (d) $rac{\pi}{16}$ A. $$\pi/2$$ B. $$\pi/4$$ c. $$\pi / 8$$ D. $$\pi/16$$ #### Answer: 2 $$f(x) = (x-2)|x-3|$$ is monotonically increasing $$\left(-\infty, rac{5}{2} ight)\cup(3,\infty)$$ (b) $\left(rac{5}{2},\infty ight)$ $(2,\infty)$ (d) $(-\infty,3)$ in A. $$(-\infty,5/2)\cup(3,\infty)$$ B. $$5/2, \infty)$$ C. $$(2,\infty)$$ D. $$(-\infty,3)$$ #### Answer: 1 # Watch Video Solution # **12.** $f(x) = (x-8)^4(x-9)^5, 0 \le x \le 10$, monotonically decreases in (a) $$\left(\frac{76}{9}, 10\right]$$ (b) $\left(8, \frac{76}{9}\right)$ (c) $(0, 8)$ (d) $\left(\frac{76}{9}, 10\right)$ $$A.\left(\frac{76}{9},10\right)$$ $$\mathsf{B.}\left((8),\frac{76}{9}\right)$$ D. $$\left(\frac{76}{9}, 10\right)$$ #### Answer: 2 **Watch Video Solution** - **13.** For all $x \in (0,1)$ (a) $e^x < 1+x$ (b) $(\log)_e(1+x) < x$ (c) $\sin x > x$ - (d) $(\log)_e x > x$ - $\mathsf{A.}\,e^x<1+x$ - B. $\log_e(1+x) < x$ - $\mathsf{C}.\sin x > x$
- $\operatorname{D.log}_e x > x$ ### Answer: 2 **14.** If $f(x) = xe^{x(x-1)}$, then f(x) is A. increasing on $$\left[-\frac{1}{2},1\right]$$ B. decreasing on ${\cal R}$ C. increasing on ${\cal R}$ D. decreasing on $\left[-\frac{1}{2},1\right]$ #### Answer: A **Watch Video Solution** **15.** If $f(x) = kx^3 - 9x^2 + 9x + 3$ monotonically increasing in R, then A. k < 3 $\mathrm{B.}\,k\leq 2$ $\mathsf{C.}\,k\geq 3$ D. none of these #### **Answer: C** Watch Video Solution **16.** If the function $f(x)= rac{K\sin x+2\cos x}{\sin x+\cos x}$ is strictly increasing for all values of $x, ext{ then } K<1$ (b) K>1 K<2 (d) K>2 - A. k < 1 - B. $k \leq 2$ - $\mathsf{C}.\,k\geq 3$ - D. none of these #### Answer: 4 Watch Video Solution **17.** Let $f{:}R\overrightarrow{R}$ be a function such that $f(x) = ax + 3\sin x + 4\cos x$ Then f(x) is invertible if $a\in (-5,5)$ (b) $a\in (-\infty,5)$ $a\in (\,-5,\;+\infty)$ (d) none of these A. k < 1 B. k > 1 $\mathsf{C}.\,k < 2$ $\mathsf{D}.\,k>2$ #### **Answer: 4** # Watch Video Solution **18.** Which of the following statement is always true? If f(x) is increasing, the $f^{-1}(x)$ is decreasing. If f(x) is increasing, then $\frac{1}{f(x)}$ is also increasing. If fandg are positive functions and f is increasing and g is decreasing, then $\frac{f}{g}$ is a decreasing function. If fandg are positive functions and f is decreasing and f is increasing, the f is a decreasing function. A. If f(x) is increasing then $f^{-1}(x)$ is also decreasing B. If f(x) is increasing then 1/f(x) is also increasing C. If f and g are positive functions and f is increasing and g is decreasing then f/g is decreasing function D. If f and g are positive functions and f is decreasing and g is increasing then f/g is decreasing function #### Answer: 4 **19.** Let $f: R \overrightarrow{R}$ be a differentiable function for all values of x and has the property that f(x) and f'(x) has opposite signs for all value of x. Then, f(x) is an increasing function f(x) is an decreasing function $f^2(x)$ is an decreasing function A. f(x) is an iincreasing function B. f(x) is a decreasing function C. $f^2(x)$ is a decreasing function D. |f(x)| is an increasing function #### **Answer: 3** Watch Video Solution **20.** Let $f\colon R^{\longrightarrow}$ be a differentiable function $\forall x\in R$. If the tangent drawn to the curve at any point $x\in(a,b)$ always lies below the curve, then $f'(x)<0, f^x<0 \, \forall x\in(a,b)$ $f'(x)>0, f^x>0 \, \forall x\in(a,b) \ none of these$ A. $$f'(x)>0,$$ $f''(x)<0\, orall x\in)(a,b)$ B. $$f'(x) < 0, f''(x) < 0 \, orall x \in (a,b)$$ C. $$f'(x)>0, f''(x)>0\, orall x\in (a,b)$$ D. #### Answer: 3 **21.** Let f(x) be a function such that $f'(x)=(\log)_{\frac{1}{3}}\big[(\log)_3(\sin x+a)\big]$. If f(x) is decreasing for all real values of x, then $a\in(1,4)$ (b) $a\in(4,\infty)$ $$a\in(2,3)$$ (d) $a\in(2,\infty)$ A. $$a \in (1, 4)$$ B. $$a\in (4,\infty)$$ C. $$a \in (2,3)$$ D. $$a\in(2,\infty)$$ #### Answer: 2 **22.** If $$f(x)=x^3+4x^2+\lambda x+1$$ is a monotonically decreasing function of x in the largest possible interval $\left(-2,\ -\frac{2}{3}\right)$. Then $\lambda=4$ (b) $\lambda=2$ $$\lambda = -1$$ (d) λ has no real value A. $$\lambda=4$$ B. $$\lambda=2$$ $$\mathsf{C.}\,\lambda = -1$$ D. λ has no real value # **Answer: 1** # Watch Video Solution **23.** $f(x)=|x\log_e x|$ monotonically decreases in $\left(0, rac{1}{e} ight)$ (b) $\left(rac{1}{e},1 ight)$ # $(1,\infty)$ (d) $\left(rac{1}{e},\infty ight)$ A. $$(0,1/e)$$ B. (1/e, 1) $$\mathsf{C}.\,(1.\,\infty)$$ D. $(1/e, \infty)$ Answer: 2 **24.** The set of value(s) of a for which the function $f(x)=\frac{ax^3}{3}+(a+2)x^2+(a-1)x+2 \text{ possesses a negative point of inflection is (a) } (-\infty,-2)\cup(0,\infty) \text{ (b) } \left\{-\frac{4}{5}\right\} \text{ (c) } (-2,0) \text{ (d)}$ A. $$(\,-\infty,\,-2)\cup(0,\infty)$$ B. $$\{-4/5\}$$ empty set $$\mathsf{C.}\,(\,-2,0)$$ D. empty set #### Answer: 1 Watch Video Solution **25.** The maximum value of the function $f(x)= rac{{(1+x)}^{0.6}}{1+x^{0.6}}$ in the interval [0,1] is $2^{0.4}$ (b) $2^{-0.4}$ 1 (d) $2^{0.6}$ - A. $2^{0.4}$ - $\mathsf{B.}\,2^{-0.4}$ - C. 1 - $D. 2^{0.6}$ #### **Answer: 3** Watch Video Solution **26.** Suppose that f is a polynomial of degree 3 and that $f^x \neq 0$ at any of the stationary point. Then f has exactly one stationary point f must have no stationary point f must have exactly two stationary points f has either zero or two stationary points. - A. f has exactly one stationary point - B. f must have no stationary pint - C. f must have exactly two stationary points - D. f has either zero or two stationary points #### Watch Video Solution 27. A function g(x) is defined as $g(x)= rac{1}{4}fig(2x^2-1ig)+ rac{1}{2}fig(1-x^2ig)$ and f(x) is an increasing function. Then g(x) is increasing in the interval. (a) (-1,1) (b) $\Big(-\sqrt{ rac{2}{3}},0\Big)\cup\Big(\sqrt{ rac{2}{3}},\infty\Big)$ (c) $\Big(-\sqrt{ rac{2}{3}},\sqrt{ rac{2}{3}}\Big)$ (d) none of these A. $$(-1, 1)$$ $$\begin{aligned} &\mathsf{B.} - \left(\frac{\sqrt{2}}{3}, 0\right) \cup \left(\frac{\sqrt{2}}{3}, \infty\right) \\ &\mathsf{C.} - \frac{\sqrt{2}}{3}.\, \frac{\sqrt{2}}{3} \end{aligned}$$ D. none of these #### Answer: 2 $$\Rightarrow \varphi(x) \, \forall x >$$ A. $\phi(x) > 0 \forall x > 1$ B. $\phi(x) < 0 \forall x > 1$ $\mathsf{C}.\,\phi(x)=0\,\forall x\geq 1$ Watch Video Solution ,then g(x) is increasing in A. $\left(0, \frac{\pi}{4}\right)$ B. $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ D. none of these **Answer: 1** 29. $$1$$ and φ (**28.** If $$\varphi(x)$$ is a polynomial function $\varphi'(x) > \varphi(x) \ \forall x > 1$ and $\varphi(x) = 0$, then $\varphi(x) > 0 \ \forall x > 1$ is a polynomial function. $$1) = 0,$$ $$=0,$$ $f'\,'(x) > \, orall \, \in R, f(3) = 0 \, ext{ and } \, g(x) = fig(an^2 x - 2 an x + 4yig)0 < x < 0$ $$arphi'(x)>arphi(x)\, orall x\geq 1$$ an $darphi(1)=0, ext{ then } arphi(x)\geq 0\, orall x\geq 1$ `varphi(x) and If $$\mathsf{C.}\left(0,\frac{\pi}{3}\right)$$ D. $$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$ Watch Video Solution **30.** If $$f(x) = x + \sin x, g(x) = e^{-x}, u = \sqrt{c+1} - \sqrt{c}$$ $v = \sqrt{c}$ $$-\sqrt{c-1},$$ $(c>1), \ {\sf then `fog(u)gof(v)}(d){\sf fog(u)}$ A. $$fog(u) < fog(v)$$ $$\operatorname{B.} gof(u) < gof(v)$$ $$\mathsf{C}. \, gof(u) > gof(v)$$ $$\mathsf{D}.\, fog(u) < fog(v)$$ #### Answer: 4 **31.** The number of solutions of the equation $x^3+2x^2+6x+2\cos x=0$ where $x\in[0,2\pi]$ is (a) one (b) two (c) A. one three (d) zero B. two C. three D. zero #### Answer: 4 # Watch Video Solution **32.** Let $f(x)=\cos\pi x+10x+3x^2+x^3,\ -2\leq x\leq 3.$ The absolute minimum value of f(x) is 0 (b) -15 (c) $3-2\pi$ none of these A. 0 B. -15 C. $$3-2\pi$$ D. none of these #### Answer: 2 Watch Video Solution **33.** The global maximum value of $$f(x)=(\log)_{10}ig(4x^3-12x^2+11x-3ig), x\in[2,3], ext{ is } - rac{3}{2}(\log)_{10}3 ext{ (b)}$$ $$1 + (\log)_{10} 3 \, (\log)_{10} 3$$ (d) $\frac{3}{2} (\log)_{10} 3$ $$\mathsf{A.} - \frac{3}{2}\mathrm{log}_{10}^3$$ $$\mathrm{B.}\,1 + \log 10^3$$ $$C. \log 10^3$$ D. $$\frac{3}{2}$$ log 10^3 #### Answer: 2 **34.** $$f\!:\!R\overset{\longrightarrow}{R},\,f(x)$$ is differentiable such that $f(f(x))=kig(x^5+xig),\,k eq 0ig).$ Then $f(x)$ is always increasing (b) decreasing either increasing or decreasing non-monotonic A. increasing - B. decreasing on $[\,-1/2,\infty]$ - C. either increasing or decreasing - D. non monotonic #### **Answer: 3** **35.** The value of $$a$$ for which the function $f(x)=a\sin x+\left(\frac{1}{3}\right)\sin 3x$ has an extremum at $x=\frac{\pi}{3}$ is (a) 1 (b) -1 (c) 0 (d) 2 B. -1 C. 0 D. 2 # Answer: 5 # Watch Video Solution If $f(x) = a \log \lvert x vert + bx^2 + x$ has extreme 36. values at $x=\,-\,1\,and\;at\;x=2,\;$ then find a and b . A. a=2,b=-1 B. a=2,b=-1/2 C. a=-2,b=1/2 D. none of these # Answer: 2 **37.** If a function f(x) has f'(a)=0 and $f^a=0$, then (a) x=a is a maximum for f(x) (b) x=a is a minimum for f(x) (c) can not conclude anything about its maxima and minima (d) f(x) is necessarily a constant function. A. x=a is a maximum for f(x) B. x=a is a minimum for(x) C. it is difficult to say (a) and (b) D. f(x) is necessarily a constant function #### Answer: 3 **Watch Video Solution** **38.** The function $f(x) = \sin^4 x + \cos^4 x$ increasing if '0 A. It is monotonic increasing \forall x in R. B. f(x) fails to exist for three disticnt real values of x C. f(x) changes its sign twice as x varifes from $-\infty \to \infty$ D. The function attains its extreme values at x_1 and x_2 such that $x_1 x_2 > 0$ #### Answer: 3 # Watch Video Solution # **39.** The function $f(x) = \sin^4 x + \cos^4 x$ increasing if `O A. $$0 < x < \pi/8$$ B. $$\pi/40 < x < 3\pi/8$$ C. $$3\pi/8 < x < 5\pi/8$$ D. $$5\pi/8 < x < 3\pi/4$$ # Answer: 2 **40.** If $f(x)=x^5-5x^4+5x^3-10$ has local maximum and minimum at x=p and x=q , respectively, then (p,q)= (a) (0,1) (b) (1,3) (c) (1,0) (d) none of these A. (0,1) B. (1,3) C. (1,0) D. none of these #### Answer: 2 Watch Video Solution **41.** Let $P(x)=a_0+a_1x^2+a_2x^4++a_nx^{2n}$ be a polynomial in a real variable x with $0< a_0< a_1< a_2 \ \langle \ a_n$. The function P(x) has a. neither a maximum nor a minimum b. only one maximum c. only one minimum d. only one maximum and only one minimum e. none of these - A. neither a maximum nor a minimum - B. only one maximum - C. only one minimum - D. only one maximum and only one minimum - **42.** $Let f(x) = \left\{ egin{array}{ll} |x| & f ext{ or } 0 < |x| \leq 2 \\ 1 & ext{for} x = 0 \end{array} ight.$ Then at x=0, f(x) has - (a) a local maximum - (b) no local maximum - (c) a local minimum - (d) no extremum - A. a local maximum - B. no local maximum - C. a local minimum D. no extremum #### **Answer: 1** **Watch Video Solution** - **43.** If $f(x)=x^3+bx^2+cx+d$ and `0 - A. f(x) is strictly increasing function - B. f(x) has local maxima - C. f(x)
is a strictly decreasing function - D. f(x) is bounded ## Answer: 1 **44.** If $$f(x) = \{(\sin(x^2 - 3x), x \le 0\}$$ $$6x + 5x^2$$, $x > 0$ then at x=0, f(x) is? - A. f(x) has a local minima - B. f(x) has a local maxima - C. f(x) has point of inflection - D. none of these **Watch Video Solution** **45.** The greatest value of $f(x)=\cos\Bigl(xe^{\lfloor x floor}+7x^2-3x\Bigr), \, x \in [-1,\infty], \,$ is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these - A. -1 - B. 1 D. none of these #### Answer: 2 **Watch Video Solution** - **46.** The function $f(x)=\left(4\sin^2x-1\right)^n\left(x^2-x+1\right), n\in N$, has a local minimum at $x=\frac{\pi}{6}$. Then n is any even number n is an odd number n is odd prime number n is any natural number - A. n is any even integer - B. n is an odd integer - C. n is odd prime number - D. n is any natural number #### **Answer: 1** **47.** The true set of real values of x for which the function $$f(x) = x \ln x - x + 1$$ is positive is A. $$(1, \infty)$$ B. $$(1/e, \infty)$$ $$\mathsf{C}.\left[e,\infty ight)$$ D. $$(0, 1) \cup (1, \infty)$$ #### **Answer: 1** # Watch Video Solution **48.** All possible value of $f(x) = (x+1)^{ rac{1}{3}} - (x-1)^{ rac{1}{3}}$ on [0,1] is 1 (b) 2 (c) 3 (d) $$\frac{1}{3}$$ C. 3 D. $\frac{1}{3}$ Answer: 2 **Watch Video Solution** **49.** The function $f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$ is A. increasing in $(0,\infty)$ B. decreasing oin $(0,\infty)$ C. increasing in $(0, \pi/e)$, $decrea \sin g \in (\pi/e, \infty)$ D. decreasing in $(0,\pi/e)$ increasing in $(\pi/e,\infty)$ Answer: 2 **50.** If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q, respectively, such that $p^2=q, ext{ then } a ext{ equal to (a) } 1 ext{ (b) } 2 ext{ (c) } rac{1}{2} ext{ (d) } 3$ - A. 1 - B. 2 - c. $\frac{1}{2}$ - D. 3 #### Answer: 2 - **51.** Let $f(x) = \{x+2, -1 \le < 0\}$ - $1, x = 0 \frac{x}{2}, 0 < x \le 1$ - A. a point of minima - B. a point of maxima - C. both points of minima and maxima - D. neither a point of minimanor that of maxima **Watch Video Solution** **52.** If $$f(x) = \{\sin^{-1}(\sin x), x > 0\}$$ $$rac{\pi}{2},x=0, then\cos^{-1}(\cos x),x<0$$ - A. x=0is apoint of maxima - B. x=0 is a point of minima - C. x=0 is a point of intersectionn - D. none of these #### **Answer: 1** **53.** A function f is defined by $f(x) = \left|x\right|^m \left|x-1\right|^n orall x \in R$. The local maximum value of the function is $(m,n\in N),$ 1 (b) m^{\cap} $\hat{}$ m $$rac{m^m n^n}{\left(m+n ight)^{m+n}}$$ (d) $rac{\left(mn ight)^{mn}}{\left(m+n ight)^{m+n}}$ - A. 1 - B. $m^n n^m$ - C. $\frac{m^m n^n}{(m+n)^{m+n}}$ - D. $\frac{mn}{m+n^{m+n}}$ #### **Answer: 3** Watch Video Solution **54.** Let the function f(x) be defined as follows: f(x)= $x^3 + x^2 - 10x$, $-1 \le x < 0$ cosx, $0 \le x < 2\pi$ 1+sinx $2\pi \le x \le \pi$, then which of the following statement(s) is/are correct A. a local minimum at x= $\pi/2$ B. a global maximum at $x=\pi/2$ C. a absolute maximum at x=-1 D. a absolute maximum at $x=\pi$ #### **Answer: 3** #### Watch Video Solution **55.** Consider the function $f\colon (-\infty,\infty) \xrightarrow{-\infty,\infty}$ defined by $f(x) = \frac{x^2 + a}{x^2 + a}, a > 0$, which of the following is not true? maximum value of f is not attained even though f is bounded. f(x) is increasing on $(0,\infty)$ and has minimum at x=0 and x=0 and has minimum at x=0. f(x) is increasing on $(-\infty,\infty)$ and has neither a local maximum nor a local minimum at x=0. A. Maximum value of f is not attained even though f is bounded B. f(x) is increasing on $(0,\infty)$ and has minimum at x=0 C. f(x) is decreasing on $(-\infty,0)$ and has minimum at x=0 D. f(x) is increasing on $(-\infty,\infty)$ and has neither a local maximum #### Answer: 4 **Watch Video Solution** nor a local minimum at x=0 # **56.** $F(x)=4 an x- an^2 x+ an^3 x, x eq n\pi+ rac{\pi}{2}$ A. is monotonically increasing B. is monotonically decreasing C. has a point of maxima D. has a point of minima #### Answer: 1 **57.** Let $h(x)=x^{\frac{m}{n}}$ for $x\in R,$ where m and n are odd numbers where 0 < m < n. Then y= h(x) has a. no local extremums b. one local maximum c. one local minimum d. none of these A. no local extremums B. one local maximum C. one local minimum D. none of these #### Answer: 1 # Watch Video Solution **58.** The greatest value of the function $f(x)=\dfrac{\sin 2x}{\sin \left(x+\dfrac{\pi}{4}\right)}$ on the interval $\left(0,\dfrac{\pi}{2}\right)is$ A. $$\frac{1}{\sqrt{2}}$$ B. $$\sqrt{2}$$ $$\mathrm{D.}-\sqrt{2}$$ Watch Video Solution # **59.** The minimum value of $e^{(2x^2-2x+1)\sin^2 x}$ is a. e (b) $\frac{1}{e}$ (c) 1 (d) 0 A. e B.1/e C. 1 D. 0 ## Answer: 3 **60.** The maximum value of x^4e $\stackrel{\frown}{-}$ x^2 is e^2 (b) e^{-2} (c) $12e^{-2}$ (d) $4e^{-2}$ A. $$e^2$$ B. $$e^{\,-2}$$ C. $$12e^{-2}$$ D. $$4e^{-2}$$ #### Answer: 4 **61.** If $$a^2x^4+b^2y^4=c^6$$, then the maximum value of xy is $\frac{c^2}{\sqrt{ab}}$ (b) $\frac{c^3}{ab}$ $\frac{c^3}{\sqrt{2ab}}$ (d) $\frac{c^3}{2ab}$ A. $$\frac{c^2}{\sqrt{ab}}$$ B. $$\frac{c^3}{\sqrt{ab}}$$ C. $$\frac{c^3}{\sqrt{2ab}}$$ D. $$\frac{c^3}{\sqrt{2ab}}$$ Watch Video Solution # 62. Least natural number a for which $$x+ax^{-2}>2,\, orall x\in(0,\infty)$$ is A. 1 B. 2 C. 5 D. none of these #### **Answer: 2** $f(x) = \left\{4x - x^3 + \ln(a^2 - 3a + 3), 0 \le x < 3x - 18, x \ge 3\right\}$ 63. complete set of values of a such that f(x) as a local minima at x=3 is $$[\,-1,2]\,(\,-\infty,1)\cup(2,\infty)\,[1,2]$$ (d) $(\,-\infty,\,-1)\cup(2,\infty)$ A. [-1, 2] B. $(-\infty,1)\cup(2,\infty)$ C. [1, 2] D. $(-\infty, -1) \cup (2, \infty)$ #### Answer: 2 64. a < 1 Watch Video Solution $f(x)=\left\{2-\left|x^2+5x+6 ight|, x eq 2a^2+1, x=-2 Then there an\geq of a, ight.$ so that f(x) has maxima at $x=-2, \,$ is $|a|\geq 1$ (b) |a|<1 a>1 (d) A. $$|a| \geq 1$$ B. $$|a| \leq 1$$ D. $$a < 1$$ # Watch Video Solution **65.** A differentiable function f(x) has a relative minimum at x=0. Then the function f=f(x)+ax+b has a relative minimum at x=0 for (a)all a and all b (b) all b if a=0 (c)all b>0 (d) all a>0 A. all a and all b B. all b if a =0 C. all b > 0 D. all a > 0 Watch Video Solution 66. if $g{\left(rac{1}{4} ight)} + g{\left(rac{3}{4} ight)} + g{\left(rac{5}{4} ight)}$ is equal to $$f(x) = 4x^3 - x^2 - 2x + 1$$ and $g(x) = \{ \min f(t) \colon 0 \le t \le x; 0 \le x \le 1, 3 - x \colon 1 \}$ then A. 7/4 $\mathsf{B.}\,9/4$ $\mathsf{C.}\,13\,/\,4$ D.5/2 Answer: 4 **67.** If $$f : \stackrel{\longrightarrow}{RR} andg : \stackrel{\longrightarrow}{RR}$$ are **67.** If $$f\!:\!RR'\,andg\!:\!RR'$$ are two functions such that $f(x)+f^x=-xg(x)f'(x)andg(x)>0\, orall x\in R$. Then the function $$f(x)+f^x=-xg(x)f'(x)andg(x)>0\, orall\,x\in R$$. Then the function $f^2(x)+f('(x))^2$ has a maxima at $x=0$ a minima at $x=0$ a point of inflexion at $x=0$ none of these C. a point of inflexion at $$x = 0$$ D. a point of inflexion at $$x = 0$$ **68.** If $$A>0, B>0, A+B=\pi/3$$, and maximum value of $\tan A \tan B$ is M then the value of $1/M$ is _____. A. $$\frac{1}{\sqrt{3}}$$ D. $$\sqrt{3}$$ B. $\frac{1}{3}$ C. 3 # Answer: 2 # Watch Video Solution **69.** If $$f(x)= rac{t+3x-x^2}{x-4}$$, where t is a parameter that has minimum and maximum, then the range of values of t is (a) $(0,4)$ (b) $(0,\infty)$ (c) A. $$(0, 4)$$ $(-\infty,4)$ (d) $(4,\infty)$ B. $$(0, \infty)$$ $$\mathsf{C}.-(\infty,4)$$ D. $$(4, \infty)$$ # Answer: 3 **70.** The least value of $$a$$ for which the equation $\frac{4}{\sin x} + \frac{1}{1 - \sin x} = a$ has at least one solution in the interval $\left(0, \frac{\pi}{2}\right)$ 9 (b) 4 (c) 8 (d) 1 **71.** If f(x)= $$-x^3-3x^2-2x+a, a\in R$$ then the real values of x satisfying $f(x^2+1)>f(2x^2+2x+3)$ will be A. $$(-\infty,\infty)$$ $B.(0,\infty)$ $\mathsf{C}.-(\infty,0)$ D. ϕ ## Answer: 1 Watch Video Solution # 72. which of the following is the greatest? A. $\log_2 3$ $B. \log_3 5$ $\mathsf{C.}\log_4 7$ $D.\log_5 9$ ## **Answer: 1** **73.** If the equation $4x^3+5x+k=0 (k\in R)$ has a negative real root then (a) k=0 (b) $-\infty < k < 0$ (c) $0 < k < \infty$ (d) $-\infty < k < \infty$ A. k=0 $$B.-\infty < k < 0$$ $$\mathsf{C.}\,0 < k < \infty$$ D. $$-\infty < k < \infty$$ #### **Answer: 3** ## **Watch Video Solution** **74.** Tangent is drawn to ellipse $\frac{x^2}{27}+y^2=1$ at $\left(3\sqrt{3}\cos\theta,\sin\theta\right)$ [where $\theta\in\left(0,\frac{\pi}{2}\right)$] Then the value of θ such that sum of intercepts on axes made by this tangent is minimum is (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{8}$ (d) $\frac{\pi}{4}$ A. $$\frac{\pi}{3}$$ $$\operatorname{B.}\frac{\pi}{6}$$ C. $$\frac{\pi}{8}$$ D. $$\frac{\pi}{4}$$ Watch Video Solution # **75.** The largest term in the sequence $a_n=\frac{n^2}{n^3+200}$ is given by $\frac{529}{49}$ (b) $\frac{8}{89}\,\frac{49}{543}$ (d) none of these A. $$\frac{529}{49}$$ B. $$\frac{8}{89}$$ c. $$\frac{49}{543}$$ D. none of these #### **Answer: 3** **76.** A factory D is to be connected by a road with a straight railway line on which a town A is situated. The distance DB of the factory to the railway line is $5\sqrt{3}km$. Length AB of the railway line is 20km. Freight charges on the road are twice the charges on the railway. The point `P(A P - A. BP=5 km - B. AP=5 km - C. BP=7.5 km - D. none of these #### **Answer: 1** Watch Video Solution 77. The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30^0 is $4000\frac{\pi}{\sqrt{3}}$ (b) $400\frac{\pi}{3}cm^3$ $4000\frac{\pi}{\sqrt{3}cm^3}$ (d) none of these A. $4000\pi/3cm^3$ B. $400\pi/3cm^3$ C. $4000\pi / \sqrt{3}cm^3$ D. $4000\pi/3cm^3$ none of these #### **Answer: 1** Watch Video Solution **78.** A rectangle of the greatest area is inscribed in a trapezium ABCD, one of whose non-parallel sides AB is perpendicular to the base, so that
one of the rectangles die lies on the larger base of the trapezium. The base of trapezium are 6cm and 10 cm and AB is 8 cm long. Then the maximum area of the rectangle is $24cm^2$ (b) $48cm^2$ $36cm^2$ (d) none of these A. $24cm^2$ B. $48cm^2$ $C.36cm^2$ D. none of these #### Answer: 2 **Watch Video Solution** **79.** A bell tent consists of a conical portion above a cylindrical portion near the ground. For a given volume and a circular base of a given radius, the amount of the canvas used is a minimum when the semi-vertical angle of the cone is $\frac{\cos^{-1} 2}{3}$ (b) $\frac{\sin^{-1} 2}{3}$ $\frac{\cos^{-1} 1}{3}$ (d) none of these A. $\cos^{-1}2/3$ $\mathrm{B.}\sin^{-1}2/3$ C. $\cos^{-1}1/3$ D. none of these #### Answer: 1 **80.** A rectangle is inscribed in an equilateral triangle of side length 2a units. The maximum area of this rectangle can be (a) $\sqrt{3}a^2$ (b) $\frac{\sqrt{3}a^2}{4}$ a^2 (d) $\frac{\sqrt{3}a^2}{2}$ A. $$\sqrt{3a^2}$$ B. $$\frac{\sqrt{3a^2}}{4}$$ $$\mathsf{C}.\,a^2$$ D. $$\frac{\sqrt{3a^2}}{2}$$ # Answer: 4 # **Watch Video Solution** **81.** Tangents are drawn to $x^2+y^2=16$ from the point P(0,h). These tangents meet the $x-a\xi s$ at AandB . If the area of triangle PAB is minimum, then $h=12\sqrt{2}$ (b) $h=6\sqrt{2}$ $h=8\sqrt{2}$ (d) $h=4\sqrt{2}$ A. h= $$12\sqrt{2}$$ B. h= $$6\sqrt{2}$$ C. h= $$8\sqrt{2}$$ D. h= $$4\sqrt{2}$$ #### Answer: 4 # Watch Video Solution 82. The largest area of the trapezium inscribed in a semi-circle or radius R, if the lower base is on the diameter, is (a) $\frac{3\sqrt{3}}{4}R^2$ (b) $\frac{\sqrt{3}}{2}R^2$ $$\frac{3\sqrt{3}}{8}R^2$$ (d) R^2 A. $$\left(\frac{3\sqrt{3}}{4}R^2\right)$$ B. $$\left(\frac{\sqrt{3}}{2}R^2\right)$$ $$\mathsf{C.}\left(\frac{3\sqrt{3}}{8}R^2\right)$$ D. R^2 #### **Answer: 1** # Watch Video Solution **83.** In the formula $\angle A+\angle B+\angle C=180^\circ$, if $\angle A=90^\circ$ and $\angle B=55^\circ$, then $$\angle C=$$ _____ (a) $\dfrac{\pi}{4}$ (b) $\dfrac{\pi}{6}$ (c) $\dfrac{\pi}{3}$ (d) none of these A. $$\pi/4$$ B. $$\pi/6$$ C. $$\pi/3$$ D. none of these #### Answer: 3 # Watch Video Solution **84.** Two runner A and B start at the origin and run along positive x axis ,with B running three times as fast as A. An obsever, standeing one unit above the origin , keeps A and B in view. Then the maximum angle theta of sight between the observer's view of A and B is A. $\pi / 8$ B. $\pi/6$ C. $\pi/3$ D. $\pi/4$ ## Answer: 2 Watch Video Solution **85.** The fuel charges for running a train are proportional to the square of the speed generated in km/h, and the cost is Rs. 48 at 16 km/h. If the fixed charges amount to Rs. 300/h, the most economical speed is 60 km/h (b) 40 km/h 48 km/h (d) 36 km/h A. 60 km/h B. 40 km/h C. 48 km/h D. 36 km/h #### Answer: 2 Watch Video Solution **86.** A cylindrical gas container is closed at the top and open at the bottom. If the iron plate of the top is 5/4 times as thick as the plate forming the cylindrical sides, the ratio of the radius to the height of the cylinder using minimum material for the same capacity is 3:4 (b) 5:6 (c) 4:5 (d) none of these A. 3:4 B. 5:6 C. 4:5 D. none of these # Answer: 3 **87.** about to only mathematics - A. $4\sqrt{3r}$ - B. $2\sqrt{3r}$ - C. $6\sqrt{3r}$ - D. $8\sqrt{3r}$ #### **Answer: 3** **Watch Video Solution** **88.** A given right cone has volume p, and the largest right circular cylinder that can be inscribed in the cone has volume q. Then p:q is (a) 9:4 (b) 8:3 (c) 7:2 (d) none of these A. 9:4 B. 8:3 C.7:2 D. none of these #### Answer: 1 Watch Video Solution 89. Find the cosine of the angle at the vertex of an isoceles triangle having the greatest area for the given constant length e of the median drawn to its lateral side. A. 0.4 B. 0.5 C. 0.6 D. 0.8 Answer: 4 **90.** A box, constructed from a rectangular metal sheet, is 21 cm by 16cm by cutting equal squares of sides x from the corners of the sheet and then turning up the projected portions. The value of x os that volume of the box is maximum is 1 (b) 2 (c) 3 (d) 4 - A. 1 - B. 2 - C. - D. 3 **Answer: 3** **Watch Video Solution** **91.** The vertices of a triangle are (0,0), $(x,\cos x)$, and `($\sin^3 x$,0),w h e r e0 A. $$3\frac{\sqrt{3}}{32}$$ $$\mathsf{B.} \; \frac{\sqrt{3}}{32}$$ c. $$\frac{4}{32}$$ D. $$6\frac{\sqrt{3}}{32}$$ #### **Answer: 1** # Watch Video Solution 92. The maximum area of the rectangle whose sides pass through the vertices of a given rectangle of sides aandb is 2(ab) (b) $\frac{1}{2}(a+b)^2$ $rac{1}{2}ig(a^2+b^2ig)$ (d) none of the se $$\mathsf{B.}\,\frac{1}{2}(a+b)^2$$ C. $$rac{1}{2}(a+b)^2$$ D. none of these # Answer: 2 #### **Watch Video Solution** **93.** The base of prism is equilateral triangle. The distance from the centre of one base to one of the vertices of the other base is l. Then altitude of the prism for which the volume is greatest is (a) $\frac{l}{2}$ (b) $\frac{l}{\sqrt{3}}$ (c) $\frac{l}{3}$ (d) $\frac{l}{4}$ - A. $\frac{l}{2}$ - B. $\frac{l}{\sqrt{3}}$ - C. $\frac{l}{3}$ - D. $\frac{l}{4}$ Answer: 2 1. Let $$f(x)=egin{cases} x^2+3x,&-1\leq x<0\ -\sin x,&0\leq x<\pi/2 \end{cases}$$. Draw the graph of the $-1-\cos x,& rac{\pi}{2}\leq x\leq\pi \end{cases}$ function and find the following - (a) Range of the function - (b) Point of inflection - (c) Point of local minima A. f(x) has global minimum value -2 B. global maximum value occurs at x=0 C. global maximum value occurs at $x=\pi$ D. $x=\pi/2$ is point of local minima # Answer: 1,2,3,4 - **2.** Let $f(x)=x^4-4x^3+6x^2-4x+1$. Then, (a) f increase on $[1,\infty]$ - (b) f decreases on $[1,\infty]$ (c)f has a minimum at x=1 (d)f has neither maximum nor minimum A. f increases on $[1, \infty]$ B. f decreases on $[1, \infty]$ C. f has a minimum at x=1 D. f has neither maximum nor minimum # Answer: 1,3 **Watch Video Solution** **3.** Let $f(x) = 2x - \sin x$ and g(x)= $3^{\sqrt{x}}$. Then A. range of gof is R B. gof is one-one C. both f and g are one-one D. both f and g are onto Answer: 1,2,3,4 # 4. about to only mathematics A. increases in $[0,\infty)$ B. idecreases in $[0,\infty)$ C. neither increases nor decreases in $[0,\infty)$ D. increases in $(-\infty, \infty)$ #### Answer: 1,4 # Watch Video Solution # **5.** Let $f(x)=\left|x^2-3x-4\right|,\ -1\leq x\leq 4$ Then f(x) is monotonically increasing in $\left[-1,\frac{3}{2}\right]f(x)$ monotonically decreasing in $\left(\frac{3}{2},4\right)$ the maximum value of $f(x)is\frac{25}{4}$ the minimum value of f(x) is 0 A. f(x) is monotonically increasing in $[\,-1,3/2]$ B. f(x) is monotonically decreasing in (3/2,4] C. the maximum value of f(x) is $\frac{25}{4}$ D. the minimum value of f(x) is 0 # Answer: 1,2,3,4 Watch Video Solution # **6.** If $f(x) = \int_0^x \frac{\sin t}{t} dt, x > 0$, then A. f(x) has a local maxima at x = $n\piig(n=2k,k\in I^+ig)$ B. f(x) has a local minimum at x = $n\piig(n=2k,k\in I^+ig)$ C. f(x) has neither maxima nor minima at x = $n\piig(n\in I^+ig)$ D. f(x) has local maxima at x = $n\piig(n=2k-1,k\in I^+ig)$ #### Answer: 2,4 7. The values of parameter a for which the point of minimum of the function $f(x)=1+a^2x-x^3$ satisfies the inequality $\frac{x^2+x+2}{x^2+5x+6}<0 are \qquad \text{(a)} \left(2\sqrt{3},3\sqrt{3}\right) \qquad \text{(b)} \qquad -3\sqrt{3},\ -2\sqrt{3}\right) \qquad \text{(c)} \\ \left(-2\sqrt{3},3\sqrt{3}\right) \qquad \text{(d)} \left(-2\sqrt{2},2\sqrt{3}\right)$ A. $$2\sqrt{3}, 3\sqrt{3}$$ B. $$-3\sqrt{3}, -2\sqrt{3}$$ $$C. -2\sqrt{3}, 3\sqrt{3}$$ D. $$-3\sqrt{2}, 2\sqrt{3}$$ # Answer: 1,2 # Watch Video Solution **8.** Let $f(x)=ax^2-b|x|$, where aandb are constants. Then at $x=0,\,f(x)$ has a maxima whenever $a>0,\,b>0$ a maxima whenever $a>0,\,b<0$ minima whenever $a>0,\,b<0$ neither a maxima nor a minima whenever $a>0,\,b<0$ A. a maxima whenever $a>0,\,b>0$ B. a maxima whenever $a>0,\,b<0$ C. minima whenever a > 0, b < 0 D. neither a maxima nor a minima whenver $a>0,\,b<0$ # Answer: 1,3 # Watch Video Solution **9.** The function $y=\frac{2x-1}{x-2},\,(x\neq 2)$ is its own inverse decrease at all values of x in the domain has a graph entirely above the $x-a\xi s$ is unbounded A. is its own inverse B. decreases at all values of x in the domain C. has a graph intirely above the x axis D. is unbounded # **Answer: 1,2,4** # Watch Video Solution **10.** Let $f(x) = ax^2 + bx + c$ and f(-1) < 1, f(1) > -1, f(3) < -4and $a \neq 0$, then B. (b) a<0 C. (c) Sign of a can't be determined D. (a) none of the above # Answer: 2,3 11. If $$f(x)=x^3-x^2+100x+2002, then$$ $f(1000)>f(1001)$ $f\Big(\frac{1}{2000}\Big)>f\Big(\frac{1}{2001}\Big)\,f(x-1)>f(x-2)\,f(2x-3)>f(2x)$ A. $$f(1000) < f(1001)$$ $$\mathsf{B.}\, f\!\left(\frac{1}{2000}\right) > f\!\left(\frac{1}{2001}\right)$$ C. $$f(x-1) > f(x-2)$$ D. $$f(2x - 3) > f(2x)$$ #### Answer: 2,3 - 12. If $f'x=g(x)(x-a)^2$, $where g(a)\neq 0$, and g is continuous at x=a, then (a) f is increasing in the neighbourhood of a if g(a)>0 (b) f is increasing in the neighbourhood of a if g(a)<0 (c) f is decreasing in the neighbourhood of a if g(a)>0 (d) f is decreasing in the neighbourhood of a if g(a)<0 - A. f is increasing in the neighborhood of a if g(x)>0 - B. f is increasing in the neighborhood of a if g(x) < 0 - C. f is decreasing in the neighborhood of a if g(x)>0 D. f is decreasing in the neighborhood of a if g(x) < 0 Answer: 1,4 **Watch Video Solution** - value for which function 13. The of the a $f(x) = (4a-3)(x+\log 5) + 2(a-7)\mathrm{cot}\Big(rac{x}{2}\Big)\mathrm{sin}^2\Big(rac{x}{2}\Big)$ does possess critical points is (a) $\left(-\infty, -\frac{4}{3}\right)$ (b) $(-\infty, -1)$ (c) $[1, \infty)$ (d) $(2,\infty)$ - A. $(-, \infty, -4/3)$ - B. $(-\infty, -1)$ - $C.[1,\infty)$ - $D.(2,\infty)$ Answer: 1,4 **14.** Let $f(x) = \left(x^2-1 ight)^{n+1} \cdot \left(x^2+x+1 ight)$. Then f(x) has local extremum at x=1, when n is (A) n=2 (B) n=4 (C) n=3 (D)n=5 A. a maxima at x=1 if n is odd B. a maxima at x = 1 if n is even C. a minima x=1 if n is even D. a minima
at x = 2 if n is even # **Answer: 1,3,4** **Watch Video Solution** **15.** Let $f(x) = \sin x + ax + b$. Then which of the following is/are true? (a) f(x)=0 has only one real root which is positive if $a>1,\,b<0.$ (b) f(x)=0 has only one real root which is negative if $a>1,\,b<0.$ (c) f(x)=0 has only one real root which is negative if $a>1,\,b>0.$ (d) none of these A. f(x) =0 has only one real root which is positive if >1, b<0 B. f(x) =0 has only one real root which is negative if $a>1,\,b>0$ C. f(x) =0 has only one real root which is negative if $a<-1,\,b<0$ D. None of these #### **Answer: 1,2,3** # **Watch Video Solution** **16.** The function $\dfrac{\sin(x+a)}{\sin(x+b)}$ has no maxima or minima if $b-a=n\pi, n\in I$ $b-a=(2n+1)\pi, n\in I$ $b-a=2n\pi, n\in I$ (d) none of these A. $$b-a=n\pi, n\in I$$ B. $$b-a=(2n+1)\pi,$$ $n\in I$ C. $$b-a=2n\pi, n\in I$$ D. none of these # **Answer: 1,2,3** **Watch Video Solution** 17. Consider $f(x)=ax^4+cx^2+dx+e$ has no point of inflection. Then which of the following is/are possible? (a) a>0, c<0 (b) a<0, c>0 (c) a,c<0 (d) a,c>0 A. $$a > 0, c < 0$$ $$\mathrm{B.}\,a<0,c>0$$ C. $$a, c < 0$$ D. $$a, c > 0$$ # Answer: 3,4 **18.** $Let f(x)=\left\{\frac{(x-1)(6x-1)}{2x-1}, \text{ if } x\neq \frac{1}{2}0, \text{ if } x=\frac{1}{2} \text{ Then at } x=\frac{1}{2}, \text{ which of the following is/are not true? } f \text{ has a local maxima } f \text{ has a local minima } f \text{ has an inflection point. } f \text{ has a removable discontinuity.}$ A. f has a local maxima B. f has a local minima C. f has an inflection point D. f has a removable dicontinuity # **Answer: 1,2,4** Watch Video Solution **19.** In which of the following graphs is x=c the point of inflection? figure (b) figure (c) figure (d) figure В. 📝 C. 📝 D. 📝 # **Answer: 1,2,4** Watch Video Solution - **20.** Let f(x) be an increasing function defined on $(0,\infty)$. If $fig(2a^2+a+1ig)>fig(3a^2-4a+1ig),$ then the possible integers in the range of a is/are (a)1 (b) 2 (c) 3 (d) 4 - A. 1 - B. 2 - C. 3 - D. 4 **Answer: 2,3,4** **21.** Let $$f(x)=(x-1)^4(x-2)^n, n\in N$$. Then $f(x)$ has (a) a maximum at $x=1$ if n is odd (b) a maximum at $x=1$ if n is even (c) a minimum at $x=1$ if n is even (d) a minima at $x=1$ if n is even A. local maximum, if n is odd B. local minimum, if n is odd C. local maximum if n is even D. local minimum if n is even #### Answer: 1,4 Watch Video Solution **22.** For the cubic function $f(x)=2x^3+9x^2+12x+1$, which one of the following statement/statements hold good? 1. f(x) is non-monotonic. 2. f(x) increases in $(-\infty,-2)\cup(-1,\infty)$ and decreases **Watch Video Solution** $x = -\frac{3}{2}$ **Answer: 1,2,4** α_1 such that `0 A. f(x) is non monotonic C. f:R \rightarrow R is objective D. O inflection point occurs at x = 3/2 **23.** Let $f(x) = a_5 x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x$, where a_i 's are real and f(x)=0 has a positive root $lpha_0$. Then f'(x)=0 has a positive root in $(-2,\,-1)$ 3. $f\!:\!R\overrightarrow{R}$ is bijective. 4. Inflection point occurs at B. f(x) increses in $(-\infty, -2) \cup (-1, \infty)$ and decreases in (-2,-1) A. f(x)=0 has a root $lpha_1$ such that $0<lpha_1<lpha_0$ B. f(x) = 0 has at least two real roots C. f(x) = 00 has at least one real root D. none of these **Answer: 1,2,3** **Watch Video Solution** **24.** If f(x)andg(x) are two positive and increasing functions, then which of the following is not always true? (a) $[f(x)]^{g(x)}$ is always increasing (b) $[f(x)]^{g(x)}$ is decreasing, when f(x) < 1 (c) $[f(x)]^{g(x)}$ is increasing, then f(x) > 1. (d) If f(x) > 1, $then[f(x)]^{g(x)}$ is increasing. - A. $[f(x)]^{g\,(\,x\,)}$ is always increasing - B. $[f(x)]^{g(x)}$ is decreasing when f(x) < 1 - C. $If[f(x)]^{g(x)}$ is increasing then f(x) > 1 - D. If f(x) > 1, then $[f(x)]^{g(x)}$ is increasing **Answer: 1,2,3** **25.** An extremum of the function $f(x)= rac{2-x}{\pi}\cos\pi(x+3)+ rac{1}{\pi^2}\sin\pi(x+3)$ where $\mathsf{x}\ \in (0,4)$ occurs at (a) $$x=1$$ (b) $x=2$ (c) $x=3$ (d) $x=\pi$ D. $$x=\pi$$ #### Answer: 1,3 # **Watch Video Solution** **26.** For the function $f(x)=x^4 \left(12(\log)_e x-7\right)$, the point (1,7) is the point of inflection. $x=e^{\frac{1}{3}}$ is the point of minima the graph is concave downwards in (0,1) the graph is concave upwards in $(1,\infty)$ A. the point (1,-7) is the point of minima B. $x=e^{1/3}$ is the point of minima C. the graph is concave downwards in (0,1) D. the graph is concave upwards in $(1, \infty)$ # Answer: 1,2,3,4 **Watch Video Solution** 27. Let $f(x)=\log \left(2x-x^2\right)+ rac{\sin(\pi x)}{2}$. Then which of the following is/are true? Graph of f is symmetrical about the line x=1 Maximum value of fis1. Absolute minimum value of f does not exist none of these A. Graph of f is symmeterical about the line x=1 B. maximum value of f is 1 C. absolute mimumum value of f does not exist D. none of these **Answer: 1,2,3** **28.** Which of the following hold(s) good for the function $f(x)=2x-3x^{ rac{2}{3}} \ orall x\in R?$ A. f(x) has two points of extremum B. f(x) is convace upward $\, orall \, x \in R$ C. f(x) is non differentiable function D. f(x) is continuous function Answer: 1,2,3,4 **Watch Video Solution** **29.** For the function $f(x)=\frac{e^x}{1+e^x}$, which of the following hold good? f is monotonic in its entire domain. Maximum of f is not attained even though f is bounded f has a point of inflection. f has one asymptote. - A. f is monotonic in its entire domain - B. maximum of f is not attained even thought - C. f is bounded - D. f ahs a point of inflection #### **Answer: 1,2,3** - **30.** Which of the following is true about point of extremum x=a of function y=f(x)? At x=a, function y=f(x) may be discontinuous. - At $x=a,\,\,{ m function}\,\,y=f(x)$ may be continuous but non-differentiable. - At x=a ,function y=f(x) may have point of inflection. none of these - A. At x = a, function y = f(x) may be discontinous - B. At x = a function y = f(x) may be continous but non differentiable - C. At x = a function y = f(x) may have point of inflection - D. none of these # **Watch Video Solution** **31.** Which of the following function has point of extremum at x=0? $f(x)=e^{-|x|}\quad f(x)=\sin |x|\quad f(x)=\left\{x^2+4x+3,x<0-x,x\geq 0\right.$ $f(x)=\left\{|x|,x<0\right\},0\leq x<1 \text{ (where } \{x\} \text{ represents fractional part function)}.$ A. $$f(x) = e^{-|x|}$$ B. $$f(x) = \sin |x|$$ C. f(x)= $$\begin{cases} x^2+4x+3 & x<0\\ -x & x\geq 0 \end{cases}$$ D. f(x)= $$\left\{egin{array}{ll} x^2+4x+3 & x<0 \ -x & x\geq 0 \end{array} ight.$$ **Answer: 1,2,4** **32.** Which of the following function/functions has/have point of inflection? $f(x)=x^{ rac{6}{7}}$ (b) $f(x)=x^6$ $f(x)=\cos x+2x$ (d) f(x)=x|x| A. $$f(x)=x^{6/7}$$ $$\mathsf{B.}\, f(x) = x^6$$ C. $$f(x)=cosx+2x$$ D. $$f(X)=x|x|$$ #### Answer: 3,4 # **Watch Video Solution** **33.** The function $f(x)=x^2+\frac{\lambda}{x}$ has a minimum at x=2 if $\lambda=16$ maximum at x=2 if $\lambda=16$ maximum for no real value of λ point of inflection at x=1 if $\lambda=-1$ A. minimum at x =2 if $$\lambda$$ =16 B. maximum at x =2 if $$\lambda$$ =16 C. maximum for no real value of λ D. point of inflectin at x=1 if λ =-1 **Answer: 1,3,4** **Watch Video Solution** **34.** The function $f(x)=x^{\frac{1}{3}}(x-1)$ has two inflection points has one point of extremum is non-differentiable has range $\Big[-3x2^{-\frac{8}{3}},\infty\Big)$ A. has two inflection points B. has one point of extremum C. is non differentiable D. has range $\Big[-3 imes 2^{-8/3},\infty\Big)$ Answer: 1,2,3,4 **35.** Let f be the function $f(x)=\cos x-\left(1-\frac{x^2}{2}\right)$. Then (a) f(x) is an increasing function in $(0,\infty)$ (b) f(x) is a decreasing function in $(-\infty,\infty)$ (c) f(x) is an increasing function in $(-\infty,\infty)$ (d) f(x) is a decreasing function in $(-\infty,\infty)$ A. f(x) is an increasing function in $(0,\infty)$ B. f(X) is a decresing function in $(-\infty, \infty)$ C. f(X) is an increasing function in $(-\infty, \infty)$ D. f(x) is a decreasing function in $(-\infty,0)$ #### Answer: 1,4 Watch Video Solution **36.** Consider the function $f(x)=x\cos x-\sin x$. Then identify the statement which is correct. f is neither odd nor even. f is monotonic decreasing at x=0 f has a maxima at $x=\pi$ f has a minima at A. f is odd B. f is monotonic decreasing at x=0 C. f has point of inflection at x=0 D. f has a maxima at $x = \pi$ # **Answer: 1,2,3** **Watch Video Solution** **37.** If $f(x) = \dfrac{x^2}{2-2\cos x}$; $g(x) = \dfrac{x^2}{6x-6\sin x}$ where 0 < x < 1, then A. f is increasing function B. g is increasing function C. f is decreasing function D. g is decreasing function # Answer: 1,4 **38.** Find the greatest value of $f(x)= rac{1}{2ax-x^2-5a^2}$ in [-3, 5] depending upon the parameter a. B. $$f(-3)$$ if a =1 C. $$f(5)$$ if a < 1 D. $$f(-3)$$ if $a > 1$ ## Answer: 1,2,3,4 # Watch Video Solution **39.** For any acute angled \triangle ABC, $\frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C}$ can - A. 1 - B. 2 - C. 3 Answer: 1,2 Watch Video Solution **40.** Let f(x) be a non negative continuous and bounded function for all $x\geq 0$.If $(\cos x)f(x)<(\sin x-\cos x)f(x)\, \forall x\geq 0$, then which of the following is/are correct? A. $$f(6) + f(5) > 0$$ B. $$x^2-3x+2+f(7)=0$$ has 2 distinct solution C. $$f(5)f(7)-f(5)=0$$ D. $$\lim_{x \to 6} \frac{f(x) - \sin(\pi x)}{x - 6} = 1$$ Answer: 2,3 **41.** A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8\colon 15$ is converted into anopen rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100, the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60 B. 32 A. 24 - C. 45 - D. 60 ## Answer: 1,3 # **Watch Video Solution** **42.** The function f(x)=2|x
+|x+2|=||x|2|-2|x|| has a local minimum or a local maximum at x=-2 (b) $-\frac23$ (c) 2 (d) $\frac23$ B. - 2/3 C. 2 D.2/3 # Answer: 1,2 Watch Video Solution # 43. about to only mathematics B. $$(f(c))^2+f(c)=(g(c))^2$$ +3g(c) for some c $\,\in\,$ [0,1] A. $\left(f(c)\right)^2+3f(c)=\left(g(c)\right)^2+3g(c)$ for some $\mathsf{c}\ \in\ exttt{[0,1]}$ C. $$(f(c))^2+3f(c)=(g(c))^2$$ +g(c) for some c $\,\in\,$ [0,1] D. $$(f(c))^2 = (g(c))^2$$ for some $\mathsf{c} \ \in \ exttt{[0,1]}$ # Answer: 1,4 **44.** Let $a \in R$ and let $f \colon R^{\longrightarrow}$ be given by $f(x) = x^5 - 5x + a,$ then (a) f(x) has three real roots if a>4 (b) f(x) has only one real roots if a>4 (c) f(x) has three real roots if a<-4 (d) f(x) has three real roots if `-4 A. f(x) has three real roots if a>4 B. f(X) has only one real root if a>4 C. f(x) has three real roots if $a<\ -4$ D. f(X) has threee real roots if -4 < a < 4 # Answer: 2,4 Watch Video Solution **45.** Let $f\colon R o (0,\infty)$ and $g\colon R o R$ be twice differentiable functions such that f" and g" are continuos functions of R suppose lf $$\lim_{x o 2} rac{f(x)g(x)}{f'(x)g'(x)} = 1, then$$ $f'(2) = g(2) = 0, f'(2) \neq 0 \text{ and } g'(2) \neq 0.$ A. f has a local minimum at x=2 B. f has a local maximum at x=2 C. f''(2) > f(x) D. f(X)-f''(x)=0 for at least one x in R ## Answer: 1,4 Watch Video Solution all $x \in \mathbb{R}$ and f(0) = 1, then **46.** If $f\colon \mathbb{R} o \mathbb{R}$ is a differentiable function such that f(x) > 2f(x) for - A. $f(x) > e^{2x} \in (0, \infty)$ - B. f(X) is decreasing in $(0, \infty)$ - C. f(X) is increasing in $(0, \infty)$ - D. $f'(x) < e^{2x} \text{in } (0, \infty)$ Answer: 1,3 47. If $$f(x)=egin{array}{cccc} \cos(2x)&\cos(2x)&\sin(2x) \\ -\cos x&\cos x&-\sin x \\ \sin x&\sin x&\cos x \end{array}$$, then A. $$f'(x)$$ =0 at exactly three points in $(-\pi,\pi)$ C. $$f(x)$$ attains its minimum at $x=0$ D. f'(x) =0 at more than three points in $$(-\pi,\pi)$$ ## Answer: 2,4 # Watch Video Solution **48.** Let $f\!:\!(0,\pi) o R$ be a twice differentiable function such that $$\lim_{t o x} rac{f(x){\sin t}-f(t){\sin x}}{t-x}=\sin^2 x$$ for all $x\in(0,\pi).$ If $f\Bigl(rac{\pi}{6}\Bigr)=\Bigl(- rac{\pi}{12}\Bigr)$ then which of the following statement (s) is (are) $$f\left(\frac{\pi}{6}\right) = \left(-\frac{\pi}{12}\right)$$ then which of the following statement (s) is (are) TRUE? A. $$f\!\left(x rac{\pi}{4} ight) = rac{\pi}{4\sqrt{2}}$$ B. $$f(x)< rac{x^4}{6}-x^2f \,\, ext{or} \,\, all x\in (0,\pi)$$ C. There exist $lpha \in (0,\pi)$ such that f'(lpha) = 0 D. $$f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right)$$ =0 # **Answer: 2,3,4** Watch Video Solution # Linked comprehension type 1. $$f(x) = \sin^{-1} x + x^2 - 3x + rac{x^3}{3}, x \in [0,1]$$ A. f(x) has a point of maxima B. f(x) has a point of minima C. f(x) is increasing D. f(X) is decreasing #### Answer: 2 ## **Watch Video Solution** **2.** which of the following is true for $x \in [0, 1]$? A. $$\sin^{-1} x + x^2 - x \frac{9 - x^2}{3} \le 0$$ $$\mathsf{B.} \sin^{-1} x + x^2 - x \frac{9 - x^2}{3} \geq 0$$ C. $$\sin^{-1}x + x^2 - x \frac{9 - x^2}{3} \le 0$$ D. $$\sin^{-1} x + x^2 - x \frac{9 - x^2}{3} \ge 0$$ #### Answer: 1 # **Watch Video Solution** - 3. Let $f'(\sin x) < 0$ and $f''(\sin x) > 0 \, orall x \in \left(0, rac{\pi}{2} ight)$ and g(x) - =f(sinx)+f(cosx) which of the following is true? A. g' is increasing B. g' is decreasing C. g' has a point of minima D. g' has a point of maxima #### **Answer: 1** # **Watch Video Solution** **4.** Let $f'(\sin x) < 0$ and $f''(\sin x) > 0 \, orall x \in \left(0, rac{\pi}{2} ight)$ and $\mathsf{g}(\mathsf{x})$ =f(sinx)+f(cosx) which of the following is true? A. g(x) is decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ B. g(x) increasing in $\left(0, \frac{\pi}{4}\right)$ C. g(x) is nonotonically increasing in $\left(0, \frac{\pi}{2}\right)$ D. none of these # Watch Video Solution 5. Let $f'(\sin x) < 0$ and $f''(\sin x) > 0 \, \forall x \in \left(0, \frac{\pi}{2}\right)$ and g(x) =f(sinx)+f(cosx) which of the following is true? - A. f(x) is discounting function for all ordered pairs (a,b) - B. f(x) is contionuous for finite number of ordered pairs (,ab) - C. f(x) can be differentiable - D. f(x) is continous for infinite ordered pairs (a,b) ## Answer: 4 **6.** Let $$f'(\sin x) < 0$$ and $f''(\sin x) > 0 \, \forall x \in \left(0, \frac{\pi}{2}\right)$ and $g(x)$ =f(sinx)+f(cosx) If x = 3 is the only point of minima in its neighborhood and x=4 is neither a point of maxima nor a point minima, then which of the following can be true? $$\mathrm{A.}\,a>0,b<0$$ $$\mathrm{B.}\,a<\,,b<0$$ C. $$a>0,b\in R$$ D. none of these #### Answer: 1 **Watch Video Solution** 7. Let $f'(\sin x) < 0$ and $f''(\sin x) > 0 \, orall x \in \left(0, rac{\pi}{2} ight)$ and g(x) =f(sinx)+f(cosx) If x = 3 is the only point of minima in its neighborhood and x=4 is neither a point of maxima nor a point minima, then which of the following can be true? $$\mathrm{A.}\,a<0,b>0$$ $\mathrm{B.}\,ahy0,b<0$ $\mathsf{C}.\,aht0,\,b<0$ D. not possible #### **Answer: 4** **Watch Video Solution** **8.** Let $f'(\sin x) < 0$ and $f''(\sin x) > 0 \, \forall x \in \left(0, \frac{\pi}{2}\right)$ and g(x) =f(sinx)+f(cosx) If x = 3 is the only point of minima in its neighborhood and x=4 is neither a point of maxima nor a point minima, then which of the following can be true? $\mathrm{A.}\,a<0,b>0$ B. $$a > 0, b < 0$$ C. $$a > 0, b > 0$$ D. not possible #### **Answer: 3** # Watch Video Solution then it can be adjucted as d **9.** If ϕ (x) is a differentiable real valued function satisfying $\phi(x) + 2\phi \leq 1$, $$e^{2x}\phi(x)+2e^{2x}\phi(x)\leq e^{2x} ext{ or } rac{d}{dx}igg(e^2\phi(x)- rac{e^{2x}}{2}igg)\leq ext{ or } rac{d}{dx}e^{2x}igg(\phi(x)- rac{d}{dx}e^{2x}igg)$$ Here e^{2x} is called integrating factor which helps in creating single differential coefficeint as shown above. Answer the following question: If p(1)=0 and $$dP \frac{x}{dx} < P(x)$$ for all $x \geq 1$ then A. $$P(x)>0\, orall x>1$$ B. P(x) is a constant function $$\mathsf{C.}\,P(x)<0\,\forall x>1$$ D. none of these #### Answer: 1 **Watch Video Solution** **10.** If H $(x_0)=0$ for some $x=x_0$ and $\frac{d}{dx}H(x)>2cxH(x)$ for all $x\geq x_0$, where c>0, then prove that H (x) cannot be zero for any $x>x_0$. - A. H(x) = 0 has root for $x>x_{\mathrm{0}}$ - B. H(x) = 0 has no root for $x>x_{\mathrm{0}}$ - C. H(x) is a constant functio - D. none of these ## Answer: 2 **11.** Let $h(x) = f(x) - a(f(x))^3$ for every real number x h(x) increase as f(x) increses for all real values of x if A. $$a\in(0,3)$$ B. $$a\in (\,-2,2)$$ C. $$[3,\infty)$$ D. none of these ## Answer: 1 # **12.** Let $h(x) = f(x) - a(f(x))^3$ for every real number x A. $$a\in(0,3)$$ B. $$a\in (\,-2,2)$$ $$\mathsf{C}.\left[3,\infty ight)$$ D. none of these Answer: 4 **Watch Video Solution** 13. If f(x) is strictly increasing function then h(x) is non monotonic function given A. $a \in (0, 3)$ B. $a\in (-2,2)$ $C.(3,\infty)$ D. $a \in (-\infty, 0) \cup (3, \infty)$ #### Answer: 4 **14.** Let $f(x)=x^3-9x^2+24x+c=0$ have three real and distinct roots α, β and λ . (i) Find the possible values of c. (ii) If $[lpha]+[eta]+[\lambda]=8$, then find the values of c, where $[\ \cdot\]$ represents the greatest integer function. (ii) If $[\alpha]+[\beta]+[\lambda]=7$, then find the values of c, where $[\ \cdot\]$ represents the greatest integer function.s A. (-20, -16) B. (-20,-18) C. (-18,-16) D. none of these ## Answer: 1 **15.** Let $f(x) = x^3 - 9x^2 + 24x + c = 0$ have three real and distinct roots lpha,eta and $\lambda.$ (i) Find the possible values of c. (ii) If $[lpha]+[eta]+[\lambda]=8$, then find the values of c, where $[\ \cdot\]$ represents the greatest integer function. (ii) If $[\alpha] + [\beta] + [\lambda] = 7$, then find the values of c, where $[\cdot]$ represents the greatest integer function.s A. (-20, -16) B. (-20,-18) C. (-18,-16) D. none of these ## **Answer: 3** **16.** Let $f(x) = x^3 - 9x^2 + 24x + c = 0$ have three real and distinct roots α , β and λ . (i) Find the possible values of c. (ii) If $[lpha]+[eta]+[\lambda]=8$, then find the values of c, where $[\ \cdot\]$ represents the greatest integer function. the greatest integer function.s (ii) If $[lpha]+[eta]+[\lambda]=$ 7, then find the values of c, where $[\ \cdot\]$ represents A. (-20,-16) B. (-20,-18) C. (-18,-16) D. none of these ## Answer: 2 17. consider the graph of y=g(x)=f'(x) given that f(c)=0, where y=f(x) is a polynomial funtion The graph of y=f(x) will intersect the x axis - A. twice - B. once - C. never - D. none of these #### Answer: 2 **View Text Solution** **18.** Consider the graph of $y=g(x)=f^{\,\prime}(x)$ given that f(c)=0, where y = f(x) is a polynomial function The equation $f(x)=0, a\leq x\leq b$,has - A. four real roots - B. no real roots - C. two distinct real roots - D. at least three repeated roots ## Answer: 4 **View Text Solution** 19. consider the graph of y=g(x)=f'(x) given that f(c)=0, where y=f(x) is a polynomial funtion The graph of y = $f(x), a \leq x \leq b$ has - A. two points of inflection - B. one point of inflection - C. no point of inflection - D. none of these #### Answer: 2 **View Text Solution** **20.** consider the graph of y=g(x)=f'(x) given that f(c)=0, where y=f(x) is a polynomial funtion The function $y = f(x), a \le x \le b$, has A. exactly one local maxima B. one local minima and one maxima C. exactly one local minima D. none of these ## Answer: 4 **View Text Solution** **21.** consider the graph of y=g(x)=f'(x) given that f(c)=0, where y=f(x) is a polynomial funtion The equation f''(x)=0 A. has no real root B. has at least one real root C. has at least two distinct roots D. none of these ## Answer: 2 **View Text Solution** **22.** Let $f(x) = 4x^2 - 4ax + a^2 - 2a + 2$ and the golbal minimum value of f(x) for x in [0,2] is equal to 3 The number of
values of a for which the global minimum value equal to 3 for x in [0,2] occurs at the endpoint of interval[0,2] is - A. 1 - B. 2 - C. 3 - D. 0 ## **Answer: 2** # Watch Video Solution **23.** Let $f(x) = 4x^2 - 4ax + a^2 - 2a + 2$ and the golbal minimum value of f(x) for x in [0,2] is equal to 3 The number of values of a for which the global minimum value equal to 3 for x in [0,2] occurs at the endpoint of interval[0,2] is - A. 1 - B. 2 - C. 3 - D. 0 ## **Answer: 4** ## **Watch Video Solution** **24.** Let $f(x) = 4x^2 - 4ax + a^2 - 2a + 2$ and the golbal minimum value of f(x) for x in [0,2] is equal to 3 The number of values of a for which the global minimum value equal to 3 for x in [0,2] occurs at the endpoint of interval[0,2] is A. $$a \leq \,$$ O or a $\, \geq \, 4$ B. $$0 < a < 4$$ D. none of these ## Answer: 1 **25.** Let $$f(x) = x^3 - 3(7-a)X^2 - 3(9-a^2)x + 2$$ The values of parameter a if f(x) has a negative point of local minimum are A. π B. (-3,3) $\mathsf{C.}\left(-\infty,\frac{58}{14}\right)$ D. none of these #### Answer: 1 Watch Video Solution **26.** Let $$f(x) = x^3 - 3(7-a)X^2 - 3(9-a^2)x + 2$$ The values of parameter a if f(x) has a positive point of local maxima are A. π $$\mathsf{B.}-\infty,\ -3\cup\left(3, rac{29}{7} ight)$$ $$\mathsf{C.}-\infty,\,\frac{58}{14}$$ D. none of these ## Answer: 2 **Watch Video Solution** # **27.** Let $f(x) = x^3 - 3(7-a)x^2 - 3(9-a^2)x + 2$ The values of parameter a if f(x) has points of extrema which are opposite in sign are A. π B. (-3,3) $\mathsf{C.}\left(-\infty, \frac{58}{14}\right)$ D. none of these ## Answer: 2 **28.** consider the function $$f(x) = 1\left(1 + \frac{1}{x}\right)^x$$ The domain of f(x) is A. $$(-1,0)\cup(0,\infty)$$ B. R-{O} C. $$(-\infty, -1) \cup (0, \infty) \cup (0, \infty)$$ D. (0,00)` #### **Answer: 3** Watch Video Solution **29.** consider the function $f(x) = 1\left(1 + \frac{1}{x}\right)^x$ The domain of f(x) is A. В. C. D. Watch Video Solution **30.** consider the function $f(x) = \left(1 + \left(\frac{1}{x}\right)\right)^x$ The range of the function f(x) is A. $(0,\infty)$ B. $(-\infty, e)$ $\mathsf{C}.\,1,\,\infty)$ $\mathsf{D}.\,(1,e)\cup(e,\infty)$ Answer: 4 **View Text Solution** **31.** consider the function $f(X) = x + \cos x$ which of the following is not true about y = f(x)? - A. It is an increasing function - B. It is a monotonic function - C. It has infinite points of inflection s - D. None of these #### Answer: 4 **Watch Video Solution** **32.** consider the function f(X) =x+cosx -a values of a which f(X) = 0 has exactly one positive root are - A. (0,1) - B. $(-\infty,1)$ - C. (-1,1) $D.(1,\infty)$ Answer: 4 **Watch Video Solution** **33.** consider the function f(X) =x+cosx -a values of a for which f(X) =0 has exactly one negative root are A. (0,1) B. $(-\infty, 1)$ C. (-1,1) $D.(1,\infty)$ **Answer: 2** **34.** consider the function f(X) = $3x^4 + 4x^3 - 12x^2$ Y= f(X) increase in the inerval A. $$(-1,0)\cup(2,\infty)$$ B. $$(-\infty,0)\cup(1,2)$$ C. $$(-2,0)\cup(1,\infty)$$ D. none of these #### Answer: 3 Watch Video Solution **35.** consider the function f(X) = $3x^4+4x^3-12x^2$ The range of the function y=f(x) is A. $$(-\infty, \infty)$$ B. $$[\,-32,\infty)$$ $$\mathsf{C}.\left[0,\infty\right)$$ D. none of these Answer: 2 **Watch Video Solution** **36.** consider the function f(X) = $3x^4 + 4x^3 - 12x^2$ The range of values of a for which f(x) = a has no real A. $(4, \infty)$ B. $(10, \infty)$ $\mathsf{C}.\left(20,\infty ight)$ D. none of these Answer: 4 **37.** consider the function $f\!:\!R o R,$ $f(x)= rac{x^2-6x+4}{x^2+2x+4}$ f(x) is A. unbounded function B. one one function C. onto function D. none of these #### **Answer: 4** **Watch Video Solution** **38.** consider the function $f\colon R\to R,$ $f(x)=\dfrac{x^2-6x+4}{x^2+2x+4}$ which of the following is not true about f(x)? A. f(x) has two points of extremum B. f(x) has only one asymptote C. f(x) is differentiable for all x in R D. none of these Answer: 4 **Watch Video Solution** **39.** consider the function $f\!:\!R o R,$ $f(x)= rac{x^2-6x+4}{x^2+2x+4}$ Range of fX() is A. $$\left(-\infty \ - rac{2}{3} ight] \cup [2,0)$$ B. $$\left[\frac{-1}{3}, 5\right]$$ C. ($$-\infty,2)\cup\left[rac{7}{3},\infty ight)$$ $D.(20,\infty)$ Answer: 2 **40.** Consider a polynomial y = P(x) of the least degree passing through A(-1,1) and whose graph has two points of inflection B(1,2) and C with abscissa 0 at which the curve is inclined to the positive axis of abscissa at an angle of $\sec^{-1}\sqrt{2}$ The value of P(2) ius - A. -1 - $\mathsf{B.}\,\frac{-3}{2}$ - $\mathsf{C.}\,\frac{5}{2}$ - D. $\frac{7}{2}$ #### Answer: 3 **Watch Video Solution** **41.** Consider a polynomial y = P(x) of the least degree passing through A(-1,1) and whose graph has two points of inflection B(1,2) and C with abscissa 0 at which the curve is inclined to the positive axis of abscissa at an angle of $\sec^{-1}\sqrt{2}$ The value of P(0) is A. 1 В. О c. $\frac{3}{4}$ D. $\frac{1}{2}$ ### Answer: 4 Watch Video Solution **42.** Consider a polynomial y = P(x) of the least degree passing through A(-1,1) and whose graph has two points of inflection B(1,2) and C with abscissa 0 at which the curve is inclined to the positive axis of abscissa at an angle of $\sec^{-1}\sqrt{2}$ The equation P(x) = 0 has A. three distinct real roots B. one real root C. three real roots such that one root is repeated D. none of these #### Answer: 3 Watch Video Solution **43.** Let f(X) be real valued continous funcion on R defined as f(X) = $x^2e^{-\left|x\right|}$ The values of k for which the equation $x^2e^{-\,|\,x\,|}$ =k has four real roots are - A. 0 < k < e - B. $0 < k < \frac{8}{e^2}$ - $\mathsf{C.}\,0 < k < \frac{4}{e^2}$ - D. none of these #### **Answer: 3** **View Text Solution** **44.** Let $$f(x)$$ be real valued continous funcion on R defined as $f(x) = x^2 e^{- |x|}$ Number of points of inflection for y=f(x) is (a) 1 (b) 2 (c) 3 (d) 4 A. y = f(x) has two points of maxima B. y=f(X) has only one asymptote C. f(X) =0 has three real roots D. none of these #### Answer: 4 **Watch Video Solution** **45.** Let f(x) be real valued continous funcion on R defined as $f(x) = x^2 e^{- |x|}$ Number of points of inflection for y=f(x) is (a) 1 (b) 2 (c) 3 (d) 4 - A. 1 - B. 2 - C. 3 - D. 4 ### **Answer: 4** - **46.** P(x) be a polynomial of degree 3 satisfying P(-1) = 10, P(1) = -6 and P(x)has maxima at x = -1 and p(x) has minima at x=1 then The value of P(2) is (a) -15 (b) -16 (c) -17 (d) -22 (c) -17 (d) -22 - A. -15 - B. -16 - C. -17 - D. -22 #### **Answer: 3** Watch Video Solution - **47.** P(x) be a polynomial of degree 3 satisfying P(-1) = 10, P(1) = -6 and p(x) has maxima at x = -1 and p(x) has minima at x = 1 then The value of P(1) is - A. -12 - B. -10 - C. 15 - D. 21 #### Answer: 1 Watch Video Solution **48.** The graph of y = g(x) = f(X) is as shown in the following figure analyse this graph and answer the following question The graph of y=f(x) for a < x < bhas - A. no point of extream - B. one point of extrema - C. two points extrema - D. can't say anything #### Answer: 3 **View Text Solution** **49.** The graph of y = g(x) = f(X) is as shown in the following figure analyse this graph and answer the following question Number of points of inflectionn the graph of y = f(x) for a < x < b has - A. 0 - B. 1 - C. 2 - D. can't say anything **Answer: 3** **50.** The graph of y = g(x) = f(X) is as shown in the following figure analyse this graph and answer the following question Which of the following is not true about the graph of y = f(x) ,a < x < b - A. always increasing - B. discontinous at one point - C. first increases then decreases - D. none of these #### Answer: 3 View Text Solution ### Numerical Value Type 1. If lpha is an integer satisfying $|lpha| \le 4 - |[x]|,$ where x is a real number for which $2x an^{-1} x$ is greater than or equal to $\ln (1 + x^2),$ then the number of maximum possible values of a (where [.] represents the greatest integer function) is ____ **2.** From a given solid cone of height H, another inverted cone is carved whose height is h such that its volume is maximum. Then the ratio $\frac{H}{h}$ is 3. $$Let f(x)=egin{cases} |x^3+x^2+3x+\sin x|\Big(3+\sin\Big(rac{1}{x}\Big)\Big) & x eq 0 \\ 0 & x=0 \end{cases}$$ then the number of point where $f(x)$ attains its minimum value is ____ **4.** Leg f(x) be a cubic polynomial which has local maximum at x=-1 and f(x) has a local minimum at x=1. If $f(\,-1)=10 and f(3)=\,-22,\,$ then one fourth of the distance between its two horizontal tangents is _____ **5.** Consider P(x) to be a polynomial of degree 5 having extremum at x=-1,1, and $(\lim)_{x\stackrel{\rightarrow}{0}}\left(\frac{p(x)}{r^3}-2\right)=4$. Then the value of [P(1)] is **Watch Video Solution** (where [.] represents greatest integer function) then the value of |m| is _____ 7. For a cubic function y=f(x), $f^x=4x$ at each point (x,y) on it and it crosses the $x-a\xi s$ at (-2,0) at an angle of 45^0 with positive direction of the x-axis. Then the value of $\left|\frac{f(1)}{5}\right|$ is _____ - **8.** Number of integral values of b for which the equation $\dfrac{x^3}{3}-x=b$ has three distinct solutions is - Watch Video Solution - **9.** $Let f(x)=\left\{x+2,x<-1x^2,\;-1\leq x<1(x-2)^2,x\geq 1\;\; \text{Then} ight.$ number of times f'(x) changes its sign in $(-\infty,\infty)$ is___ - Watch Video Solution **10.** The number of nonzero integral values of a for which the function $f(x)=x^4+ax^3+ rac{3x^2}{2}+1$ is concave upward along the entire real line is Watch Video Solution **11.** $Legf(x)=\left\{x^{\frac{3}{5}}, \text{ if } x\leq 1-\left(x-2\right)^3, \text{ if } x>1 \text{ Then } \text{ the } \right.$ number of critical points on the graph of the function is ___ 12. A right triangle is drawn in a semicircle of radius $\frac{1}{2}$ with one of its legs along the diameter. If the maximum area of the triangle is M , then the value of $32\sqrt{3}Mc$ is____
13. A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y=0, y=3x, andy=30-2x. If M is the largest area of such a rectangle, then the value of $\frac{2M}{27}$ is_____ **14.** The least integral value of x where $f(x)=(\log)_{\frac{1}{2}}\big(x^2-2x-3\big)$ is monotonically decreasing is_____ **15.** The least area of a circle circumscribing any right triangle of area $\frac{9}{\pi}$ is **16.** $$Let f(x)=\left\{\left|x^2-3x\right|+a, 0\leq x<\frac{3}{2}-2x+3, x\geq \frac{3}{2} \text{ If } f(x)\right\}$$ has a local maxima at $x=\frac{3}{2}$, then greatest value of $|4a|$ is ______ Watch Video Solution - **17.** Let $f(x)=30-2x-x^3$, the number of the positive integral values of x which does satisfy f(f(f(x))))>f(f(-x)) is _____. - Watch Video Solution - **18.** Let $f(x) = \{(x(x-1)(x-2), (0 \le x < n), \sin(\pi x), (n \le x \le 2n)\}$ least value of n for which f(x) has more points of minima than maxima in - [0,2n] is _____. - Watch Video Solution **19.** Number of critical point of the function f(X) =x+ $\sqrt{|x|}$ is _____. **20.** consider $$f(X)= rac{1}{1+|x|}+ rac{1}{1+|x-1|}$$ Let x_1 and x_2 be point wher f(x) attains local minmum and global maximum respectively .If $k=f(x_1)+f(x_2)$ then 6k-9=_____. $f'(x)=2010(x-2009)(x-2010)^2(x-2011)^3(x-2012)^4,$ for all $x\in R$. If g is a function defined on R with values in the interval $(0,\infty)$ such that $f(x)=\ln(g(x)),$ for all $x\in R,$ then the number of point is R at which g has a local maximum is ____ **21.** Let f be a function defined on R (the set of all real numbers) such that minimum is_____ Watch Video Solution **23.** Let p(x) be a real polynomial of least degree which has a local maximum at x=1 and a local minimum at x=3. If p(1)=6andp(3)=2, then p'(0) is **Watch Video Solution** **24.** A cylindrical container is to be made from certain solid material with the following constraints: It has a fixed inner volume of Vm^3 , has a 2 mm thick solid wall and is open at the top. The bottom of the container is a solid circular disc of thickness 2mm and is of radius equal to the outer radius of the container. If the volume the material used to make the container is minimum when the inner radius of the container is 10mm. then the value of $\frac{V}{250\pi}$ is ### **Single Correct Answer Type** 1. Given $P(x)=x^4+ax^3+bx^2+cx+d$ such that x=0 is the only real root of P'(x)=0. If P(-1)< P(1), then in the interval [-1,1] A. (a) P(-1) is the minimum and P(1) is the maximum of P B. (b) P(-1) is not minimum but P(1) is the maximum of P C. (c) P(-1) is not minimum and P(1) is not the maximum of P D. (d) neither P(-1) is the minimum nor P(1) is the maximum of P #### Answer: 2 Watch Video Solution **2.** Let $f{:}R\overset{ ightarrow}{R}$ be defined by $f(x)=\{k-2x, \;\; ext{if} \;\; x\leq -1(-2x+3), x\succ 1\}$. If f has a local minimum at x=-1 , then a possible value of k is (1) 0 (2) $- rac{1}{2}$ (3) -1 C. 0 D. $$\frac{1}{2}$$ Answer: 1 **3.** Let $$f\colon R o R$$ be a continuous function defined by $f(x)=\dfrac{1}{e^x+2e^{-x}}$. Statement-1: $f(c)=\dfrac{1}{3},$ for some $c\in R$. Statement-2: . Statement-1: $$f(c)= rac{1}{3},$$ for some $c\in R$. Statement- $0< f(x) \leq rac{1}{2\sqrt{5}},$ for all $x\in R$. (1) Statement-1 is true, Statement-2 $0 < f(x) \leq rac{1}{2 \sqrt{2}}, \,\,$ for all $x \in R$. (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1 A. statement 1 is false statement 2 is true B. satement 1 si true , statement 2 is true statement 2 is a correct explanation for statement 1 C. statement 1 is true statement 2 is true statement 2 is not a correct explanation for statement 2 D. statement 1 is true, statement 2 is false #### Answer: 2 ### **Watch Video Solution** **4.** Let a, b R be such that the function f given by $f(x)=\ln|x|+bx^2+ax, x\neq 0$ has extreme values at x=1 and x=2. Statement 1: f has local maximum at x=1 and at x=2. Statement 2: $a=\frac{1}{2}\mathrm{and}b=\frac{-1}{4}$ (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is true; explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false A. statement 1 is false statement 2 is true B. statement 1 is true statement 2 is true , statement 2 is a correct explanation for statement 1 explanation for statement 1 C. statement 1 is true statement 2 is true, statement 2 is not a correct D. statement 1 is true statement 2 is false #### Answer: 2 **5.** find the values k for which the quadratic equation $2x^2+Kx+3=0$ has two real equal roots A. lies between 1 and 2 B. lies between 2 and 3 C. lies between -1 and 0 D. does not exist #### Answer: 4 **Watch Video Solution** **6.** If x = -1 and x = 2 are extreme points of f(x) = $\alpha \log \lvert x \rvert + \beta x^2 + x$, then A. $$lpha=\,-\,6, eta= rac{1}{3}$$ B. $$lpha=\,-\,6,eta=\,-\, rac{1}{2}$$ C. $$lpha=2,eta=- rac{1}{2}$$ D. $$lpha=2,eta= rac{1}{2}$$ #### Answer: 3 **7.** Let f(X) be a polynomila of degree four having extreme values at x =1 and x=2.If $\lim_{x\to 0}\left[1+\frac{f(x)}{x^2}\right]=3$ then f(2) is equal to - A. -8 - B. -4 - C. 0 - D. 4 #### **Answer: 3** ### **Watch Video Solution** **8.** A wire of the length 2 units is cut into two parts which are bent respectively to form a square of side=x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then A. $$(4-\pi)x=\pi r$$ B. x=2r C. 2x=r $\mathsf{D.}\,2x=(\pi+4)r$ ### Answer: 2 Watch Video Solution - 9. Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in $sq\dot{m}$) of the flowerbed is: (1) 25 (2) 30 (3) 12.5 (4) 10 - A. 30 - B. 12.5 - C. 10 - D. 25 Answer: 4 **10.** Let $$f(x)=x^2+\left(\frac{1}{x^2}\right)$$ and $g(x)=x-\frac{1}{x}$ $\xi nR-\{-1,0,1\}$. If $h(x)=\left(\frac{f(x)}{g(x)}\right)$ then the local minimum value of $h(x)$ is: (1) 3 (2) -3 (3) $$g(x)$$ $$-2\sqrt{2} (4) 2\sqrt{2}$$ A. $$2\sqrt{2}$$ В. 3 C. -3 D. $-2\sqrt{2}$ ### Answer: 1 ### Watch Video Solution **11.** The function $f\colon [0,3] \overrightarrow{1,29}$, defined by $f(x)=2x^3-15x^2+36x+1$, is one-one and onto onto but not one-one one-one but not onto neither one-one nor onto A. one-one and onto B. onto but not one -one C. one-one but not onto D. neither one-one nor on to ### Answer: 2 Watch Video Solution **12.** The number of points in $(-\infty, \infty)$, for which $x^2 - x \sin x - \cos x = 0$, is 6 (b) 4 (c) 2 (d) 0 A. 6 B. 4 C. 2 D. 0 **Answer: 3** **13.** If $$f\colon R\to R$$ is a twice differentiable function such that $f'\,'(x)>0$ for all $x\in R, \text{ and } f\Bigl(\frac12\Bigr)=\frac12$ and $f(1)=1, \text{ then}$ A. (a) $$0 < f'(1) \leq rac{1}{2}$$ B. (b) $$f'(1) \leq 0$$ C. (c) $$f'(1) > 1$$ D. (d) $$rac{1}{2} < f'(1) \leq 1$$ #### **Answer: 3** Watch Video Solution ### Linked comprehension Type **1.** Let $f\colon [0,1] \to R$ be a function. Suppose the function f is twice f(0) = f(1) = 0satisfies differentiable, and for $$0 < x < 1$$? $f''(x) - 2f'(x) + f(x) \ge e^x, x \in [0,1]$ Which of the following is true A. $$0 < f(x) < \infty$$ $$\mathsf{B.} - \frac{1}{2} < f(x) < \frac{1}{2}$$ $$\mathsf{C.} - \frac{1}{4} < f(x) < 1$$ D. $$-\infty < f(x) < 0$$ # Answer: 4 - 2. If the function e^(-x) f(X) assumes its minimum in the interval [0,1] at - x = 1/4 which of the following is true? A. $$f'(x) < f(X), 1/4 < x < 3/4$$ B. $$f'(x) > f(X), 0 < x < 1/4$$ C. $$f'(x) < f(X), 0 < x < 1/4$$ D. $$f'(x) < f(X), 3/4 < x < 1$$ Answer: 3 Watch Video Solution ## **Matrix Match Type** 1. consider function f(x) = $x^4 - 14x^2 + 24x - 3$. Now match the following lists: **View Text Solution** | List I | List II |
--|-----------------------| | a. If $f(x)$ is an integrable function for | p. 3 | | $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and | Page 65 | | $I_1 = \int_{-\pi/3}^{\pi/3} \sec^2 \theta f(2\sin 2\theta) d\theta, \text{ and}$ | Nizami in | | $I_2 = \int_{\pi/6}^{\pi/3} \csc^2\theta f(2\sin 2\theta) d\theta, \text{ then } I_1/I_2 =$ | (1) 4
31, If f"(c) | | average then then the selection of s | bas d > | | b. If $f(x+1) = f(3+x) \forall x$, and the value of | q. 1 | | $\int_{a}^{b} f(x)dx$ is independent of a, then the | | | value of b can be | 173 (6) | | c. The value of | r. 2 | | $2\int_{1}^{4} \frac{\tan^{-1}[x^{2}]}{\tan^{-1}[x^{2}] + \tan^{-1}[25 + x^{2} - 10x]} dx$ | | | (where [.]denotes the greatest integer function) is | n wolfest | | d. If $I = \int_{1}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots \infty}}} dx$ | s. 4 | | (where $x > 0$), then [I] is equal to (where | | | [.] denotes the greatest integer function) | | **3.** Let $f(x)=(x-1)^m(2-x)^n, mn\in N$ and m,n<2. Then match the following lists: **4.** The function $f(x)=\sqrt{ax^3+bx^2+cx+d}$ has its non-zero local minimum and local maximum values at x=-2 and x=2, respectively. If a is a root of $x^2-x-6=0$, then find a,b,c and d. | List I | List II | |--|-----------------------| | a. If $f(x)$ is an integrable function for | p. 3 | | $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and | Page 65 | | $I_1 = \int_{-\pi/3}^{\pi/3} \sec^2 \theta f(2\sin 2\theta) d\theta, \text{ and}$ | Nizami in | | $I_2 = \int_{\pi/6}^{\pi/3} \csc^2\theta f(2\sin 2\theta) d\theta, \text{ then } I_1/I_2 =$ | (1) 4
31, If f"(c) | | average then then the selection of s | bas d > | | b. If $f(x+1) = f(3+x) \forall x$, and the value of | q. 1 | | $\int_{a}^{b} f(x)dx$ is independent of a, then the | | | value of b can be | 173 (6) | | c. The value of | r. 2 | | $2\int_{1}^{4} \frac{\tan^{-1}[x^{2}]}{\tan^{-1}[x^{2}] + \tan^{-1}[25 + x^{2} - 10x]} dx$ | | | (where [.]denotes the greatest integer function) is | n wolfest | | d. If $I = \int_{1}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots \infty}}} dx$ | s. 4 | | (where $x > 0$), then [I] is equal to (where | | | [.] denotes the greatest integer function) | | | | List I | List II | |-------|--|---------------| | a | . If $f(x)$ is an integrable function for | p. 3 | | | $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and | | | | $I_1 = \int_{-\pi/3}^{\pi/3} \sec^2\theta f(2\sin 2\theta) d\theta$, and | lizaler 10 Pr | | 61 | $I_2 = \int_{\pi/6}^{\pi/3} \csc^2 \theta f(2\sin 2\theta) d\theta$, then $I_1/I_2 =$ | 31. 11("(c) | | | THE RESERVE THE PROPERTY OF TH | n zi (5)3 | | b. | If $f(x+1) = f(3+x) \forall x$, and the value of | q. 1 | | | $\int_{a}^{b} f(x)dx$ is independent of a, then the | | | | value of b can be | | | 00000 | The value of | r. 2 | | 500 | $2\int_{1}^{4} \frac{\tan^{-1}[x^{2}]}{\tan^{-1}[x^{2}] + \tan^{-1}[25 + x^{2} - 10x]} dx$ | | | | (where [.]denotes the greatest integer function) is | newallos | | d. | If $I = \int_{0}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots \infty}}} dx$ | s. 4 | | | (where $x > 0$), then [I] is equal to (where [.] denotes the greatest integer function) | | | List I | List II |
--|-----------------------| | a. If $f(x)$ is an integrable function for | p. 3 | | $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and | Page 65 | | $I_1 = \int_{-\pi/3}^{\pi/3} \sec^2 \theta f(2\sin 2\theta) d\theta, \text{ and}$ | Nizami in | | $I_2 = \int_{\pi/6}^{\pi/3} \csc^2\theta f(2\sin 2\theta) d\theta, \text{ then } I_1/I_2 =$ | (1) 4
31, If f"(c) | | average then then the selection of s | bas d > | | b. If $f(x+1) = f(3+x) \forall x$, and the value of | q. 1 | | $\int_{a}^{b} f(x)dx$ is independent of a, then the | | | value of b can be | 173 (6) | | c. The value of | r. 2 | | $2\int_{1}^{4} \frac{\tan^{-1}[x^{2}]}{\tan^{-1}[x^{2}] + \tan^{-1}[25 + x^{2} - 10x]} dx$ | | | (where [.]denotes the greatest integer function) is | n wolfest | | d. If $I = \int_{1}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots \infty}}} dx$ | s. 4 | | (where $x > 0$), then [I] is equal to (where | | | [.] denotes the greatest integer function) | | | List I | List II | |--|-----------------------| | a. If $f(x)$ is an integrable function for | p. 3 | | $x \in \left[\frac{\pi}{6}, \frac{\pi}{3}\right]$ and | Page 65 | | $I_1 = \int_{-\pi/3}^{\pi/3} \sec^2 \theta f(2\sin 2\theta) d\theta, \text{ and}$ | Nizami in | | $I_2 = \int_{\pi/6}^{\pi/3} \csc^2\theta f(2\sin 2\theta) d\theta, \text{ then } I_1/I_2 =$ | (1) 4
31, If f"(c) | | average then then the selection of s | bas d > | | b. If $f(x+1) = f(3+x) \forall x$, and the value of | q. 1 | | $\int_{a}^{b} f(x)dx$ is independent of a, then the | | | value of b can be | 173 (6) | | c. The value of | r. 2 | | $2\int_{1}^{4} \frac{\tan^{-1}[x^{2}]}{\tan^{-1}[x^{2}] + \tan^{-1}[25 + x^{2} - 10x]} dx$ | | | (where [.]denotes the greatest integer function) is | n wolfest | | d. If $I = \int_{1}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots \infty}}} dx$ | s. 4 | | (where $x > 0$), then [I] is equal to (where | | | [.] denotes the greatest integer function) | | **9.** Match the following lists and then choose the correct code. | List I: Function | List II: Range | |--|-------------------------| | a. $f(x) = \log_3 (5 + 4x - x^2)$ | p. Function not defined | | b. $f(x) = \log_3(x^2 - 4x - 5)$ | q. [0, ∞) | | c. $f(x) = \log_3(x^2 - 4x + 5)$ | r. (-∞, 2] | | d. $f(x) = \log_3 (4x - 5 - x^2)$ | s. R | Watch Video Solution **10.** f(x) is polynomial function of degree 6, which satisfies $$(\lim)_{x\stackrel{ ightarrow}{0}}igg(1+ rac{f(x)}{x^3}igg)^{ rac{1}{x}}=e^2$$ and has local maximum at $x=1$ and local minimum at x=0 and x=2. then 5f(3) is equal to - 11. Match the statement /expressinons in Lis t I with the open intervals is - List II **12.** Let $$f(x) = x + \log_e x - x \log_e x, x \in (0, \infty)$$ List I contains information about zero of f(X), f'(x) and f''(x) List II contains information about the limiting behaviour of f(x), f(x) and f"(x) at infinty List III contains information about increasing /decreasing nature of f(x) and f'(x) which o fhte following options is the only CORRECT comibination? - A. (iv)(i)(S) - B. (I)(ii)(R) - C. (III)(iv)(P) - D. (II)(ii)(S) #### **Answer: 4** **13.** Let $f(x) = x + \log_e x - x \log_e x, x \in (0, \infty)$ List I contains information about zero of f(X), f'(x) and f"(x) List II contains information about the limiting behaviour of f(x), f(x) and f"(x) at infinty List III contains information about increasing /decreasing nature of f(x) and f'(x) which o fhte following options is the only CORRECT comibination? A. (III)(iii)(R) B. (I)(i)(P) C. (IV)(iv)(S) D. (II)(ii)(Q) #### Answer: 4 **14.** Let $f(x) = x + \log_e x - x \log_e x, x \in (0, \infty)$ List I contains information about zero of f(X), f'(x) and f''(x) List II contains information about the limiting behaviour of f(x), f(x) and f"(x) at infinty List III contains information about increasing /decreasing nature of f(x) and f'(x) which o fhte following options is the only CORRECT comibination? A. (II) (iii)(P) B. (II)(iv)(Q) C. (I)(iii)(P) D. (III)(i)(R) #### Answer: 4