©゙doubtnut

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

PROGRESSION AND SERIES

Single correct Answer

1. If $3 x^{2}-2 a x+\left(a^{2}+2 b^{2}+2 c^{2}\right)=2(a b+b c)$, then a, b, c can be in
A. A. P.
B. G. P.
C. H. P.
D. None of these
2. If $x=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots, y=\frac{1}{1^{2}}+\frac{3}{2^{2}}+\frac{1}{3^{2}}+\frac{3}{4^{2}}+\ldots$. and
$z=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$ then
A. x, y, z are in A. P.
B. $\frac{y}{6}, \frac{x}{3}, \frac{z}{2}$ are in A. P.
C. $\frac{y}{6}, \frac{x}{3}, \frac{z}{2}$ are in A. P.
D. $6 y, 3 x, 2 z$ are in H. P.

Answer: B

- Watch Video Solution

3. For $a, b, c \in R-\{0\}$, let $\frac{a+b}{1-a b}, b, \frac{b+c}{1-b c}$ are in A. P. If α, β are the roots of the quadratic equation
$2 a c x^{2}+2 a b c x+(a+c)=0$, then the value of $(1+\alpha)(1+\beta)$ is
B. 1
C. -1
D. 2

Answer: B

D Watch Video Solution

4. If $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{87}, a_{88}, a_{89}$ are the arithmetic means between 1 and 89, then $\sum_{r=1}^{89} \log \left(\tan \left(a_{r}\right)^{\circ}\right)$ is equal to
A. 0
B. 1
C. $\log _{2} 3$
D. $\log 5$

Answer: A

5. Let a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots be arithemetic progression such that $a_{1}=25, b_{1}=75$ and $a_{100}+b_{100}=100$, then the sum of first hundred term of the progression $a_{1}+b_{1}, a_{2}+b_{2}$,.... is equal to
A. 1000
B. 100000
C. 10000
D. 24000

Answer: C

- Watch Video Solution

6. The sum of 25 terms of an $A . P$, whose all the terms are natural numbers, lies between 1900 and 2000 and its $9^{\text {th }}$ term is 55 . Then the first term of the $A . P$. is
A. 5
B. 6
C. 7
D. 8

Answer: C

- Watch Video Solution

7. If the first, fifth and last terms of an $A . P$. is l, m, p, respectively, and sum of the A. P. is $\frac{(l+p)(4 p+m-5 l)}{k(m-l)}$ then k is
A. 2
B. 3
C. 4
D. 5

(D) Watch Video Solution

8. If $a_{1}, a_{2} a_{3}, \ldots, a_{15}$ are in $A . P$ and $a_{1}+a_{8}+a_{15}=15$, then $a_{2}+a_{3}+a_{8}+a_{13}+a_{14}$ is equal to
A. 25
B. 35
C. 10
D. 15

Answer: A

- Watch Video Solution

9. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P. and $a_{i}>0$ for each i , then

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{n}{a_{i+1}^{\frac{2}{3}}+a_{i}^{\frac{1}{3}} a_{i}^{\frac{1}{3}}+a_{i}^{\frac{2}{3}}} \text { is equal to (a) } \frac{n}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}} \tag{b}\\
& \frac{n(n+1)}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}} \text { (c) } \frac{n(n-1)}{a_{n}^{2 / 3}+a_{n}^{1 / 3} \cdot a_{1}^{1 / 3}+a_{1}^{2 / 3}} \text { (d) None of these }
\end{align*}
$$

A. $\frac{n}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}}$
B. $\frac{n+1}{a_{n}^{2 / 3}+a_{n}^{1 / 3}+a_{1}^{2 / 3}}$
C. $\frac{n-1}{a_{n}^{2 / 3}+a_{n}^{1 / 3} \cdot a_{1}^{1 / 3}+a_{1}^{2 / 3}}$
D.

Answer: C

(Watch Video Solution

10. Between the numbers 2 and 20,8 means are inserted. Then their sum is
A. 88
B. 44
C. 176
D. None of these
11. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{4001}$ is an $A . P$. such that
$\frac{1}{a_{1} a_{2}}+\frac{1}{a_{2} a_{3}}+\ldots+\frac{1}{a_{4000} a_{4001}}=10$
$a_{2}+a_{4000}=50$.
Then $\left|a_{1}-a_{4001}\right|$ is equal to
A. 20
B. 30
C. 40
D. None of these

Answer: B

- Watch Video Solution

12. An A. P. consist of even number of terms $2 n$ having middle terms equal to 1 and 7 respectively. If n is the maximum value which satisfy
$t_{1} t_{2 n}+713 \geq 0$, then the value of the first term of the series is
A. (a) 17
B. (b) -15
C. (c) 21
D. (d) -23

Answer: D

- Watch Video Solution

13. If the sum of the first 100 terms of an $A P$ is -1 and the sum of even terms lying in first 100 terms is 1 , then which of the following is not true?
A. Common difference of the sequence is $\frac{3}{50}$
B. First term of the sequence is $\frac{-149}{50}$
C. $100^{\text {th }}$ term $=\frac{74}{25}$
D. None of these

D Watch Video Solution

14. Given the sequence of numbers $x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{2005}$, $\frac{x_{1}}{x_{1}+1}=\frac{x_{2}}{x_{2}+3}=\frac{x_{3}}{x_{3}+5}=\ldots=\frac{x_{2005}}{x_{2005}+4009}$, the nature of the sequence is
A. A. P.
B. G. P.
C. H. P.
D. None of these

Answer: A

15. If $b-c, b x-c y, b x^{2}-c y^{2}(b, c \neq 0)$ are in G. P, then the value of $\left(\frac{b x+c y}{b+c}\right)\left(\frac{b x-c y}{b-c}\right)$ is
A. x^{2}
B. $-x^{2}$
C. $2 y^{2}$
D. $3 y^{2}$

Answer: A

- Watch Video Solution

16. If $a_{1}, a_{2}, a_{3}, \ldots$ are in G. P., where $a_{i} \in C$ (where C satands for set of complex numbers) having r as common ratio such that $\sum_{k=1}^{n} a_{2 k-1}=\sum_{k=1}^{n} a_{2 k+3} \neq 0$, then the number of possible values of r is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

17. If a, b, c are real numbers forming an $A . P$. and $3+a, 2+b, 3+c$ are in $G . P$. , then minimum value of $a c$ is
A. -4
B. -6
C. 3
D. None of these

Answer: B

18. a, b, c, d are in increasing G. P. If the $A M$ between a and b is 6 and the $A M$ between c and d is 54 , then the $A M$ of a and d is
A. 15
B. 48
C. 44
D. 42

Answer: D

- Watch Video Solution

19. The numbers a, b, c are in $A . P$. and $a+b+c=60$. The numbers $(a-2), b,(c+3)$ are in $G . P$. Then which of the following is not the possible value of $a^{2}+b^{2}+c^{2}$?
A. 1208
B. 1218
C. 1298
D. None of these

Answer: B

- Watch Video Solution

20. a, b, c are positive integers formaing an incresing $G . P$. and $b-a$ is a perfect cube and $\log _{6} a+\log _{6} b+\log _{6} c=6$, then $a+b+c=$
A. 100
B. 111
C. 122
D. 189

Answer: D

21. The first three terms of a geometric sequence are x, y, z and these have the sum equal to 42 . If the middle term y is multiplied by $5 / 4$, the numbers $x, \frac{5 y}{4}, z$ now form an arithmetic sequence. The largest possible value of x is
A. 6
B. 12
C. 24
D. 20

Answer: C

- Watch Video Solution

22. If an infinite G.P. has $2 n d$ term x and its sum is 4 , then prove that
$\xi n(-8,1]-\{0\}$
A. $(0,2]$
B. $(1,8)$
C. $(-8,1]$
D. none of these

Answer: C

- Watch Video Solution

23. In a $G P$, the ratio of the sum of the first eleven terms of the sum of the last even terms is $1 / 8$ and the ratio of the sum of all the terms without the first nine to the sum of all terms without the last nine is 2 . Then the number of terms in the $G P$ is
A. 40
B. 38
C. 36
D. 34

Answer: B

- Watch Video Solution

24. The number of ordered pairs (x, y), where $x, y \in N$ for which $4, x, y$ are in $H . P$. , is equal to
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

25. If $a+c, a+b, b+c$ are in $G . P$ and a, c, b are in $H . P$. where a, b, $c>0$, then the value of $\frac{a+b}{c}$ is
A. 3
B. 2
C. $\frac{3}{2}$
D. 4

Answer: B

- Watch Video Solution

26. If a, b, c are in $H . P, b, c, d$ are in $G . P$ and c, d, e are in $A . P$., then the value of e is (a) $\frac{a b^{2}}{(2 a-b)^{2}}$ (b) $\frac{a^{2} b}{(2 a-b)^{2}}$ (c) $\frac{a^{2} b^{2}}{(2 a-b)^{2}}$ (d) None of these
A. $\frac{a b^{2}}{(2 a-b)^{2}}$
B. $\frac{a^{2} b}{(2 a-b)^{2}}$
C. $\frac{a^{2} b^{2}}{(2 a-b)^{2}}$
D. None of these

- Watch Video Solution

27. If $x>1, y>1, z>1$ are in $G . P$., then $\log _{e x} e, \log _{e y} e, \log _{e z} e$ are in
A. A. P.
B. H. P.
C. G. P.
D. none of these

Answer: B

Watch Video Solution

28. If x, y, z are in $G . P .(x, y, z>1)$, then $\frac{1}{2 x+\log _{e} x}, \frac{1}{4 x+\log _{e} y}$, $\frac{1}{6 x+\log _{e z} z}$ are in
A. A. P.
B. G. P.
C. H. P.
D. none of these

Answer: C

- Watch Video Solution

29. The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy the relation $G^{2}+3 H=48$. Then the product of the two numbers is
A. 24
B. 32
C. 48
D. 54

D Watch Video Solution

30. If x, y, z be three numbers in $G . P$. such that 4 is the $A . M$. between x and y and 9 is the $H . M$. between y and z, then y is
A. 4
B. 6
C. 8
D. 12

Answer: B

- Watch Video Solution

31. If harmonic mean of $\frac{1}{2}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots, \frac{1}{2^{10}}$ is $\frac{\lambda}{2^{10}-1}$, then $\lambda=$
A. 10.2^{10}
B. 5
C. 5.2^{10}
D. 10

Answer: B

- Watch Video Solution

32. An aeroplane flys around squares whose all sides are of length 100 miles. If the aeroplane covers at a speed of 100 mph the first side, 200 mph the second side 300 mph the third side and 400 mph the fourth side. The average speed of aeroplane around the square is
A. 190 mph
B. 195 mph
C. $192 m p h$
D. 200 mph

Answer: C

- Watch Video Solution

33. The sum of the series $1+\frac{9}{4}+\frac{36}{9}+\frac{100}{16}+\ldots$ infinite terms is
A. 446
B. 746
C. 546
D. 846

Answer: A

Watch Video Solution
34. The sum $2 \times 5+5 \times 9+8 \times 13+\ldots 10$ terms is
B. 4555
C. 5454
D. None of these

Answer: B

- Watch Video Solution

35. The sum of n terms of series
$a b+(a+1)(b+1)+(a+2)(b+2)+\ldots+(a+(n-1))(b+(n-1))$
if $a b=\frac{1}{6}$ and $(a+b)=\frac{1}{3}$ is
A. $\frac{n}{6}(1-2 n)^{2}$
B. $\frac{n}{6}\left(1+n-2 n^{2}\right)$
C. $\frac{n}{6}\left(1-2 n+2 n^{2}\right)$
D. None of these

Answer: C

36. $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{a^{i+j+k}}$ is equal to (where $|a|>1$)
A. $(a-1)^{-3}$
B. $\frac{3}{a-1}$
C. $\frac{3}{a^{3}-1}$
D. None of these

Answer: A

- Watch Video Solution

37. The coefficient of x^{1274} in the expansion of $(x+1)(x-2)^{2}(x+3)^{3}(x-4)^{4} \ldots(x+49)^{49}(x-50)^{50}$ is
A. 1275
B. -1275
C. $-\sum_{i=1}^{50} i^{2}$
D. $-\sum_{i=1}^{50} i^{2}$

Answer: B

D Watch Video Solution

38. If the positive integers are written in a triangular array as shown below,
then the row in which the number 2010 will be, is
A. 65
B. 61
C. 63
D. 65

Answer: C

39. The value of $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1=220$, then the value of n equals 11 b . 12 c. 10 d. 9
A. 11
B. 12
C. 10
D. 9

Answer: C

(Watch Video Solution

40. The sum $\sum_{k=1}^{10} \sum_{\substack{j=1 \\ i \neq j \neq k}}^{10} \sum_{i=1}^{10} 1$ is equal to
A. 240
B. 720
C. 540
D. 1080

Answer: B

- Watch Video Solution

41. The major product of the following reaction is:

$$
C H_{3} C \equiv C H \xrightarrow[(i i) D I]{(i) D C l \text { (lequiv.) }}
$$

A. 120
B. 240
C. 360
D. 720

Answer: A

42. If the sum to infinty of the series, $1+4 x+7 x^{2}+10 x^{3}+\ldots$, is $\frac{35}{16}$, where $|x|<1$, then ' x ' equals to
A. $19 / 7$
B. $1 / 5$
C. $1 / 4$
D. None of these

Answer: B

- Watch Video Solution

43. The value of $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{5^{n}}\right)$ equals
A. $\frac{5}{12}$
B. $\frac{5}{24}$
C. $\frac{5}{36}$
D. $\frac{5}{16}$

Answer: C

- Watch Video Solution

44. Find the sum of the infinte series $\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}+\ldots$
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

45. If $\sum_{r=1}^{r=n} \frac{r^{4}+r^{2}+1}{r^{4}+r}=\frac{675}{26}$, then n equal to
A. 10
B. 15
C. 25
D. 30

Answer: C

- Watch Video Solution

46. The sequence $\left\{x_{k}\right\}$ is defined by $x_{k+1}=x_{k}^{2}+x_{k}$ and $x_{1}=\frac{1}{2}$. Then $\left[\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\ldots+\frac{1}{x_{100}+1}\right]$ (where [.] denotes the greatest integer function) is equal to
A. 0
B. 2
C. 4
D. 1

D Watch Video Solution

47. The absolute value of the sum of first 20 terms of series, if $S_{n}=\frac{n+1}{2}$ and $\frac{T_{n-1}}{T_{n}}=\frac{1}{n^{2}}-1$, where n is odd, given S_{n} and T_{n} denotes sum of first n terms and $n^{t h}$ terms of the series
A. 340
B. 430
C. 230
D. 320

Answer: B

- Watch Video Solution

48.

$S_{n}=\left(1^{2}-1+1\right)(1!)+\left(2^{2}-2+1\right)(2!)+\ldots+\left(n^{2}-n+1\right)(n!)$,
then $S_{50}=$
A. 52 !
B. $1+49 \times 5$!
C. $52!-1$
D. $50 \times 51!-1$

Answer: B

- Watch Video Solution

49. If $S_{n}=\frac{1.2}{3!}+\frac{2.2^{2}}{4!}+\frac{3.2^{2}}{5!}+\ldots+$ up to n terms, then sum of infinite terms is
A. $\frac{4}{\pi}$
B. $\frac{3}{e}$
C. $\frac{\pi}{r}$
D. 1

Answer: D

- Watch Video Solution

50. There is a certain sequence of positive real numbers. Beginning from the third term, each term of the sequence is the sum of all the previous terms. The seventh term is equal to 1000 and the first term is equal to 1 . The second term of this sequence is equal to
A. 246
B. $\frac{123}{2}$
C. $\frac{123}{4}$
D. 124

Answer: B

51. The sequence $\left\{x_{1}, x_{2}, \ldots x_{50}\right\}$ has the property that for each k, x_{k} is k less than the sum of other 49 numbers. The value of $96 x_{20}$ is
A. 300
B. 315
C. 1024
D. 0

Answer: B

- Watch Video Solution

52. Let $a_{0}=0$ and $a_{n}=3 a_{n-1}+1$ for $n \geq 1$. Then the remainder obtained dividing a_{2010} by 11 is
A. 0
B. 7
C. 3
D. 4

Answer: A

- Watch Video Solution

53. Suppose $a_{1}, a_{2}, a_{3}, \ldots, a_{2012}$ are integers arranged on a circle. Each number is equal to the average of its two adjacent numbers. If the sum of all even idexed numbers is 3018 , what is the sum of all numbers ?
A. 0
B. 9054
C. 12072
D. 6036

Answer: D

54. The sum of the series $\frac{9}{5^{2} \cdot 2 \cdot 1}+\frac{13}{5^{3} \cdot 3 \cdot 2}+\frac{17}{5^{4} \cdot 4 \cdot 3}+\ldots$ upto infinity
A. 1
B. $\frac{9}{5}$
C. $\frac{1}{5}$
D. $\frac{2}{5}$

Answer: C

- Watch Video Solution

Comprehension

1. The $1^{s t}, 2^{\text {nd }}$ and $3^{r d}$ terms of an arithmetic series are a, b and a^{2} where ' a ' is negative. The $1^{s t}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of a geometric series are a, a^{2}
and b respectively.
The sum of infinite geometric series is
A. $\frac{-1}{2}$
B. $\frac{-3}{2}$
C. $\frac{-1}{3}$
D. None of these

Answer: C

- Watch Video Solution

2. The $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of an arithmetic series are a, b and a^{2} where ' a ' is negative. The $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ terms of a geometric series are a, a^{2} and b respectively.

The sum of the 40 terms of the arithmetic series is
A. $\frac{545}{2}$
B. 220
C. 250
D. $\frac{575}{2}$

Answer: A

- Watch Video Solution

3.

src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/CEN_ALG_DPP_4_ width=" 80% "gt

Let $A B C D$ is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area of the $n^{\text {th }}$ square
If $\alpha=\frac{1}{3}$, then the least value of n for which $A_{n}>\frac{1}{10}$ is
A. 4
B. 5
C. 6
D. 7

Answer: B

- Watch Video Solution

4.

Let $A B C D$ is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio
$\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area of the $n^{\text {th }}$ square

The value of α for which $\sum_{n=1}^{\infty} A_{n}=\frac{8}{3}$ is/are
A. $\frac{1}{3}, \frac{2}{3}$
B. $\frac{1}{4}, \frac{3}{4}$
C. $\frac{1}{5}, \frac{4}{5}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

5.

Let $A B C D$
is a unit square and each side of the square is divided in the ratio $\alpha:(1-\alpha)(0<\alpha<1)$. These points are connected to obtain another square. The sides of new square are divided in the ratio $\alpha:(1-\alpha)$ and points are joined to obtain another square. The process is continued idefinitely. Let a_{n} denote the length of side and A_{n} the area of the $n^{\text {th }}$ square

The value of α for which side of $n^{\text {th }}$ square equal to the diagonal of $(n+1)^{t h}$ square is
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

6. Let $f(n)$ denote the $n^{\text {th }}$ terms of the seqence of $3,6,11,18,27, \ldots$. and $g(n)$ denote the $n^{\text {th }}$ terms of the seqence of $3,7,13,21, \ldots$ Let $F(n)$ and $G(n)$ denote the sum of n terms of the above sequences, respectively. Now answer the following:
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=$
A. 0
B. 1
C. 2
D. ∞

- Watch Video Solution

7. Let $f(n)$ denote the $n^{t h}$ terms of the seqence of $3,6,11,18,27, \ldots$ and $g(n)$ denote the $n^{t h}$ terms of the seqence of $3,7,13,21, \ldots$ Let $F(n)$ and $G(n)$ denote the sum of n terms of the above sequences, respectively. Now answer the following:
$\lim _{n \rightarrow \infty} \frac{F(n)}{G(n)}=$
A. 2
B. 1
C. 0
D. ∞

Answer: B

1. Let a, x, b be in $A . P, a, y, b$ be in $G . P$ and a, z, b be in H. P. If $x=y+2$ and $a=5 z$, then
A. $y^{2}=x z$
B. $x>y>z$
C. $a=9, b=1$
D. $a=1 / 4, b=9 / 4$

Answer: A:B::C

- Watch Video Solution

2. If $A_{1}, A_{2}, A_{3}, G_{1}, G_{2}, G_{3}$, and H_{1}, H_{2}, H_{3} are the three arithmetic, geometric and harmonic means between two positive numbers a and $b(a>b)$, then which of the following is/are true ?

$$
\text { A. } 2 G_{1} G_{3}=H_{2}\left(A_{1}+A_{3}\right)
$$

B. $A_{2} H_{2}=G_{2}^{2}$
C. $A_{2} G_{2}=H_{2}^{2}$
D. $2 G_{1} A_{1}=H_{1}\left(A_{1}+A_{3}\right)$

Answer: A: B

- Watch Video Solution

3. Given that α, γ are roots of the equation $A x^{2}-4 x+1=0$ and β, δ are roots of the equation $B x^{2}-6 x+1=0$. If α, β, γ and δ are in $H . P .$, then
A. $A=5$
B. $A=3$
C. $B=8$
D. $B=-8$

Answer: B

4. If $\frac{1}{a}+\frac{1}{c}=\frac{1}{2 b-a}+\frac{1}{2 b-c}$, then
A. a, b, c are in $A . P$.
B. $a, \frac{b}{2}, c$ are in A. P.
C. $a, \frac{b}{2}, c$ are in $H . P$.
D. $a, 2 b, c$ are in H. P.

Answer: A::D

- Watch Video Solution

ILLUSTRATION 5.1

1. Write down the sequence whose nth term is $2^{n} / n$ and (ii)
$\left[3+(-1)^{n}\right] / 3^{n}$

ILLUSTRATION 5.2

1. Find the sequence of the numbers defined by
$a_{n}= \begin{cases}\frac{1}{n} & \text { when } \mathrm{n} \text { is odd } \\ -\frac{1}{n} & \text { when } \mathrm{n} \text { is even }\end{cases}$

D Watch Video Solution

ILLUSTRATION 5.3

1. Write the first three terms of the sequence defined by $a_{1} 2, a_{n+1}=\frac{2 a_{n}+3}{a_{n}+2}$.

D Watch Video Solution

1.

The Fobonacci
sequence
is defined
$1=a_{1}=a_{2} a n d a_{n}=a_{n-1}+a_{n-2}, n>2$. Find $\frac{a_{n+1}}{a_{n}}, f$ or $n=5$.
by

- Watch Video Solution

ILLUSTRATION 5.5

1. A sequence of integers $a_{1}+a_{2}++a_{n}$ satisfies $a_{n+2}=a_{n+1}-a_{n} f$ or $n \geq 1$. Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99 . Find the sum of the first 2002 terms.

- Watch Video Solution

ILLUSTRATION 5.6

1. Show that the sequence $9,12,15,18, \ldots$... is an A.P. Find its 16 th term and the general term.

- Watch Video Solution

ILLUSTRATION 5.7

1. Show that the sequence $\log a, \log (a b), \log \left(a b^{2}\right), \log \left(a b^{3}\right)$, is an A.P.

Find its nth term.

- Watch Video Solution

ILLUSTRATION 5.8

1. In a certain A.P., 5 times the 5th term is equal to 8 times the 8 th term.

Then prove that its 13th term is 0 .

ILLUSTRATION 5.9

1. Find the term of the series $25,22, \frac{3}{4}, 20 \frac{1}{2}, 18 \frac{1}{4}$ which is numerically the smallest.

- Watch Video Solution

ILLUSTRATION 5.10

1. about to only mathematics

- Watch Video Solution

ILLUSTRATION 5.11

1. Consider two A.P.: $S_{2}: 2,7,12,17,500$ terms and $S_{1}: 1,8,15,22,300$ terms Find the number of common term. Also find the last common term.

- Watch Video Solution

ILLUSTRATION 5.12

1. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{1}}+\sqrt{a_{3}}}++\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$.

- Watch Video Solution

ILLUSTRATION 5.13

1. If p, q and $\mathrm{r}(p \neq q)$ are terms (not necessarily consecutive) of an A.P., then prove that there exists a rational number k such that $\frac{r-q}{q-p}=\mathrm{k}$.
hence, prove that the numbers $\sqrt{2}, \sqrt{3}$ and $\sqrt{5}$ cannot be the terms of a single A.P. with non-zero common difference.

- Watch Video Solution

ILLUSTRATION 5.14

1. If the terms of the A.P. $\sqrt{a-x}, \sqrt{x}, \sqrt{a+x}$ are all in integers, wherea, $x>0$, then find the least composite value of a.

- Watch Video Solution

ILLUSTRATION 5.15

1. If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$, are in A.P., prove that $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.

ILLUSTRATION 5.16

1. If $a, b, c \in R+$ form an A.P., then prove that $a+1 /(b c), b+1 /(1 / a c), c+1 /(a b)$ are also in A.P.

- Watch Video Solution

ILLUSTRATION 5.17

1. If a,b,c are in A.P., then prove that the following are also in A.P
(i) $\quad a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$

Itbr
$\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$
(iii) $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$

- Watch Video Solution

1. If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

- Watch Video Solution

ILLUSTRATION 5.19

1. Divide 32 into four parts which are in A.P. such that the ratio of the product of extremes to the product of means is 7:15.

- Watch Video Solution

ILLUSTRATION 5.20

1. The digits of a positive integer, having three digits, are in A.P. and their sum is 15 . The number obtained by reversing the digits is 594 less than the original number. Find the number.

ILLUSTRATION 5.21

1. If eleven A.M. s are inserted between 28 and 10 , then find the number of integral A.M. s.

- Watch Video Solution

ILLUSTRATION 5.22

1. Between 1 and 31 are inserted m arithmetic mean so that the ratio of the 7 th and $(m-1)$ th means is $5: 9$. Find the value of m.

- Watch Video Solution

ILLUSTRATION 5.23

1. Find the sum of all three digit natural numbers, which are divisible by 7 .

- Watch Video Solution

ILLUSTRATION 5.24

1. Find the number of terms in the series $20,19 \frac{1}{3}, 18 \frac{2}{3} \ldots$ the sum of which is 300 . Explain the answer.

- Watch Video Solution

ILLUSTRATION 5.25

1. Find the degree of the expression
$(1+x)\left(1+x^{6}\right)\left(1+x^{11}\right) \ldots \ldots \ldots \ldots\left(1+x^{101}\right)$.

- Watch Video Solution

1. Find the sum of first 24 terms of the A.P. a_{1}, a_{2}, a_{3}, , if it is know that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$.

- Watch Video Solution

ILLUSTRATION 5.27

1. If S_{1} is the sum of an AP of ' n ' odd number of terms and S_{2} be the sum of the terms of series in odd places of the same AP then $\frac{S_{1}}{S_{2}}=$

- Watch Video Solution

ILLUSTRATION 5.28

1. If the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an A.P., then prove that

$$
a_{1}^{2}-a_{2}^{2}+a_{3}^{2}-a_{4}^{2}+\ldots+a_{2 n-1}^{2}-a_{2 n}^{2}=\frac{n}{2 n-1}\left(a_{1}^{2}-a_{2 n}^{2}\right)
$$

ILLUSTRATION 5.29

1. If the arithmetic progression whose common difference is nonzero the sum of first $3 n$ terms is equal to the sum of next n terms. Then, find the ratio of the sum of the $2 n$ terms to the sum of next $2 n$ terms.

- Watch Video Solution

ILLUSTRATION 5.30

1. The sum of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18th terms.

- Watch Video Solution

1. If n arithmetic means are inserted between 2 and 38 , then the sum of the resulting series is obtained as 200 . Then find the value of n.

- Watch Video Solution

ILLUSTRATION 5.32

1. The third term of a geometric progression is 4 . Then find the product of the first five terms.

- Watch Video Solution

ILLUSTRATION 5.33

1. किसी गुणोत्तर श्रेणी का प्रथम पद 1 है | तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात किजिए

ILLUSTRATION 5.34

1. If $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$, then show that a, b, c and d are in G.P.

- Watch Video Solution

ILLUSTRATION 5.35

1. The fourth, seventh, and the last term of a G.P. are 10,80 , and 2560 , respectively. Find the first term and the number of terms in G.P.

- Watch Video Solution

1. If $a, b, c, d a n d p$ are distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then prove that a, b, c, d are in G.P.

- Watch Video Solution

ILLUSTRATION 5.37

1. Does there exist a geometric progression containing 27,8 and 12 as three of its term ? If it exists, then how many such progressions are possible?

- Watch Video Solution

1. In a sequence of $(4 n+1)$ terms, the first $(2 n+1)$ terms are n A.P. whose common difference is 2 , and the last $(2 n+1)$ terms are in G.P. whose common ratio is 0.5 if the middle terms of the A.P. and LG.P. are equal ,then the middle terms of the sequence is $\frac{n .2 n+1}{2^{2 n}-1}$ b. $\frac{n .2 n+1}{2^{n}-1}$ c. $n .2^{n}$ d. none of these

- Watch Video Solution

ILLUSTRATION 5.39

1. For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the arithmetic mean of a and b ?

- Watch Video Solution

1. If $(p+q)$ th term of a G.P. is aand its $(p-q)$ th term is bwherea, $b \in R^{+}$, then its pth term is $\sqrt{\frac{a^{3}}{b}}$ b. $\sqrt{\frac{b^{3}}{a}}$ c. $\sqrt{a b}$ d. none of these

- Watch Video Solution

ILLUSTRATION 5.41

1. Find four numbers in G.P. whose sum is 85 and product is 4096 .

- Watch Video Solution

ILLUSTRATION 5.42

1. Three non-zero numbers $a, b, a n d c$ are in A.P. Increasing a by 1 or increasing c by 2 , the numbers are in G.P. Then find b.

ILLUSTRATION 5.43

1. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P., $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. prove that a , c, e are in G.P.

D Watch Video Solution

ILLUSTRATION 5.44

1. If G is the geometric mean of xandy then prove that

$$
\frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{G^{2}}
$$

- Watch Video Solution

1. Insert four G.M.s between 2 and 486.

- Watch Video Solution

ILLUSTRATION 5.46

1. If A.M. and G.M. between two numbers is in the ratio $m: n$ then prove
that the numbers are in the ratio
$\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$

- Watch Video Solution

ILLUSTRATION 5.47

1. If a be one A.M and G_{1} and G_{2} be then geometric means between b and c then $G_{1}^{3}+G_{2}^{3}=$

ILLUSTRATION 5.48

1. Determine the number of terms in G.P. '<>,ifa_1=3,a_n=96a n dS_n=189.'

- Watch Video Solution

ILLUSTRATION 5.49

1. if S is the sum , P the product and R the sum of reciprocals of n terms in G. P. prove that $P^{2} R^{n}=S^{n}$

- Watch Video Solution

1. Find the sum to n terms of the sequence $(x+1 / x)^{2},\left(x^{2}+1 / x\right)^{2},\left(x^{3}+1 / x\right)^{2}$,

- Watch Video Solution

ILLUSTRATION 5.51

1. Prove that the sum to n terms of the series $11+103+1005+i s(10 / 9)\left(10^{n}-1\right)+n^{2}$.

- Watch Video Solution

ILLUSTRATION 5.52

1. Find the sum of the following series up to n terms: (i)
$5+55+555+$
$.6+.66+.666+$

ILLUSTRATION 5.53

1. Find the sum $1+(1+2)+\left(1+2+2^{2}\right)+\left(1+2+2^{2}+2^{3}\right)+\ldots$ To n terms.

- Watch Video Solution

ILLUSTRATION 5.54

1. If the sum of the n terms of a G.P. is $\left(3^{n}-1\right)$, then find the sum of the series whose terms are reciprocal of the given G.P..

- Watch Video Solution

1. Prove that in a sequence of numbers $49,4489,444889,44448889$ in which every number is made by inserting 48-48 in the middle of previous as indicated, each number is the square of an integer.

(Watch Video Solution

ILLUSTRATION 5.56

1. If f is a function satisfying $f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$, find the value of n.

- Watch Video Solution

ILLUSTRATION 5.57

1. Using the sum of G.P., prove that $a^{n}+b^{n}(a, b \in N)$ is divisble by a+b for odd natural numbers n. Hence prove that $1^{99}+2^{99}+\ldots . .100^{99}$ is divisble by 10100

(D) Watch Video Solution

ILLUSTRATION 5.58

1. Sum the following geometric series to infinity: $(\sqrt{2}+1)+1+(\sqrt{2}-1)+\infty \frac{1}{2}+\frac{1}{3^{3}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{2^{5}}+\frac{1}{3^{6}}+\infty$

- Watch Video Solution

ILLUSTRATION 5.59

1. The sum of infinite number of terms in G.P. is 20 and the sum of their squares is 100 . Then find the common ratio of G.P.

- Watch Video Solution

1. If each term of an infinite G.P. is twice the sum of the terms following it, then find the common ratio of the G.P.

- Watch Video Solution

ILLUSTRATION 5.61

1.

$x=a+\frac{a}{r}+\frac{a}{r^{2}}+\infty, y=b-\frac{b}{r}+\frac{b}{r^{2}}+\infty, a n d z=c+\frac{c}{r^{2}}+\frac{c}{r^{4}}+\infty$ prove that $\frac{x y}{z}=\frac{a b}{c}$

- Watch Video Solution

ILLUSTRATION 5.62

1. After striking a floor a certain ball rebounds $\left(\frac{4}{5}\right)^{t h}$ of the height from which it has fallen. Find the total distance that it travels before coming to
rest, if it is gently dropped from a height of 120 metres.

- Watch Video Solution

ILLUSTRATION 5.63

1. If an infinite G.P. has $2 n d$ term x and its sum is 4 , then prove that $\xi n(-8,1]-\{0\}$

- Watch Video Solution

ILLUSTRATION 5.64

1. If the 20th term of a H.P. is 1 and the 30th term is $-1 / 17$, then find its largest term.

- Watch Video Solution

1. If $\frac{a-x}{p x}=\frac{a-y}{q y}=\frac{a-z}{r} a n d p, q, a n d r$ are in A.P., then prove that x, y, z are in H.P.

- Watch Video Solution

ILLUSTRATION 5.66

1. If a, b, candd are in H.P., then prove that
$(b+c+d) / a,(c+d+a) / b,(d+a+b) / c$ and $(a+b+c) / d$, are in A.P.

ILLUSTRATION 5.67

1. The mth term of a H.P is n and the nth term is m. Proves that its r th term is $m n / r$.

- Watch Video Solution

ILLUSTRATION 5.68

1. If $a>1, b>1$ and $c>1$ are in G.P., then show that $\frac{1}{1+\log _{e} a}, \frac{1}{1+\log _{e} b}$ and $\frac{1}{1+\log _{e} c}$ are in H.P.

- Watch Video Solution

ILLUSTRATION 5.69

1. If $a, b, a n d c$ be in G.P. and $a+x, b+x$, and $c+x$ in H.P. then find the value of $\mathrm{x}(\mathrm{a}, \mathrm{b}$ and c are distinct numbers).

ILLUSTRATION 5.70

1. If first three terms of the sequence $1 / 16, a, b, \frac{1}{6}$ are in geometric series and last three terms are in harmonic series, then find the values of $a a n d b$.

- Watch Video Solution

ILLUSTRATION 5.71

1. if $(m+1) t h,(n+1) t h$ and $(r+1) t h$ term of an AP are in GP.and m, n and r in HP. . find the ratio of first term of A.P to its common difference

- Watch Video Solution

1. Insert four H.M.s between $3 / 2$ and 13/2.

- Watch Video Solution

ILLUSTRATION 5.73

1. If nine arithmetic means and nine harmonic means are inserted between 2 and 3 alternatively, then prove that $A+6 / H=5$ (where A is any of the A.M.'s and H the corresponding H.M.).

- Watch Video Solution

ILLUSTRATION 5.74

1. Let a, b be positive real numbers. If $a A_{1}, A_{2}, b$ be are in arithmetic progression a, G_{1}, G_{2}, b are in geometric progression, and a, H_{1}, H_{2}, b are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$

ILLUSTRATION 5.75

1. The A.M. and H.M. between two numbers are 27 and 12, respectively, then find their G.M.

- Watch Video Solution

ILLUSTRATION 5.76

1. If the A.M. between two numbers exceeds their G.M. by 2 and the GM.

Exceeds their H.M. by 8/5, find the numbers.

- Watch Video Solution

1. Find the sum
$2017+\frac{1}{4}\left(2016+\frac{1}{4}\left(2015+\ldots+\frac{1}{4}\left(2+\frac{1}{4}(1)\right) ..\right)\right)$

- Watch Video Solution

ILLUSTRATION 5.78

1. The sum of 50 terms of the series $1+2\left(1+\frac{1}{50}\right)+3\left(1+\frac{1}{50}\right)^{2}+$ is given by 2500 b .2550 c .2450 d . none of these

- Watch Video Solution

ILLUSTRATION 5.79

1. Find the sum to ininity of the series $1-3 x+5 x^{2}+7 x^{3}+\ldots . . \infty$ when $|\mathrm{x}|<1$.

ILLUSTRATION 5.80

1. The sum of the infiniter series
$1+\left(1+\frac{1}{5}\right)\left(\frac{1}{2}\right)+\left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)\left(\frac{1}{2^{2}}\right)+\ldots$

- Watch Video Solution

ILLUSTRATION 5.81

1. If the sum to infinity of the series $3+(3+d) \frac{1}{4}+(3+2 d) \frac{1}{4^{2}}+\infty$ is $\frac{44}{9}$, then find ..

- Watch Video Solution

1. Find the sum to infinity of the series $1^{2}+2^{2}+3^{2}+4^{2}+\infty$.

- Watch Video Solution

ILLUSTRATION 5.83

1. Find the sum $2 \times 5+5 \times 9+8 \times 13+11 \times 17+\ldots \mathrm{n}$ terms.

- Watch Video Solution

ILLUSTRATION 5.84

$$
\begin{aligned}
& \text { 1. Find } \begin{array}{c}
\text { the } \\
\text { 1. sum }
\end{array} \text { of } \\
& 1 \times n+2(n-1)+3 \times(n-2)++(n-1) \times 2+n \times 1 .
\end{aligned}
$$

ILLUSTRATION 5.85

1. For and odd integer $n \geq 1, n^{3}-(n-1)^{3}+\ldots . .$.
$+(-1)^{n-1} 1^{3}$

- Watch Video Solution

ILLUSTRATION 5.86

1. Find the sum of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+$ up to n terms.

- Watch Video Solution

ILLUSTRATION 5.87

1. Find the sum of first n terms of the series $1^{3}+3 \times 2^{2}+3^{3}+3 \times 4^{2}+5^{3}+3 \times 6^{2}+$ when n is even n is odd

ILLUSTRATION 5.88

1. If $\Sigma_{r=1}^{n} T_{r}=n\left(2 n^{2}+9 n+13\right)$, then find the sum $\Sigma_{r=1}^{n} \sqrt{T_{r}}$.

- Watch Video Solution

ILLUSTRATION 5.89

1. Find the sum to n terms of the series $3+15+35+63+$

- Watch Video Solution

1. Find the sum of the following series to n terms $5+7+13+31+85+$

- Watch Video Solution

ILLUSTRATION 5.91

1. Find the $\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{k}{2^{n+k}}$.

- Watch Video Solution

ILLUSTRATION 5.92

1. The sum of the products of the ten numbers $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ taking two at a time is:
2. Find the $\sum \sum_{0 \leq i<j \leq n} 1$.

- Watch Video Solution

ILLUSTRATION 5.94

1. Let the terms $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ be in G.P. with common ratio r. Let S_{k} denote the sum of first k terms of this G.P.. Prove that $S_{m-1} \times S_{m}=\frac{r+1}{r}$ SigmaSigma_(ile itj le n)a_(i)a_(j))

- Watch Video Solution

ILLUSTRATION 5.95

1. Find the sum $1+\frac{1}{1+2}+\frac{1}{1+2+3}++\frac{1}{1+2+3++n}$.

ILLUSTRATION 5.96

1. Find the sum of the series:
$\frac{1}{(1 \times 3)}+\frac{1}{(3 \times 5)}+\frac{1}{(5 \times 7)}+\ldots+\frac{1}{(2 n-1)(2 n+1)}$

Watch Video Solution

ILLUSTRATION 5.97

1. Find the sum to n terms of the series $3 /\left(1^{2} \times 2^{2}\right)+5 /\left(2^{2} \times 3^{2}\right)+7 /\left(3^{2} \times 4^{2}\right)+$.
2. Find the sum to n terms of the series:
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+$

- Watch Video Solution

ILLUSTRATION 5.99

1. Find the sum $\Sigma_{r=1}^{n} \frac{r}{(r+1)!}$. Also, find the sum of infinite terms.

- Watch Video Solution

ILLUSTRATION 5.100

1. Find the sum $\Sigma_{r=1}^{n} \frac{1}{r(r+1)(r+2)(r+3)}$

Also,find $\Sigma_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)(r+3)}$

ILLUSTRATION 5.101

1. Find the sum $\sum_{r=1}^{n} r(r+1)(r+2)(r+3)$

- Watch Video Solution

ILLUSTRATION 5.102

1. Find the sum of the series $\sum_{r=11}^{99}\left(\frac{1}{r \sqrt{r+1}+(r+1) \sqrt{r}}\right)$

- Watch Video Solution

ILLUSTRATION 5.103

1. Find the sum of the series
$\frac{1}{3^{2}+1}+\frac{1}{4^{2}+2}+\frac{1}{5^{2}+3}+\frac{1}{6^{2}+4}+\infty$

ILLUSTRATION 5.104

1. Find the sum of firs 100 terms of the series whose general term is given by $T_{r}=\left(r^{2}+1\right) r!$.

- Watch Video Solution

ILLUSTRATION 5.105

1. Find the sum of the series

$$
\frac{2}{1 \times 3}+\frac{5}{2 \times 3} \times 2+\frac{10}{3 \times 4} \times 2^{2}+\frac{17}{4 \times 5} \times 2^{3}+\rightarrow n \text { terms } .
$$

- Watch Video Solution

1. about to only mathematics

- Watch Video Solution

SOLVED EXAMPLES 5.2

1. Prove that $x=\underbrace{1111, \ldots .}$ is composite number. 91times

- Watch Video Solution

SOLVED EXAMPLES 5.3

1. If a,b,c are in G.P. and $\log _{c} a, \log _{b} c, \log _{a} b$ are in A.P., then the common differenec of the A.P. is

SOLVED EXAMPLES 5.4

1. The values of $x y z$ is $\frac{15}{2}$ or $\frac{18}{5}$ according as the series a, x, y, z, b is an $A P$ or $H P$. Find the values of $a \& b$ assuming them to be positive integer.

- Watch Video Solution

SOLVED EXAMPLES 5.5

1. Let $\mathrm{p}(>0)$ be the first of the n arthimatic means betweens between two numbers and $\mathrm{q}(>0)$ the first of n harmonic means between the same numbers. Then prove that
$q \notin\left(p,\left(\frac{n+1}{n-1}\right)^{2} p\right)$ and $p \notin\left(\left(\frac{n-1}{n+1}\right)^{2} q, q\right)$

- Watch Video Solution

1. If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}(n \in N)$, then prove that $S_{1}+S_{2}+\ldots+S_{(n-1)}=(n S((n))-n)$ or $(n S((n-1))-n+1)$

- Watch Video Solution

SOLVED EXAMPLES 5.7

$$
\begin{gathered}
\text { 1. The value } \\
\text { 1. of } \\
\text { 1. }(2-\omega) \cdot\left(2-\omega^{2}\right)+2 \cdot(3-\omega)\left(3-\omega^{2}\right)+.+(n-1)(n-\omega)\left(n-\omega^{2}\right),
\end{gathered}
$$

where omega is an imaginary cube root of unity, is.........

- Watch Video Solution

SOLVED EXAMPLES 5.8

1. Find the value of $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{3^{i} 3^{j} 3^{k}}$.

$$
(\in e j \neq k)
$$

SOLVED EXAMPLES 5.9

1. Find the sum $\sum_{j=1}^{10} \sum_{i=1}^{10} i \times 2^{j}$

- Watch Video Solution

SOLVED EXAMPLES 5.10

1. Coefficient of x^{18} in $\left(1+x+2 x^{2}+3 x^{3}++18 x^{18}\right)^{2}$ equal to 995 b .

1005 c .1235 d . none of these

- Watch Video Solution

1. Let $a_{1}, a_{2}, \ldots \ldots \ldots a_{n}$ be real numbers such that $\sqrt{a_{1}}+\sqrt{a_{2}-1}+\sqrt{a_{3}-2}++\sqrt{a_{n}-(n-1)}=\frac{1}{2}\left(a_{1}+a_{2}+\ldots \ldots . .+\right.$ then find the value of $\sum_{i=1}^{100} a_{i}$

- Watch Video Solution

SOLVED EXAMPLES 5.12

1. A sequence of numbers $A_{n}, n=1,2,3$ is defined as follows : $A_{1}=\frac{1}{2}$ and for each $n \geq 2, \quad A_{n}=\left(\frac{2 n-3}{2 n}\right) A_{n-1}$, then prove that $\sum_{k=1}^{n} A_{k}<1, n \geq 1$

- Watch Video Solution

1. If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is continous such that $\mathrm{f}(\mathrm{x})-f\left(\frac{x}{2}\right)=\frac{4 x^{2}}{3}$ for all $\xi n R$ and $\mathrm{f}(0)=0$, find the value of $f\left(\frac{3}{2}\right)$.

- Watch Video Solution

SOLVED EXAMPLES 5.14

1. Find the value of

$$
\Sigma_{r=1}^{n} \frac{1}{r}
$$

$$
\overline{\sum_{r=1}^{n} \frac{k}{(2 n-2 k+1)(2 n-k+1)} .}
$$

- Watch Video Solution

SOLVED EXAMPLES 5.15

1. Find the sum $\sum_{n=1}^{\infty} \frac{6^{n}}{\left(3^{n}-2^{n}\right)\left(3^{n+1}-2^{n+1}\right)}$

CONCEPT APPLICATION EXERICISE 5.1

1. Write the first five terms of the following sequence amd obtain the corresponding series.
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$

- Watch Video Solution

2. If $a_{n+1}=\frac{1}{1-a_{n}}$ for $n \geq 1$ and $a_{3}=a_{1}$. then find the value of $\left(a_{2001}\right)^{2001}$.

- Watch Video Solution

3. Let $\left\{a_{n}\right\}(n \geq 1)$ be a sequence such that $a_{1}=1, a n d 3 a_{n+1}-3 a_{n}=1 f$ or $a l \ln \geq 1$. Then find the value of a_{2002}.
4. If the pth term of an A.P. is q and the qth term isp, then find its rth term.

- Watch Video Solution

2. If x is a positive real number different from 1 , then prove that the numbers $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}, \ldots$ are in A.P. Also find their common difference.

- Watch Video Solution

3. एक समांतर श्रेणी के प्रथम चार पदों का योगफल 56 है | अंतिम चार पदों का योगफल 112 है | यदि इसका प्रथम पद 11 है, तो पदों की संख्या ज्ञात किजिए |

- View Text Solution

4. The fourth power of the common difference of an arithmetic progression with integer entries is added to the product of any four consecutive of it. Prove that the resulting sum is the squares of an integer.

- Watch Video Solution

5. Divide 28 into four parts in an A.P. so that the ratio of the product of first and third with the product of second and fourth is 8:15.

- Watch Video Solution

6. If $(b-c)^{2},(c-a)^{2},(a-b)^{2}$ are in A.P. prove that $\frac{1}{b-c}, \frac{1}{c-a}, \frac{1}{a-b}$, are in A.P.

- Watch Video Solution

7. Find the number of common terms to the two sequences $17,21,25, \ldots, 417$ and $16,21,26, . . ., 466$.

- Watch Video Solution

8. If a, b, c, d are distinct integers in an A.P. such that $d=a^{2}+b^{2}+c^{2}$, then find the value of $a+b+c+$.

- Watch Video Solution

9. यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$, a तथा b के मध्य समांतर माध्य हो तो n का मान ज्ञात कीजिए।

- View Text Solution

10. n arlithmetic means are inserted between $x a n d 2 y$ and then between
$2 x a n d y$. If the rth means in each case be equal, then find the ratio x / y.

CONCEPT APPLICATION EXERICISE 5.3

1. If $S_{n}=n P+\frac{n(n-1)}{2} Q$, where S_{n} denotes the sum of the first n terms of an A.P., then find the common difference.

- Watch Video Solution

2.

Solve
the
equation
$(x+1)+(x+4)+(x+7)++(x+28)=155$.

- Watch Video Solution

3. If the sum of the first ten terms of an A. P is four times the sum of its first five terms, the ratio of the first term to the common difference is:

- Watch Video Solution

4. If the sum of $n, 2 n, 3 n$ terms of an AP are S_{1}, S_{2}, S_{3} respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$

- Watch Video Solution

5. Let S_{n} denote the sum of first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then find the ratio $S_{3 n} / S_{n}$.

- Watch Video Solution

6. The ratio of the sum of $m a n d n$ terms of an A.P. is $m^{2}: n^{2}$. Show that the ratio of the m th and nth terms is $(2 m-1):(2 n-1)$.

- Watch Video Solution

7. Find the sum to n terms of the series $1^{2}+2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\ldots$.
8. The interior angles of a polygon are in arithmetic progression. The smallest angle is 120° and the common difference is 5° Find the number of sides of the polygon

- Watch Video Solution

9. 150 workers were engaged to finish a piece of work in a certain number of days. Four workers dropped the second day, four more workers dropped the third day and so on. It takes 8 more days to finish the work now. Find the number of days in which the work was completed.

- Watch Video Solution

1. The first and second term of a G.P. are x^{-4} and x^{n} respectively. If x^{52} is the $8^{\text {th }}$ term, then find the value of n.

- Watch Video Solution

2. If a, b, and c are respectively, the pth, qth, and rth terms of a G.P., show that $(q-r) \log a+(r-p) \log b+(p-q) \log c=0$.

- Watch Video Solution

3. If p, q, andr are inA.P., show that the pth, qth, and rth terms of any G.P. are in G.P.

- Watch Video Solution

4. यदि a, b, c, d गुणोत्तर श्रेणी में है, तो सिद्ध किजिए कि $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ गुणोत्तर श्रेणी में है ।
5. Let T_{r} denote the rth term of a G.P. for $r=1,2,3$, If for some positive integers mandn, we have $T_{m}=1 / n^{2}$ and $T_{n}=1 / m^{2}$, then find the value of $T_{m+n / 2}$.

- Watch Video Solution

6. If a, b, c, d are in G.P., show that:
$(a b+b c+c d)^{2}=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$

- Watch Video Solution

7. The sum of three numbers in GP. Is 56 . If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

- Watch Video Solution

8. If $x, y, a n d z$ are pth, qth, and rth terms, respectively, of an A.P. nd also of a G.P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to $x y z \mathrm{~b} .0 \mathrm{c} .1 \mathrm{~d}$. none of these

Watch Video Solution

9. The product of the three numbers in G.P. is 125 and sum of their product taken in pairs is $\frac{175}{2}$. Find them.

- Watch Video Solution

10. Find the product o three geometric means between 4 and $1 / 4$.

- Watch Video Solution

11. Find two numbers whose arithmetic mean is 34 and the geometric mean is 16 .
12. If the arithmetic means of two positive number a and $\mathrm{b}(a>b)$ is twice their geometric mean, then find the ratio $a: b$

- Watch Video Solution

13. Let $a_{1}, a_{2}, a_{3} \ldots$ and $b_{1}, b_{2}, b_{3} \ldots$ be two geometric progressions with $a_{1}=2 \sqrt{3}$ and $b_{1}=\frac{52}{9} \sqrt{3}$ If $3 a_{99} b_{99}=104$ then find the value of $a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}$

- Watch Video Solution

CONCEPT APPLICATION EXERICISE 5.5

1. किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात किजिए।
2. If the sum of n terms of a G.P. is $3 \frac{3^{n+1}}{4^{2 n}}$, then find the common ratio.

(Watch Video Solution

3. $(666 \ldots . .6)^{2}+(888 \ldots . \ldots)$ is equal to

$$
\text { n-digits } \quad \text { n-digits }
$$

- Watch Video Solution

4. Find the sum of n terms of series
$(x+y)+\left(x^{2}+x y+y^{2}\right)+\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+\ldots \ldots \ldots \ldots \ldots \ldots$

- Watch Video Solution

5. Find the sum of n terms of the series $4 / 3+10 / 9+28 / 27+\ldots$

- Watch Video Solution

6. If $p(x)=\left(1+x^{2}+x^{4}++x^{2 n-2}\right) /\left(1+x+x^{2}++x^{n-1}\right)$ is a polomial in x, then find possible value of n.

Watch Video Solution

7.

Let
$A_{n}=\left(\frac{3}{4}\right)-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n}$ and $B_{n}=1-$ n_0, so that B_ngtA_n Aangen_0`

- Watch Video Solution

8. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1$ is s, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

- Watch Video Solution

9. Prove that $6^{1 / 2} \times 6^{1 / 4} \times 6^{1 / 8} \infty=6$.

(D) Watch Video Solution

10. The sum to n terms of series
$1+\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)+\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}\right)+$ is

- Watch Video Solution

CONCEPT APPLICATION EXERICISE 5.6

1. The 8 th and 14 th term of a H.P. are $1 / 2$ and $1 / 3$, respectively. Find its 20 th term. Also, find its general term.

- Watch Video Solution

2. If the first two terms of a H.P. are $2 / 5$ and $12 / 23$ respectively. Then, largest term is
3. If a, b, c are in G.P. and $a-b, c-a, a n d b-c$ are in H.P., then prove that $a+4 b+c$ is equal to 0 .

D Watch Video Solution

4. If x, y and z are in A.P ax,by and $c z$ in G.P and a, b, c in H.P then prove that
$\frac{x}{z}+\frac{z}{x}=\frac{a}{c}+\frac{c}{a}$

D Watch Video Solution

5. If a,b,c and the d are in H.P then find the vlaue of $\frac{a^{-2}-d^{-2}}{b^{-2}-c^{-2}}$

D Watch Video Solution

6. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, wherera, $b, a n d c$ are in A.P. and $|a|<,|b|<1, a n d|c|<1$, then prove that $x, y a n d z$ are in H.P.
7. If $x, 1, a n d z$ are in A.P. and $x, 2, a n d z$ are in G.P., then prove that $x, a n d 4, z$ are in H.P.

- Watch Video Solution

8. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3}, g_{2 n}, b$. are in G.P. and $h \quad \mathrm{~s}$ the H.M. of aandb, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$

- Watch Video Solution

9. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equl to the sum of the squares of their reciprocals, then prove that $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in H.P.

- Watch Video Solution

10. The A.M. of two given positive numbers is 2 . If the larger number is increased by 1, the G.M. of the numbers becomes equal to the A.M. of the given numbers. Then find the H.M.

- Watch Video Solution

11. The harmonic mean between two numbers is $21 / 5$, their A.M. ' A ' and G.M. ' G ' satisfy the relation $3 A+G^{2}=36$. Then find the sum of square of numbers.

- Watch Video Solution

CONCEPT APPLICATION EXERICISE 5.7

1. If $\alpha(\neq 1)$ is a nth root of unity then $S=1+3 \alpha+5 \alpha^{2}+\ldots \ldots \ldots$. upto n terms is equal to
2. Find the sum of n terms of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+10+5^{3}+$.

- Watch Video Solution

3. Find the sum $\frac{3}{2}-\frac{5}{6}+\frac{7}{18}-\frac{9}{54}+\infty$.

- Watch Video Solution

4. Find the $\operatorname{sum} \frac{1^{2}}{2}+\frac{3^{2}}{2^{2}}+\frac{5^{2}}{2^{3}}+\frac{7^{2}}{2^{4}}+\ldots . \infty$

- Watch Video Solution

CONCEPT APPLICATION EXERICISE 5.8

1. Find the sum to n terms of the series : $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+:$
2. Find the sum of the series $1^{2}+3^{2}+5^{2}+\rightarrow n$ terms.
A. $\frac{n(2 n-1)(2 n+1)}{3}$
B. $\frac{n(2 n+1)(2 n+1)}{3}$
C. $\frac{n(2 n-1)(2 n-1)}{3}$
D. $\frac{n(2 n+1)(2 n-1)}{3}$

Answer: A

- Watch Video Solution

3. Find the sum of the series $31^{3}+32^{3}++50^{3}$.

- Watch Video Solution

4. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+$ up to 22 nd term.

Watch Video Solution

5. The sum of the first n terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+\ldots$. is $\frac{n(n+1)^{2}}{2}$ when n is even. Then the sum if n is odd, is

Watch Video Solution

6. Find the sum $11^{2}-1^{2}+12^{2}-2^{2}+13^{2}-3^{2}+\ldots \ldots+20^{2}-10^{2}$

- Watch Video Solution

7. Find the sum $3+7+14+24+37+\ldots . .20$ terms

- Watch Video Solution

8. Find the sum $\Sigma_{j=1}^{n} \Sigma_{i=1}^{n} I \times 3^{j}$
9. If $S_{n}{ }^{\prime}$ the \sum offirstntermsofanAPisgivenby $2 \mathrm{n}^{\wedge} 2+\mathrm{n}^{\wedge}$, then find its nth term

- Watch Video Solution

10. Find the value of $\begin{gathered}\Sigma \Sigma \\ 1 \leq i \leq j\end{gathered} i \times\left(\frac{1}{2}\right)^{j}$

- Watch Video Solution

CONCEPT APPLICATION EXERICISE 5.9

1. Find the sum of infinite series
$\frac{1}{1 \times 3 \times 5}+\frac{1}{3 \times 5 \times 7}+\frac{1}{5 \times 7 \times 9}+\ldots$.

- Watch Video Solution

2. If $\Sigma_{r=1}^{n} T_{r}=\frac{n}{8}(n+1)(n+2)(n+3)$ then find $\Sigma_{r=1}^{n} \frac{1}{T_{r}}$

- Watch Video Solution

3. Find the sum $\Sigma_{n=1}^{\infty} \frac{3 n^{2}+1}{\left(n^{2}-1\right)^{3}}$

- Watch Video Solution

4. Find the sum $\Sigma_{r=1}^{\infty} \frac{r}{r^{4}+\frac{1}{4}}$
5. Find the sum

$$
\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\ldots+\frac{1000}{998!+999!+1000!}
$$

Watch Video Solution
6.
$S=\frac{\sqrt{1}}{1+\sqrt{1}+\sqrt{2}}+\frac{\sqrt{2}}{1+\sqrt{2}+\sqrt{3}}+\frac{\sqrt{3}}{1+\sqrt{3}+\sqrt{4}}+\ldots+\frac{\sqrt{1}}{1+\sqrt{n}+}$
Then find the value of n.

- Watch Video Solution

7. Find the sum $\frac{1 \times 2}{3!}+\frac{2 \times(2)^{2}}{4!}+\frac{3 \times(2)^{3}}{5!}+\ldots+\frac{20 \times(2)^{20}}{22!}$

- Watch Video Solution

8. Find the sum $\Sigma_{r=1}^{\infty} \frac{r-2}{(r+2)(r+3)(r+4)}$

- Watch Video Solution

9. Find the sum of the series ${ }^{`} 1+2(1-x)+3(1-x)(1-2 x)+\ldots .+n(1-x)(1-2 x)(1-3 x)$. [$1-(\mathrm{n}-1) \mathrm{x}]$.

EXERCIESE (SINGLE CORRECT ANSWER TYPE)

1. If a, b, c are in A.P., then $a^{3}+c^{3}-8 b^{3}$ is equal to
A. 2 abc
B. 3abc
C. 4 abc
D. $-6 a b c$

Answer: D

Watch Video Solution

2. If three positive real numbers a, b, c are in A.P such that $a b c=4$, then the minimum value of b is a) $2^{1 / 3}$ b) $2^{2 / 3}$ c) $2^{1 / 2}$ d) $2^{3 / 23}$
A. $2^{1 / 3}$
B. $2^{2 / 3}$
C. $2^{1 / 2}$
D. $2^{3 / 2}$

Answer: B

- Watch Video Solution

3. If $\log _{2}\left(5.2^{x}+1\right), \log _{4}\left(2^{1-x}+1\right)$ and 1 are in A.P,then x equals
A. $\log _{2} 5$
B. $1-\log _{5} 2$
C. $\log _{5} 2$
D. $1-\log _{2} 5$

Answer: D

4. The largest term common to the sequences $1,11,21,31, \rightarrow 100$ terms and $31,36,41,46, \rightarrow 100$ terms is 381 b. 471 c. 281 d. none of these
A. 381
B. 471
C. 281
D. 521

Answer: D

Watch Video Solution

5. In any A.P. if sum of first six terms is 5 times the sum of next six terms then which term is zero?
A. 10 th
B. 11 th
C. 12 th
D. 13 th

Answer: B

- Watch Video Solution

6. If the sides of a right angled triangle are in A.P then the sines of the acute angles are
A. $\frac{3}{5}, \frac{4}{5}$
B. $\frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}$
C. $\frac{1}{2}, \frac{\sqrt{3}}{2}$
D. none of these

Answer: A

- Watch Video Solution

7. If $a, \frac{1}{b}$, and $\frac{1}{p}, q, \frac{1}{r}$ from two arithmetic progressions of the common difference, then a, q, c are in A.P. if p, b, r are in A.P. b. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are in A.P. c. p, b, r are in G.P. d. none of these
A. p,b,r are in A.P
B. $\frac{1}{p}, \frac{1}{b}, \frac{1}{r}$ are $\in A . P$
C. p,b,r are in G.P
D. none of these

Answer: B

- Watch Video Solution

8. Suppose that $F(n+1)=\frac{2 f(n)+1}{2}$ for $\mathrm{n}=1,2,3, \ldots .$. and $\mathrm{f}(1)=2$ Then $F(101)$ equals $=$?
A. 50
B. 52
C. 54
D. none of these

Answer: B

- Watch Video Solution

9. Consider an A.P. $a_{1}, a_{2}, a_{3}, \ldots$. such that $a_{3}+a_{5}+a_{8}=11$ and $a_{4}+a_{2}=-2$ then the value of $a_{1}+a_{6}+a_{7}$ is.....
A. -8
B. 5
C. 7
D. 9

Answer: C
10. If $a_{1}, a_{2}, a_{3}, \ldots$ are in A.P., then a_{p}, a_{q}, a_{r} are in A.P. if $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: A

- Watch Video Solution

11. Let $\alpha, \beta \in R$. If α, β^{2} are the roots of quadratic equation $x^{2}-p x+1=0 a n d \alpha^{2}, \beta$ is the roots of quadratic equation $x^{2}-q x+8=0$, then the value of r if $\frac{r}{8}$ is the arithmetic mean of $p a n d q$, is
A. $\frac{83}{2}$
B. 83
C. $\frac{83}{8}$
D. $\frac{83}{4}$

Answer: B

- Watch Video Solution

12. If the sum of m terms of an A.P. is same as the sum of its n terms, then the sum of its $(m+n)$ terms is
A. $m n$
B. $-m n$
C. $1 / m n$
D. 0

Answer: D

13. If S_{n}, denotes the sum of n terms of an $A . P$., then
$S_{n+3}-3 S_{n+2}+3 S_{n+1}-S_{n}=$
A. $2 s_{n}$
B. S_{n+1}
C. $3 S_{n}$
D. 0

Answer: D

- Watch Video Solution

14. The first term of an A.P. is a and the sum of first p terms is zero, show that the sum of its next q terms is $\frac{-a(p+q) q}{p-1}$.
A. $\frac{-a(p+q) p}{q+1}$
B. $\frac{a(q+q) p}{P+1}$
C. $\frac{-a(p+q) q}{p-1}$
D. none of these

Answer: C

- Watch Video Solution

15. If S_{n} denotes the sum of first n terms of an A.P. and $\frac{S_{3 n}-S_{n-1}}{S_{2 n}-S_{2 n-1}}=31$, then the value of n is 21 b. 15 c. 16 d .19
A. 21
B. 15
C. 16
D. 19

Answer: B

16. The number of terms of an A.P. is even, the sum of odd terms is 24 , of the even terms is 3 , and the last term exceeds the first by $101 / 2$ find the number of terms and the series.
A. 8
B. 4
C. 6
D. 10

Answer: A

- Watch Video Solution

17. The number of terms of an A.P is even : the sum of the odd terms is 24 , and of the even terms is 30 , and the last term exceeds the first by $10 / 2$, then the number of terms in the series is
A. 8
B. 4
C. 6
D. 10

Answer: D

- Watch Video Solution

18. Concentric circles of radii $1,2,3, \ldots, 100 \mathrm{~cm}$ are drawn. The interior of the smallest circle is colored red and the angular regions are colored alternately green and red, so that no two adjacent regions are of the same color. Then, the total area of the green regions in sq. cm is equal to 1000π b. 5050π c. 4950π d. 5151π
А. 1000π
B. 5050π
C. 4950π
D. 5151π

Answer: B

- Watch Video Solution

19. If $a_{1}, a_{2}, a_{3} \ldots a_{2 n+1}$ are in A.P then
$\frac{a_{2 n+1}-a_{1}}{a_{2 n+1}+a_{1}}+\frac{a_{2} n-a_{2}}{a_{2 n}+a_{2}}+\ldots+\frac{a_{n+2}-a_{n}}{a_{n+2}+a_{n}}$ is equal to
A. $\frac{n(n+1)}{2} \times \frac{a_{2}-a_{1}}{a_{n+1}}$
B. $\frac{n(n+1)}{2}$
C. $(n+1)\left(a_{2}-a_{1}\right)$
D. none of these

Answer: A

- Watch Video Solution

20. If $a_{1}, a_{2}, \ldots ., a_{n}$ are in A.P. with common difference $d \neq 0$, then the sum of the series $\sin d\left[\sec a_{1} \sec a_{2}+\ldots . \sec a_{n-1} \sec a_{n}\right]$ is
A. $\cos e c a_{n}-\cos e c a$
B. $\cot a_{n}-\cot a$
C. $\sec a_{n}-\sec a_{1}$
D. $\tan a_{n}-\tan a_{1}$

Answer: D

- Watch Video Solution

21. ABC is a right-angled triangle in which $\angle B=90^{\circ}$ and $B C=a$. If n points $L_{1}, L_{2}, \ldots, L_{n}$ on AB is divided in $\mathrm{n}+1$ equal parts and $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ are line segments parallel to BC and $M_{1}, M_{2}, \ldots, M_{n}$ are on AC , then the sum of the lengths of $L_{1} M_{1}, L_{2} M_{2}, \ldots, L_{n} M_{n}$ is
A. $\frac{a(n+1)}{2}$
B. $\frac{a(n-1)}{2}$
C. $\frac{a n}{2}$
D. none of these

Answer: C

- Watch Video Solution

22. If a, b, c, d are in G.P, then $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}$ is equal to `
A. $(a-d)^{2}$
B. $(a d)^{2}$
C. $(a+d)^{2}$
D. $(a / d)^{2}$

Answer: A

- Watch Video Solution

23. Let $\left\{t_{n}\right\}$ be a sequence of integers in G.P. in which $t_{4}: t_{6}=1: 4$ and $t_{2}+t_{5}=216$. Then t_{1} is (a). 12 (b). 14 (c). 16 (d). none of these
A. 12
B. 14
C. 16
D. none of these

Answer: A

- Watch Video Solution

24. if $x, 2 y$ and $3 z$ are in AP where the distinct numbers x, yand z are in $g p$. Then the common ratio of the GP is
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

25. If a, b, and c are in A.P and $b-a, c-b$ and a are in G.P then $a: b: c$ is
A. $1: 2: 3$
B. 1:3:5
C. 2:3:4
D. 1:2:4

Answer: A

D Watch Video Solution
26. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\circ} 0$
A. $0<r<\sqrt{2}$
B. $1<r<\sqrt{2}$
C. $1<r<2$
D. none of these

Answer: B

- Watch Video Solution

27. If x, y, z are in G.P. and $a^{x}=b^{y}=c^{z}$, then $(\log)_{b} a=(\log)_{a} c$ b. $(\log){ }_{c} b=(\log)_{a} c c \cdot(\log)_{b} a=(\log)_{c} b$ d. none of these
A. $\log _{b} a=\log _{a} c$
B. $\log _{c} b=\log _{a} c$
C. $\log _{b} a=\log _{b}$
D. none of these

Answer: C

- Watch Video Solution

28. The number of terms common between the series $1+2+4+8 . \ldots$. to

100 terms and $1+4+7+10+\ldots$ to 100 terms is
A. 6
B. 4
C. 5
D. none of these

Answer: C

- Watch Video Solution

29. If $a^{2}+b^{2}, a b+b c, a n d b^{2}+c^{2}$ are in G.P., then a, b, c are in a. A.P. b.
G.P. c. H.P. d. none of these
A. A.P.
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

30. In a G.P. the first, third, and fifth terms may be considered as the first, fourth, and sixteenth terms of an A.P. Then the fourth term of the A.P., knowing that its first term is 5 , is 10 b .12 c .16 d .20
A. 10
B. 12
C. 16
D. 20

Answer: D

- Watch Video Solution

31. If the pth, qth and rth terms of an AP are in G.P then the common ration of the GP is
A. $p \frac{r}{q^{2}}$
B. $\frac{r}{p}$
C. $\frac{q+r}{p+q}$
D. $\frac{q-r}{p-q}$

Answer: D

32. If pth, qth, rth and sth terms of an AP are in GP then show that ($p-q$), $(q-r),(r-s)$ are also in GP
A. A.P
B. G.P
C. H.P
D. none of these

Answer: B

- Watch Video Solution

33. If $a, b, a n d c$ are in G.P. and x, y, respectively, are the arithmetic means between a, b, andb, c, then the value of $\frac{a}{x}+\frac{c}{y}$ is $1 \mathrm{~b} .2 \mathrm{c} .1 / 2 \mathrm{~d}$. none of these
A. 1
B. 2
C. $1 / 2$
D. none of these

Answer: B

- Watch Video Solution

34. If $a, b a n d c$ are in A.P., and pandp' are respectively, A.M. and G.M. between aandbwhileq, q^{\prime} are, respectively, the A.M. and G.M. between bandc, then $p^{2}+q^{2}=p^{\prime 2}+q^{\prime 2}$ b. $p q=p^{\prime} q^{\prime}$ c. $p^{2}-q^{2}=p^{\prime 2}-q^{\prime 2} \mathrm{~d}$. none of these
A. $p^{2}+q^{2}=P^{\prime 2}+q^{2}$
B. $p q=p^{\prime} q^{\prime}$
C. $p^{2}-q^{2}=p^{2}-q^{\prime 2}$
D. none of these

Answer: C

35. If $(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right) \ldots\left(1+x^{128}\right)=\Sigma_{r=0}^{n} x^{r}$, then n is equal is
A. 256
B. 255
C. 254
D. none of these

Answer: B

- Watch Video Solution

36. If $(1-p)\left(1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}\right)=1-p^{6}, p \neq 1$, then the value of $\frac{p}{x}$ is
a. $\frac{1}{3}$ b. 3 c. $\frac{1}{2}$ d. 2
A. $\frac{1}{3}$
B. 3
C. $\frac{1}{2}$
D. 2

Answer: B

- Watch Video Solution

37. Consider the ten numbers $a r, a r^{2}, a r^{3}, a r^{10}$. If their sum is 18 and the sum of their reciprocals is 6 , then the product of these ten numbers is 81 b .243 c .343 d .324
A. 81
B. 243
C. 343
D. 324
38. If x, y, and z are distinct prime numbers, then (a). x, y, and z may be in A.P. but not in G.P. (b) x, y, andz may be in G.P. but not in A.P. (c). $x, y, a n d z$ can neither be in A.P. nor in G.P. (d).none of these
A. x, y and z may be in A.P but not in G.P
B. x, y and z may be in G.P but not in A.P
C. x, y and z can neither be in
D. none of these

Answer: A

- Watch Video Solution

39.

$a=\underbrace{111 \ldots \ldots .1}_{55 \text { times }}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+$. then prove that $a=b c$
A. $a+b+c$
B. $a=b c$
C. $b=a c$
D. $c=a b$

Answer: B

- Watch Video Solution

40. Let a_{n} be the nth therm of a G.P of positive numbers .Let $\Sigma_{n=1}^{100} a_{2 n}=\alpha$ and $\Sigma_{n=1}^{100} a_{a n-1}=\beta$ then the common ratio is
A. α / β
B. β / α
C. $\sqrt{\alpha / \beta}$
D. $\sqrt{\beta / \alpha}$
41. The sum of 20 terms of a series of which every even term is 2 times the term before it, every odd term is 3 times the term before it, the first term being unity is a. $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$ b. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$ c. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$ d. none of these
A. $\left(\frac{2}{7}\right)\left(6^{10}-1\right)$
B. $\left(\frac{3}{7}\right)\left(6^{10}-1\right)$
C. $\left(\frac{3}{5}\right)\left(6^{10}-1\right)$
D. none of these

Answer: C

- Watch Video Solution

42. Let

$$
a \in(0,1)
$$

satisfies
the
equation
$a^{2008}-2 a+1=0$ values $(s) \rightarrow S$ is 2010 b. 2009 c. 2008 d. 2
A. 2010
B. 2009
C. 2008
D. 2

Answer: A

- Watch Video Solution

43. In a geometric series, the first term is a and common ratio is r. If S_{n} denotes the sum of the terms and $U_{n}=\sum_{n=1}^{n} S_{n}$, then $r S_{n}+(1-r) U_{n}$ equals
(a)0 b. n c. $n a$ d. $n a r$
A. 0
B. n
C. na
D. nar

- Watch Video Solution

44. Let $S \subset(0, \pi)$ denote the set of values of x satisfying the equation $8^{1}+|\cos x|+\cos ^{2} x+\mid \cos ^{3 x \mid \rightarrow \infty}=4^{3} . \quad$ Then, $S=\{\pi / 3\} \quad$ b.
$\{\pi / 3,2 \pi / 3\}$ c. $\{-\pi / 3,2 \pi / 3\}$ d. $\{\pi / 3,2 \pi / 3\}$
A. $\{\pi / 3\}$
B. $\{\pi / 6,5 \pi / 6\}$
C. $\{\pi / 3,5 \pi / 6\}$
D. $\{\pi / 3,2 \pi / 3\}$

Answer: D

45. If $||a|<1$ and $| b \mid<1$ then the sum of the series $1+(1+a) b+\left(1+a+a^{2}\right) b^{2}+\left(1+a+a^{2}+a^{3}\right) b^{3}+\ldots . . i s$
A. $\frac{1}{(1-a)(1-b)}$
B. $\frac{1}{(1-a)(1-a b)}$
C. $\frac{1}{(1-b)(1-a b)}$
D. $\frac{1}{(1-a)(1-b)(1-a b)}$

Answer: C

- Watch Video Solution

46. The value of $0.2^{\log \sqrt{5} \frac{1}{4}+\frac{1}{8}+\frac{1}{16}+}$ is $4 \mathrm{~b} \cdot \log 4 \mathrm{c} \cdot \log 2 \mathrm{~d}$. none of these
A. 4
B. $\log 4$
C. $\log 2$
D. none of these

D Watch Video Solution

47. If $\quad x=9^{\frac{1}{3}} 9^{\frac{1}{9}} 9^{\frac{1}{27}} \ldots \rightarrow \infty \quad, \quad y=4^{\frac{1}{3}} 4^{-\frac{1}{9}} 4^{\frac{1}{27}} \ldots \rightarrow \infty \quad$ and $z=\sum_{r=1}^{\infty}(1+i)^{-r}$ then , the argument of the complex number $w=x+y z$ is
A. 0
B. $\pi-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
C. $-\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)$
D. $-\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)$

Answer: C

- Watch Video Solution

48. The value of x that satisfies the relation
$x=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\ldots . \infty$ is
A. $2 \cos 36^{\circ}$
B. $2 \cos 144^{\circ}$
C. $2 \sin 18^{\circ}$
D. $2 \cos 18^{\circ}$

Answer: C

- Watch Video Solution

49. If S dentes the sum to infinity and S_{n} the sum of n terms of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .$. , such that $S-S_{n}<\frac{1}{1000}$ then the least value of n is
A. 8
B. 9
C. 10
D. 11

Answer: D

D Watch Video Solution

50. The first term of an infinite geometric series is 21 . The second term and the sum of the series are both positive integers. Then which of the following is not the possible value of the second term a. 12 b .14 c .18 d . none of these
A. 12
B. 14
C. 18
D. none of these

Answer: D

51. The sum of an infinite G.P. is 57 and the sum of their cubes is 9457 , find the G.P.
A. $1 / 3$
B. $2 / 3$
C. $1 / 6$
D. none of these

Answer: B

- Watch Video Solution

52. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\rightarrow \infty$ and s_{p} the sum of the series $1-r^{2 p} r^{3 p}+\rightarrow \infty,|r|<1$, then $S_{p}+s_{p}$ in term of $S_{2 p}$ is $2 S_{2 p}$ b. 0 c. $\frac{1}{2} S_{2 p}$ d. $-\frac{1}{2} S_{2 p}$
A. $2 S_{2 p}$
B. 0
C. $\frac{1}{2} S_{2 p}$
D. $-\frac{1}{2} S_{2 p}$

Answer: A

D Watch Video Solution

53. If the sum to infinity of the series $1+2 r+3 r^{2}+4 r^{3}+$ is $9 / 4$, then value of r is $1 / 2 \mathrm{~b} .1 / 3 \mathrm{c} .1 / 4 \mathrm{~d}$. none of these
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. none of these

Answer: B

54. Find the sum of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots$
A. $7 / 16$
B. $5 / 16$
C. $105 / 64$
D. $35 / 16$

Answer: D

- Watch Video Solution

55. The sum of $0.2+0.004+0.00006+0.0000008+\ldots$ to ∞ is
A. $\frac{200}{891}$
B. $\frac{2000}{9801}$
C. $\frac{1000}{9801}$
D. $\frac{2180}{9801}$

Answer: D

- Watch Video Solution

56. The positive integer n for which
$2 \times 2^{2} \times+3 \times 2^{3}+4 \times 2^{4}++n \times 2^{n}=2^{n+10}$ is 510 b. 511 c. 512 d.
A. 510
B. 511
C. 512
D. 513

Answer: D

Watch Video Solution
57. If ω is a complex nth root of unity, then $\underset{r=1}{\operatorname{ar}+b \omega^{r-1}}$ is equal to
A. $(n(n+1)) a \frac{)}{a}$
B. $\frac{n b}{1-n}$
C. $\frac{n a}{\omega-1}$
D. none of these

Answer: C

- Watch Video Solution

58. about to only mathematics
A. $\frac{1}{2} a(a-1)^{2}$
B. $\frac{1}{2}(a-1)(2 a-1)(4 a-1)$
C. $\frac{1}{2} a(a-1)^{2}$
D. none of these

Answer: C

59. The 15 th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots$ is
A. $\frac{10}{39}$
B. $\frac{10}{21}$
C. $\frac{10}{23}$
D. none of these

Answer: A

- Watch Video Solution

60.

If
a_{1}, a_{2}, a_{n}
are
in
H.P.,
then
$\frac{a_{1}}{a_{2}+a_{3}++a_{n}}, \frac{a_{2}}{a_{1}+a_{3}++a_{n}}, \frac{a_{n}}{a_{1}+a_{2}++a_{n-1}}$ are in a. A.P b.
G.P. c. H.P. d. none of these
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

61. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in H.P. and $f(k)=\left(\sum_{r=1}^{n} a_{r}\right)-a_{k}$, then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)}, \frac{a_{n}}{f(n)}$, are in a. A.P b. G.P. c. H.P. d. none of these
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

62. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q$, andcr are in G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$
A. A.P
B. G.P
C. G.P
D. none of these

Answer: D

- Watch Video Solution

63. If $a, b, a n d c$ are in A.P. $p, q, a n d r$ are in H.P., and $a p, b q, a n d c r$ are in
G.P., then $\frac{p}{r}+\frac{r}{p}$ is equal to $\frac{a}{c}-\frac{c}{a}$ b. $\frac{a}{c}+\frac{c}{a}$ c. $\frac{b}{q}+\frac{q}{b}$ d. $\frac{b}{q}-\frac{q}{b}$
A. $\frac{a}{c}-\frac{c}{a}$
B. $\frac{a}{c}+\frac{c}{a}$
C. $\frac{b}{q}+\frac{q}{b}$
D. $\frac{b}{q}-\frac{q}{b}$

Answer: B

- Watch Video Solution

64. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in R^{+}$such that a, b and c are in H.P and ap.bq, and cr are in
G.P then $\frac{p}{r}+\frac{r}{p}$ is equal to
A. ab=cd
B. $a c=b d$
C. $b c=a d$
D. none of these

Answer: C

- Watch Video Solution

65. If in a progression a_{1}, a_{2}, a_{3}, et $\cdot,\left(a_{r}-a_{r+1}\right)$ bears a constant atio with $a_{r} \times a_{r+1}$, then the terms of the progression are in a. A.P b. G.P. c. H.P. d. none of these
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

66. If a, b, and c are in G.P then $a+b, 2 b$ and $b+c$ are in
A. A.P
B. G.P
C. H.P
D. none of these

Answer: C

- Watch Video Solution

67. If a, x, b are in A.P., a, y, b are in G.P. and a, z, b are in H.P. such that $x=9 z$ and $a>0, b>0$, then
A. $|y|=3 z$
B. $x=3|y|$
C. $2 y=x+z$
D. none of these

Answer: B

- Watch Video Solution

68. Let $n \in N, n>25$. Let A, G, H deonote te arithmetic mean, geometric man, and harmonic mean of 25 and n. The least value of n for which $A, G, H \in\{25,26, n\}$ is a. 49 b .81 c .169 d .225
A. 49
B. 81
C. 169
D. 225

Answer: D

- Watch Video Solution

69. If A.M., G.M., and H.M. of the first and last terms of the series of $100,101,102, \ldots n-1, n$ are the terms of the series itself, then the value of 'ni $s(100$
A. 200
B. 300
C. 400
D. 500

Answer: C

- Watch Video Solution

70. If H_{1}. $, H_{2}, \ldots, H_{20}$ are 20 harmonic means between 2 and 3 , then $\frac{H_{1}+2}{H_{1}-2}+\frac{H_{20}+3}{H_{20}-3}=$
A. 20
B. 21
C. 40
D. 38

Answer: C

71. If the sum of n terms of an A.P is $\mathrm{cn}(\mathrm{n}-1)$ where $c \neq 0$ then the sum of the squares of these terms is
A. $c^{2} n(n+1)^{2}$
B. $\frac{2}{3} c^{2} n(n-1)(2 n-1)$
C. $\frac{2 c^{2}}{3} n(n+1)(2 n+1)$
D. none of these

Answer: B

- Watch Video Solution

72.

$b_{i}=1-a_{i}, n a=\sum_{i=1}^{n} a_{i}, n b=\sum_{i=1}^{n} b_{i}$, then $\sum_{i=1}^{n} a_{i}, b_{i}+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=$ $a b$ b. $n a b$ c. $(n+1) a b$ d. $n a b$

[^0]B. $-n a b$
C. $(n+1) a b$
D. nab

Answer: D

- Watch Video Solution

73. The sum $1+3+7+15+31+\ldots \rightarrow 100$ terms is $2^{100}-102 b \mathrm{~b}$. $2^{99}-101$ c. $2^{101}-102 \mathrm{~d}$. none of these
A. $2^{100}-102$
B. $2^{99}-101$
C. $2^{101}-102$
D. none of these

Answer: C

74. Consider the sequence $1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, \ldots$.. Then 1025th terms will be (a) 2^{9} b. 2^{11} c. 2^{10} d. 2^{12}
A. 2^{9}
B. 2^{11}
C. 2^{10}
D. 2^{12}

Answer: C

- Watch Video Solution

75. The value of $\sum_{i-1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1=220$, then the value of n equals 11 b . 12 c. 10 d. 9
A. 11
B. 12
C. 10
D. 9

Answer: C

- Watch Video Solution

76. If $1^{2}+2^{2}+3^{2}++2003^{2}=(2003)(4007)(334)$ and $(1)(2003)+(2)(2002)+(3)(2001)++(2003)(1)=(2003)(334)(x)$, then x is equal to a. 2005 b. 2004 c. 2003 d. 2001
A. 2005
B. 2004
C. 2003
D. 2001

Answer: A

77. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots .$. . Then t_{50} is
A. $49^{2}-1$
B. 49^{2}
C. $50^{2}+1$
D. $49^{2}+2$

Answer: D

- Watch Video Solution

78. The sum of series $\Sigma_{r=0}^{r}(-1)^{r}(n+2 r)^{2}$ (where n is even) is
A. $-n^{2}+2 n$
B. $-4 n^{2}+2 n$
C. $-n^{2}+3 n$
D. $-n^{2}+4 n$

Answer: B

- Watch Video Solution

79. If $\left(1^{2}-t_{1}\right)+\left(2^{2}-t_{2}\right) \pm--+\left(n^{2}-t_{n}\right)=\frac{n\left(n^{2}-1\right)}{3}$, then t_{n} is equal to a. n^{2} b. $2 n$ c. $n^{2}-2 n$ d. none of these
A. n^{2}
B. 2 n
C. $n^{2}-2 n$
D. none of these

Answer: D

- Watch Video Solution

80. If $(1+3+5++p)+(1+3+5++q)=(1+3+5++r)$
where each set of parentheses contains the sum of consecutive odd
integers as shown, the smallest possible value of $p+q+r(w h e r e p>6)$ is 12 b. 21 c. 45 d. 54
A. 12
B. 21
C. 45
D. 54

Answer: B

- Watch Video Solution

81. If $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$. then the value of $S_{n}=1+\frac{3}{2}+\frac{5}{3}+\ldots+\frac{99}{50}$ is a. $H_{50}+50$ b. $100-H_{50}$ c. $49+H_{50}$ d. $H_{50}+100$
A. $H_{50}+50$
B. $100-H_{50}$
C. $49+H_{50}$
D. $H_{50}+100$

Answer: B

- Watch Video Solution

82. The sum to 50 terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{+} 2^{2}+3^{2}}+\ldots .+\ldots i s
$$

A. $\frac{100}{17}$
B. $\frac{150}{17}$
C. $\frac{200}{51}$
D. $\frac{50}{17}$

Answer: A

83. Let $S=\frac{4}{19}+\frac{44}{19^{2}}+\frac{444}{19^{3}}+u p \rightarrow \infty$. Then s is equal to a. $40 / 9 \mathrm{~b}$. $38 / 81 \mathrm{c} .36 / 171 \mathrm{~d}$. none of these
A. $40 / 9$
B. $38 / 81$
C. $36 / 171$
D. none of these

Answer: B

- Watch Video Solution

84. If $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+=\frac{\pi}{4} \quad$, then value of $\frac{1}{1 \times 3}+\frac{1}{5 \times 7}+\frac{1}{9 \times 11}+$ is $\pi / 8$ b. $\pi / 6$ c. $\pi / 4$ d. $\pi / 36$
A. $\pi / 8$
B. $\pi / 6$
C. $\pi / 4$
D. $\pi / 36$

Answer: A

- Watch Video Solution

85. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\rightarrow \infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ equals $\pi^{2} / 8$ b. $\pi^{2} / 12$ c. $\pi^{2} / 3$ d. $\pi^{2} / 2$
A. $\pi^{2} / 8$
B. $\pi^{2} / 8$
C. $\pi / 3$
D. $\pi^{2} / 2$

Answer: A

- Watch Video Solution

86. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{r}{1 \times 3 \times 5 \times 7 \times 9 \times \ldots \times(2 r+1)}$ is equal to
A. $\frac{1}{3}$
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. none of these

Answer: C

- Watch Video Solution

87. The greatest interger by which $1+\Sigma_{r=1}^{30} r \times r$! is divisible is
A. composite number
B. odd number
C. divisible by 3
D. none of these

- Watch Video Solution

88. If $\Sigma_{r=1}^{n} r^{4}=I(n), \quad$ then $\Sigma_{-}(r=1)^{n}(2 r-1)^{4}$ is equal to
A. $I(2 n)-I(n)$
B. $I(2 n)-16 I(n)$
C. $I(2 n)-8 I(n)$
D. $I(2 n)-4 I(n)$

Answer: B

Watch Video Solution

89. Value of $\lim _{n \rightarrow \infty}\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^{2}}\right)\left(1+\frac{1}{3^{4}}\right)\left(1+\frac{1}{3^{8}}\right) \infty$ is equal to 3 b. $\frac{6}{5}$ c. $\frac{3}{2}$ d. none of these
A. 3
B. $\frac{6}{5}$
C. $\frac{3}{2}$
D. none of these

Answer: C

D Watch Video Solution

90. If $x_{1}, x_{2} \ldots, x_{20}$ are in H.P and $x_{1}, 2, x_{20}$ are in G.P then $\Sigma_{r=1}^{19} x_{r} r_{x+1}$
A. 76
B. 80
C. 84
D. none of these

Answer: A

91. The value of $\sum_{r=1}^{n}(a+r+a r)(-a)^{r}$ is equal to
A. $\left.(-1)^{n}[n+1) a^{n+1}-a\right]$
B. $(-1)^{n}(n+1) a^{n+1}$
C. $(-1)^{n} \frac{(n+2) a^{n+1}}{2}$
D. $(-1)^{n} \frac{n a^{n}}{2}$

Answer: B

- Watch Video Solution

92. The sum of series $\frac{x}{1-x^{2}}+\frac{x^{2}}{1-x^{4}}+\frac{x^{4}}{1-x^{8}}+$ to infinite terms, if $|x|<1$, is $\frac{x}{1-x}$ b. $\frac{1}{1-x}$ c. $\frac{1+x}{1-x}$ d. 1
A. $\frac{x}{1-x}$
B. $\frac{1}{1-x}$
C. $\frac{1+x}{1-x}$

Answer: A

- Watch Video Solution

93. The sum of 20 terms of the series whose rth term s given by k $T(n)=(-1)^{n} \frac{n^{2}+n+1}{n!}$ is $\frac{20}{19!}$ b. $\frac{21}{20!}-1$ c. $\frac{21}{20!}$ d. none of these
A. $\frac{20}{19!}$
B. $\frac{21}{20!}-1$
C. $\frac{21}{20!}$
D. none of these

Answer: B

- Watch Video Solution

1. For an increasing A.P. a_{1}, a_{2}, a_{n} if $a_{1}=a_{2}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? $a_{1}=-10 \mathrm{~b}$. $a_{2}=-1 \mathrm{c} . a_{3}=-4$ d. $a_{5}=+2$
A. $a_{1}=-10$
B. $a_{2}=-1$
C. $a_{3}=-4$
D. $a_{5}=+2$

Answer: A::C::D

- Watch Video Solution

2. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, wherea, b, c are independent of n, then $a=0$ common difference of A.P. must be $2 b$ common difference of A.P. must be $2 c$ first term of A.P. is $b+c$
A. $a=0$
B. common ifferecnce of A.P must be 2 b
C. common difference of A.P must 2 c
D. first term of A.P is $b+c$

Answer: A::C::D

D Watch Video Solution

3. If a, b, c and d are four unequal positive numbers which are in A.P then
A. $\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
B. $\frac{1}{a}+\frac{1}{d}<\frac{1}{b}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$
D. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$

Answer: A::C

4. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}, \sqrt{50}, \sqrt{98}$ c. $\log 2, \log 16, \log 128$ d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$
A. 1,6,19
B. $\sqrt{2} . \sqrt{50}, \sqrt{98}$
C. $\log 2, \log 16, \log 128$
D. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

Answer: A::B::C

- Watch Video Solution

5. In a arithmetic progression whose first term is α and common difference is $\beta, \alpha, \beta \neq 0$ the ratio r of the sum of the first n terms to the sum of n terms succeending them, does not depend on n . Then which of the following is /are correct ?
A. $\alpha: \beta=2: 1$
B. If α and β are roots of the equation $a x^{2}+b x+c=0$ then

$$
2 b^{2}=9 a c
$$

C. The sum of infinite $G . P 1+r+r^{2}+\ldots . I s 3 / 2$
D. If $\alpha=1$, then sum of 10 terms of A.P is 100

Answer: B::C::D

- Watch Video Solution

6. If $a^{2}+2 b c, b^{2}+2 c a, c^{2}+2 a b$ are in A.P. then :-
A. $(a-b)(c-a),(a-b)(b-c),(b-c)(c-a)$ are in A.P
B. $b-c, c-a, a-b$ are in H.P
C. $a+b, b+c, c+a$ are in H.P
D. a^{2}, b^{2}, c^{2} are in H.P

Answer: A::B

7. If sum of an indinite G. $P p, 1,1 / p, 1 / p^{2} . . .=9 / 2$.. Is then value of p is
A. 2
B. $3 / 2$
C. 3
D. $9 / 2$

Answer: B::C

- Watch Video Solution

8. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth terms is $32 / 81$, then $r=1 / 3 \mathrm{~b} . r=2 \sqrt{2} / 3 \mathrm{c} . S_{\infty}=6 \mathrm{~d}$. none of these A. $r=1 / 3$
B. $r=2 \sqrt{2} / 3$
C. Sum of infinite terms is 6
D. none of these

Answer: A::B::C

- Watch Video Solution

9. Let $a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n}$ be in G.P such that $3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$

Then common ratio of G.P can be
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

10. If $p(x)=\frac{1+x^{2}+x^{4}++x}{1+x+x^{2}++x^{n-1 \wedge}(2 n-2)}$ is a polynomial in x, thenn can be a. 5 b. 10 c .20 d .17
A. 5
B. 10
C. 20
D. 17

Answer: A::D

- Watch Video Solution

11. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\ddot{+} n^{63}$ is/are a. 8 b. 16 c. 32 d. 64
A. 8
B. 16
C. 32
D. 64

Answer: A::B::C

- Watch Video Solution

12. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54
A. $\frac{729}{16}$
B. 6
C. 0
D. 54

Answer: A: D

- Watch Video Solution

13. If $1+2 x+3 x^{2}+4 x^{3}+\ldots . . \infty \geq 4$ then
A. least value of x is $1 / 2$
B. greatest value of x is $4 / 3$
C. least value of x is $2 / 3$
D. greatest value of x does not exist

Answer: A::D

- Watch Video Solution

14. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

D Watch Video Solution

15. If a, b and c are in G.P and x and y, respectively, be arithmetic means between a, b and b, c then
A. $\frac{a}{x}+\frac{c}{y}=2$
B. $\frac{a}{x}+\frac{c}{y}=\frac{c}{a}$
C. $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$
D. $\frac{1}{x}+\frac{1}{y}=\frac{2}{a} c$

Answer: A::C

16. Consider a sequence $\left\{a_{n}\right\}$ with $a_{1}=2$ and $a_{n}=\frac{a_{n-1}^{2}}{a_{n-2}}$ for all $n \geq 3$, terms of the sequence being distinct. Given that a_{1} and a_{5} are positive integers and $a_{5} \leq 162$ then the possible value(s) of a_{5} can be (a) 162 (b)

64 (c) 32 (d) 2
A. 162
B. 64
C. 32
D. 2

Answer: A::C

- Watch Video Solution

17. The numbers $1,4,16$ can be three terms (not necessarily consecutive) of no A.P. only on G.P. infinite number o A.P.s infinite number of G.P.s
B. only one G.P
C. infinite number of A.P's
D. infinite nuber of G.P' s

Answer: C::D

- Watch Video Solution

18. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b. 144 c .160 d . none of these
A. 108
B. 120
C. 144
D. 160

- Watch Video Solution

19. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P and $a, b-2 c$, are in G.P where a, b, c are non-zero then
A. $a^{3}+b^{3}+c^{3}=3 a b c$
B. $-2 a, b,-2 c$ are in A.P
C. $a^{2}, b^{2}, 4 c^{2}$ are in G.P
D. Equation $a x^{2}+b x+c=0$ has real roots

Answer: A::B::C::D

D Watch Video Solution

20. Sum of an infinite G.P is 2 and sum of its two terms is $1.1 f$ its second terms is negative then which of the following is /are true ?
A. one of the possible values of the first terms is $(2-\sqrt{2})$
B. one of the possible vlaues of the first terms is $(2+\sqrt{2})$
C. one of the possible values of the common ratio is $(\sqrt{2}-1)$
D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

- Watch Video Solution

21. If $0<\theta<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \theta \quad$ and
$z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \cdot \sin ^{2 n} \theta$, then show $x y z=x y+z$.
A. $x y z=x z+y$
B. $x y z=x y+z$
C. $x y z=z+y+z$
D. $x y z=y z+x$

(D) Watch Video Solution

22.

For
the
series,
$S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}$
$+\ldots 7$ th term is 167 th term is 18 Sum of first 10 terms is $\frac{505}{4}$ Sum of first
10 terms is $\frac{45}{4}$
A. $7^{\text {th }}$ term is 16
B. $7^{\text {th }}$ term $i s 18$
C. Sum of first 10 terms is $\frac{505}{4}$
D. Sum of first 10 terms is $\frac{405}{4}$

Answer: A:C

- Watch Video Solution

23. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$ then
A. $a-b=d-c$
B. $\mathrm{e}=0$
C. $a, b-2 / 3, c-1$ are in $\in A . P$
D. $(b+d) / a$ is an integer

Answer: A::B::C::D

- Watch Video Solution

24. If $S_{n}=1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+$, then $\quad S_{40}=-820 \quad$ b. $S_{2 n}>S_{2 n+2}$ c. $S_{51}=1326$ d. $S_{2 n+1}>S_{2 n-1}$
A. $S_{40}=-820$
B. $S_{2 n}>S_{2 n+2}$
C. $S_{51}=1326$
D. $S_{2 n+1}>S_{2 n-1}$
25.

$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n$
terms $=$ (A) $\frac{n}{\sqrt{3 n+2}-\sqrt{2}}$ (B) $\frac{1}{3}\left(\sqrt{2}-\sqrt{3 n+2}\right.$ (C) $\frac{n}{\sqrt{3 n+2}+\sqrt{2}}$
(D) none of these
A. $\frac{(\sqrt{3 n+2})-\sqrt{2}}{3}$
B. $\frac{n}{\sqrt{2+3 n}+\sqrt{2}}$
C. less than n
D. less than $\sqrt{\frac{n}{3}}$

Answer: A::B::C

Watch Video Solution

26. In the 20 th row of the triangle
A. last term $=210$
B. first term $=191$
C. sum $=4010$
D. $s u m=4200$

Answer: A::B::C

- View Text Solution

27. Given that $x+y+z=15$ whena, x, y, z, b are in A.P. and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{5}{3} w h e n a, x, y, z, b$ are in H.P. Then
(i) G.M. of a and b is 3
(ii) One possible value of $a+2 b$ is 11
(iii) A.M. of a and b is 6
(iv) Greatest value of $a-b$ is 8
A. G.M of a and b is 3
B. one possible value of $a+2 b$ is 11
C. A.M of a and b is 6
D. greatest value of $a-b$ is 8

Answer: A::B::D

- Watch Video Solution

28. If a, b and c are in H.P., then the value of $\frac{(a c+a b-b c)(a b+b c-a c)}{(a b c)^{2}}$ is
A. $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
B. $\frac{2}{b c}-\frac{1}{b^{2}}$
C. $\frac{2}{b c}-\frac{1}{b^{2}}$
D. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

Answer: A::B

29. If p, q and r are in A.P then which of the following is / are true?
A. pth,qth and rth terms of A.P are in A.P
B. pth,qth,and rht terms of G.P are in G.P
C. pth, qth , and rht terms of H.P are in H.P
D. none of these

Answer: A: B::C

- Watch Video Solution

30. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{2}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in
H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$
A. x, y and z are in H.P
B. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P
C. x, y, z are in G.P
D. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P

- Watch Video Solution

31. If $A_{1}, A_{2}, G_{1}, G_{2}$, and H_{1}, H_{2} are two arithmetic, geometric and harmonic means respectively, between two quantities aandb, thenab is equal to $A_{1} H_{2}$ b. $A_{2} H_{1}$ c. $G_{1} G_{2}$ d. none of these
A. A_{H-2}
B. $A_{2} H_{1}$
C. $G_{1} G_{2}$
D. none of these

Answer: A::B::C

32. If $\frac{1}{b-a}+\frac{1}{b-c}=\frac{1}{a}+\frac{1}{c}$, then (A). $a, b, a n d c$ are in H.P. (B). $a, b, a n d c$ are in A.P. (C). $b=a+c$ (D). $3 a=b+c$
A. a, b, and c are in H.P
B. a,b, and c are in A.P
C. $b=a+c$
D. $3 a=b+c$

Answer: A: B

- Watch Video Solution

33. If a, b, c are three distinct numbers in G.P., b, c, a are in A.P and $a, b c, a b c$, in H.P then the possible value of b is
A. $3+4 \sqrt{2}$
B. $3-4 \sqrt{2}$
C. $4+3 \sqrt{2}$
D. $4-3 \sqrt{2}$

Answer: C::D

- Watch Video Solution

34. If a, b, c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then which is of the following is /are possible?
A. $a x^{2}+b x+c=0$
B. $a x^{2} b x+c=0$
C. $a, b-\frac{c}{2}$ form a G.P
D. $a-b, \frac{c}{2}$ from a G.P

Answer: A::C

35. about to only mathematics
A. $a=b=c$
B. $a \geq b e \geq c$
C. $a+b=c$
D. $a c-b^{2}=0$

Answer: B::D

- Watch Video Solution

36. Let $E=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$ Then, $E<3$ b. $E>3 / 2$ c. $E>2$ d. $E<2$
A. $E<3$
B. $E>3 / 2$
C. $E>2$
D. $E<2$

- Watch Video Solution

37. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$ The greatest interger is
A. $a_{1}=-10$
B. $a_{2}=-1$
C. $a_{3}=-4$
D. $a_{5}=+2$

Answer: A::C::D

- Watch Video Solution

38. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The greatest interger is
A. $a=0$
B. common ifferecnce of A.P must be 2 b
C. common difference of A.P must 2c
D. first term of A.P is $b+c$

Answer: A::C::D

- Watch Video Solution

39. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The least value of the an interger is
A. $\frac{1}{a}+\frac{1}{d}>\frac{1}{b}+\frac{1}{c}$
B. $\frac{1}{a}+\frac{1}{d}<\frac{1}{b}+\frac{1}{c}$
C. $\frac{1}{b}+\frac{1}{c}>\frac{4}{a+d}$
D. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$
40. Consider three distinct real numbers a, b, c in a G.P with $a^{2}+b^{2}+c^{2}=t^{2}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\alpha t$. The sum of the common ratio and its reciprocal is denoted by S .

Complete set of α^{2} is
A. 1,6,19
B. $\sqrt{2} . \sqrt{50}, \sqrt{98}$
C. $\log 2, \log 16, \log 128$
D. $\sqrt{2}, \sqrt{3}, \sqrt{7}$

Answer: A::B::C

- Watch Video Solution

41. Consider three distinct real numbers a, b, c in $a \operatorname{G.P}$ with $a^{2}+b^{2}+c^{2}=t^{2}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\alpha t$. The sum of the common ratio and its
reciprocal is denoted by S .
Complete set of α^{2} is
A. $\alpha: \beta=2: 1$
B. If α and β are roots of the equation $a x^{2}+b x+c=0$ then $2 b^{2}=9 a c$
C. The sum of infinite $G . P 1+r+r^{2}+\ldots I s 3 / 2$
D. If $\alpha=1$, then sum of 10 terms of A.P is 100

Answer: B::C::D

(D) Watch Video Solution

42. If a, b and c also represent the sides of a triangle and a, b, c are in g.p then the complete set of $\alpha^{2}=\frac{r^{2}+r+1}{r^{2}-r+1}$ is
A. $(a-b)(c-a),(a-b)(b-c),(b-c)(c-a)$ are in A.P
B. $b-c, c-a, a-b$ are in H.P
C. $a+b, b+c, c+a$ are in H.P
D. a^{2}, b^{2}, c^{2} are in H.P

Answer: A::B

D Watch Video Solution

43. In a G.P the sum of the first and last terms is 66 , the product of the second and the last but one is 128 , and the sum of the terms is 126 If the decresing G.P is considered, then the sum of infinite terms is
A. 2
B. $3 / 2$
C. 3
D. $9 / 2$

Answer: B::C

44. In a n increasing G.P. , the sum of the first and the last term is 66 , the product of the second and the last but one is 128 and the sum of the terms is 126 . How many terms are there in the progression?
A. $r=1 / 3$
B. $r=2 \sqrt{2} / 3$
C. Sum of infinite terms is 6
D. none of these

Answer: A::B::C

- Watch Video Solution

45. In a G.P the sum of the first and last terms is 66 , the product of the second and the last but one is 128 nd the sum of the terms is 126 in any case, the difference of the least and greatest terms is
A. 2
B. $\frac{3}{2}$
C. $\frac{5}{2}$
D. $-\frac{1}{2}$

Answer: B::D

- Watch Video Solution

46. Four different integers form an increasing A.P .One of these numbers is equal to the sum of the squares of the other three numbers. Then The product of all numbers is
A. 5
B. 10
C. 20
D. 17
47. The sum of four numbers in A.P. is 28 and the sum of their squares is 216. Find the number's.
A. 8
B. 16
C. 32
D. 64

- Watch Video Solution

48. The common difference of the divisible by
A. $\frac{729}{16}$
B. 6
C. 0
D. 54

Answer: A::D

- View Text Solution

49. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4),
(5,5,5,5,5.....)
The $2000^{\text {th }}$ term of the sequence is not divisible by
A. least value of x is $1 / 2$
B. greatest value of x is $4 / 3$
C. least value of x is $2 / 3$
D. greatest value of x does not exist

Answer: A: D

- View Text Solution

50. Consider the sequence in the form of group (1), $(2,2)(3,3,3),(4,4,4,4)$, (5,5,5,5,5.....)

The sum of first 2000 terms is
A. 7
B. 8
C. 9
D. 10

Answer: B::C::D

- Watch Video Solution

51. Consider the sequence in the form of group (1), $(2,2)(3,3,3),(4,4,4,4)$, (5,5,5,5,5.....)
A. $\frac{a}{x}+\frac{c}{y}=2$
B. $\frac{a}{x}+\frac{c}{y}=\frac{c}{a}$
C. $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$
D. $\frac{1}{x}+\frac{1}{y}=\frac{2}{a} c$

Answer: A::C

- Watch Video Solution

52. There are two sets A and B each of which consists of three numbers in A.P. whose sum is $15 . \mathrm{D}$ and d are their respective common difference such that $D-d=1, D>0 . I f \frac{p}{q}=\frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :
A. 162
B. 64
C. 32
D. 2

D Watch Video Solution

53. There are two sets A and B each of which consists of three numbers in A.P. whose sum is $15 . \mathrm{D}$ and d are their respective common difference such that $D-d=1, D>0 . I f \frac{p}{q}=\frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :
A. no. A.P
B. only one G.P
C. infinite number of A.P's
D. infinite nuber of G.P' s

Answer: C::D

- Watch Video Solution

54. There are two sets M_{1} and M_{2} each of which consists of three numbers in arithmetic sequence whose sum is 15 . Let d_{1} and d_{2} be the common differences such that $d_{1}=1+d_{2}$ and $8 p_{1}=7 p_{2}$ where p_{1} and p_{2} are the product of the numbers respectively in M_{1} and M_{2}. If $d_{2}>0$ then find the value of $\frac{p_{2}-p_{1}}{d_{1}+d_{2}}$
A. 108
B. 120
C. 144
D. 160

Answer: A::C::D

- Watch Video Solution

55. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic

The value of ' n

- Watch Video Solution

56. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The n umber of arithmetic means is
A. one of the possible values of the first terms is $(2-\sqrt{2})$
B. one of the possible vlaues of the first terms is $(2+\sqrt{2})$
C. one of the possible values of the common ratio is $(\sqrt{2}-1)$
D. one of the possible values of the common ratio is $\frac{1}{\sqrt{2}}$

Answer: A::B::D

57. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of ' n
A. $x y z=x z+y$
B. $x y z=x y+z$
C. $x y z=z+y+z$
D. $x y z=y z+x$

Answer: B::C

- Watch Video Solution

58. Two consecutive numbers from $1,2,3, \ldots, n$ are removed, then arithmetic mean of the remaining numbers is $\frac{105}{4}$ then $\frac{n}{10}$ must be equal to
A. $7^{\text {th }}$ term is 16
B. $7^{\text {th }}$ term $i s 18$
C. Sum of first 10 terms is $\frac{505}{4}$
D. Sum of first 10 terms is $\frac{405}{4}$

Answer: A::C

- Watch Video Solution

59. Two consecutive numbers from 1,2,3, n are removed.The arithmetic mean of the remaining numbers is 105/4 .

The removed numbers
A. $a-b=d-c$
B. $\mathrm{e}=0$
C. $a, b-2 / 3, c-1$ are in $\in A . P$
D. $(b+d) / a$ is an integer

- Watch Video Solution

60. Two consecutive numbers from $1,2,3 \ldots ., \mathrm{n}$ are removed .The arithmetic mean of the remaining numbers is 105/4

The sum of all numbers
A. $S_{40}=-820$
B. $S_{2 n}>S_{2 n+2}$
C. $S_{51}=1326$
D. $S_{2 n+1}>S_{2 n-1}$

Answer: A::B::C::D

61. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .
A. $\frac{(\sqrt{3 n+2})-\sqrt{2}}{3}$
B. $\frac{n}{\sqrt{2+3 n}+\sqrt{2}}$
C. less than n
D. less than $\sqrt{\frac{n}{3}}$

Answer: A::B::C

- Watch Video Solution

62. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .
A. last term $=210$
B. first term = 191
C. sum $=4010$
D. sum $=4200$

Answer: A::B::C

- Watch Video Solution

63. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is

- Watch Video Solution

64. Find three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ between 2 \& 18 such that; O their sum is 25
@ the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an $\mathrm{AP} \& \mathrm{Q} .3$ the numbers b?c?18 are consecutive terms ofa GP
A. $\frac{(a+c)(3 a-c)}{4 a^{2} c^{2}}$
B. $\frac{2}{b c}-\frac{1}{b^{2}}$
C. $\frac{2}{b c}-\frac{1}{b^{2}}$
D. $\frac{(a-c)(3 a+c)}{4 a^{2} c^{2}}$

Answer: A::B

- Watch Video Solution

65. The number a, b and c are between 2 and 18 , such that
(i) their sum is 25
(ii) the numbers $2, \mathrm{a}$ and b are consecutive terms of and A.P
(iii) the numbers b,c 18 are consecutive terms of a G.P

The value of $a b c$ is
A. pth,qth and rth terms of A.P are in A.P
B. pth,qth,and rht terms of G.P are in G.P
C. pth, qth , and rht terms of H.P are in H.P
D. none of these
66. If a, b and c are roots of the equation $x^{3}+q x^{2}+r x+s=0$ then the value of r is
A. x, y and z are in H.P
B. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P
C. x, y, z are in G.P
D. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in G.P

Answer: A::C

D Watch Video Solution

EXERCIESE (LINKED COMPREHENSION TYPE)

1. For an increasing A.P. a_{1}, a_{2}, a_{n} if $a_{1}=a_{2}+a_{3}+a_{5}=-12$ and $a_{1} a_{3} a_{5}=80$, then which of the following is/are true? $a_{1}=-10 \mathrm{~b}$.

$$
a_{2}=-1 \text { c. } a_{3}=-4 \text { d. } a_{5}=+2
$$

A. 40
B. 37
C. 44
D. 51

Answer: C

- Watch Video Solution

2. If the sum of n terms of an A.P. is given by $S_{n}=a+b n+c n^{2}$, wherea, b, c are independent of n, then $a=0$ common difference of A.P. must be $2 b$ common difference of A.P. must be $2 c$ first term of A.P. is $b+c$
A. 22
B. 27
C. 31
D. 43

Answer: B

- Watch Video Solution

3. If a, b, c and d are four unequal positive numbers which are in A.P then
A. divible by 7
B. divisible by 11
C. divisible by 9
D. none of these

Answer: D

- Watch Video Solution

4. Which of the following can be terms (not necessarily consecutive) of any A.P.? a. 1,6,19 b. $\sqrt{2}, \sqrt{50}, \sqrt{98}$ c. $\log 2, \log 16, \log 128$ d. $\sqrt{2}, \sqrt{3}, \sqrt{7}$
A. $\left(\frac{1}{3}, 3\right)$
B. $\left[\frac{1}{3}, 3\right]$
C. $\left(\frac{1}{3}, 3\right)-\{1\}$
D. $\left(-\infty, \frac{1}{3}\right) \cap(3, \infty)$

Answer: C

- Watch Video Solution

5. In a arithmetic progression whose first term is α and common difference is $\beta, \alpha, \beta \neq 0$ the ratio r of the sum of the first n terms to the sum of n terms succeending them, does not depend on n . Then which of the following is /are correct ?
A. $(-2,2)$
B. $(-\infty,-2) \cup(2, \infty)$
C. $(-1,1)$
D. $(-\infty,-1) \cup(1, \infty)$

Answer: B

- Watch Video Solution

6. If $a^{2}+2 b c, b^{2}+2 c a, c^{2}+2 a b$ are in A.P. then :-
A. $\left(\frac{1}{3}, 3\right)$
B. $(2,3)$
C. $\left[\frac{1}{3}, 2\right]$
D. $\left(\frac{\sqrt{5+3}}{2}, 3\right)$

Answer: D

7. If sum of an indinite G. $P p, 1,1 / p, 1 / p^{2} . . .=9 / 2$.. Is then value of p is
A. 9
B. 8
C. 12
D. 6

Answer: D

- Watch Video Solution

8. The terms of an infinitely decreasing G.P. in which all the terms are positive, the first term is 4 , and the difference between the third and fifth terms is $32 / 81$, then $r=1 / 3 \mathrm{~b} . r=2 \sqrt{2} / 3 \mathrm{c} . S_{\infty}=6 \mathrm{~d}$. none of these
A. 64
B. 128
C. 256

Answer: B

- Watch Video Solution

9. Let $a_{1}, a_{2}, a_{3} \ldots \ldots, a_{n}$ be in G.P such that $3 a_{1}+7 a_{2}+3 a_{3}-4 a_{5}=0$

Then common ratio of G.P can be
A. 78
B. 126
C. 126
D. none of these

Answer: D

- Watch Video Solution

10. If $p(x)=\frac{1+x^{2}+x^{4}++x}{1+x+x^{2}++x^{n-1 \wedge}(2 n-2)}$ is a polynomial in x, thenn can be a. 5 b. 10 c .20 d .17
A. -2
B. 1
C. 0
D. 2

Answer: C

11. If $n>1$, the value of the positive integer m for which $n^{m}+1$ divides $a=1+n+n^{2}+\ddot{+} n^{63}$ is/are a. 8 b. 16 c. 32 d. 64
A. 3
B. 0
C. 4
D. 2

Answer: D

- Watch Video Solution

12. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54
A. 1
B. 3
C. 2
D. -2

Answer: A

- Watch Video Solution

13. If $1+2 x+3 x^{2}+4 x^{3}+\ldots . \infty \geq 4$ then
A. 3
B. 9
C. 7
D. none of these

Answer: D

- Watch Video Solution

14. Let S_{1}, S_{2}, be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the length of a diagonal of S_{n+1}. If the length of a side of $S_{1} i s 10 \mathrm{~cm}$, then for which of the following value of n is the area of S_{n} less than 1 sq. cm? a. 5 b. 7 c. 9 d. 10
A. 84336
B. 96324
C. 78466
D. none of these

- Watch Video Solution

15. If a, b and c are in G.P and x and y, respectively, be arithmetic means between a, b and b, c then
A. 1088
B. 1008
C. 1040
D. none of these

Answer: B

D Watch Video Solution

16. Consider a sequence $\left\{a_{n}\right\}$ with $a_{1}=2$ and $a_{n}=\frac{a_{n-1}^{2}}{a_{n-2}}$ for all $n \geq 3$, terms of the sequence being distinct. Given that a_{1} and a_{5} are positive
integers and $a_{5} \leq 162$ then the possible value(s) of a_{5} can be (a) 162 (b) 64 (c) 32 (d) 2
A. 51
B. 71
C. 74
D. 86

Answer: B

- Watch Video Solution

17. The numbers $1,4,16$ can be three terms (not necessarily consecutive) of no A.P. only on G.P. infinite number o A.P.s infinite number of G.P.s
A. 74
B. 64
C. 73
D. 81

Answer: A

- Watch Video Solution

18. The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, then which of the following is not a possible first term? 108 b. 144 c .160 d . none of these
A. 20
B. 30
C. 15
D. 25

Answer: C

19. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P and $a, b-2 \mathrm{c}$, are in G.P where a, b, c are non-zero then

- Watch Video Solution

20. Sum of an infinite G.P is 2 and sum of its two terms is 1 .If its second terms is negative then which of the following is /are true?
A. 442
B. 342
C. 378
D. none of these

Answer: B
21. If $0<\theta<\frac{\pi}{2}, x=\sum_{n=0}^{\infty} \cos ^{2 n} \theta, y=\sum_{n=0}^{\infty} \sin ^{2 n} \theta \quad$ and
$z=\sum_{n=0}^{\infty} \cos ^{2 n} \theta \cdot \sin ^{2 n} \theta$, then show $x y z=x y+z$.
A. A.P
B. G.P
C. H.P
D. none of these

Answer: A

Watch Video Solution

22. For the
series, $S=1+\frac{1}{(1+3)}(1+2)^{2}+\frac{1}{(1+3+5)}(1+2+3)^{2}+\frac{1}{(1+3+5+7)}($
$+\ldots 7$ th term is 167 th term is 18 Sum of first 10 terms is $\frac{505}{4}$ Sum of first 10 terms is $\frac{45}{4}$

A. $[45,55]$

B. $[52,60]$
C. $[41,49]$
D. none of these

Answer: A

- Watch Video Solution

23. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$ then
A. lie between 10 and 20
B. are less than 1500
C. are less than 1500
D. none of these

Answer: C

24. If $S_{n}=1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+$, then $\quad S_{40}=-820 \quad$ b. $S_{2 n}>S_{2 n+2}$ c. $S_{51}=1326$ d. $S_{2 n+1}>S_{2 n-1}$
A. exceeds 1600
B. is less than 1500
C. lies between 1300 and 1500
D. none of these

Answer: B

- Watch Video Solution

25.

$$
\begin{aligned}
& \frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n \\
& \text { terms }=\text { (A) } \frac{n}{\sqrt{3 n+2}-\sqrt{2}} \text { (B) } \frac{1}{3}\left(\sqrt{2}-\sqrt{3 n+2} \text { (C) } \frac{n}{\sqrt{3 n+2}+\sqrt{2}}\right.
\end{aligned}
$$

(D) none of these
A. 12
B. 24
C. 26
D. 9

Answer: C

- Watch Video Solution

26. In the 20 th row of the triangle
A. $6 / 5$
B. $7 / 2$
C. $9 / 5$
D. none of these

Answer: B

27. Given that $x+y+z=15$ whena, x, y, z, b are in A.P. and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{5}{3} w h e n a, x, y, z, b$ are in H.P. Then
(i) G.M. of a and b is 3
(ii) One possible value of $a+2 b$ is 11
(iii) A.M. of a and b is 6
(iv) Greatest value of $a-b$ is 8
A. $2 / 7$
B. $3 / 5$
C. $4 / 7$
D. $2 / 5$

Answer: A

28. If a, b and c are in H.P., then the value of $\frac{(a c+a b-b c)(a b+b c-a c)}{(a b c)^{2}}$ is
A. 500
B. 450
C. 720
D. 480

Answer: D

- Watch Video Solution

29. If p, q and r are in A.P then which of the following is / are true?
A. real and poistive
B. real and negative
C. imaginary
D. real and of oppositve sign

Answer: C

- Watch Video Solution

30. If $x^{2}+9 y^{2}+25 z^{2}=x y z\left(\frac{15}{2}+\frac{5}{y}+\frac{3}{z}\right)$, then x, y, and z are in
H.P. b. $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P. c. x, y, z are in G.P. d. $\frac{1}{a}+\frac{1}{d}=\frac{1}{b}=\frac{1}{c}$
A. 184
B. 196
C. 224
D. none of these

Answer: B

- Watch Video Solution

31. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The greatest interger is
A. 40
B. 37
C. 44
D. 51

Answer: C

- Watch Video Solution

32. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The greatest interger is
A. 22
B. 27
C. 31

Answer: B

- Watch Video Solution

33. Sum of certain consecutive odd positive intergers is $57^{2}-13^{2}$

The least value of the an interger is
A. divible by 7
B. divisible by 11
C. divisible by 9
D. none of these

Answer: D

- Watch Video Solution

34. Consider three distinct real numbers a,b,c in a G.P with $a^{2}+b^{2}+c^{2}=t^{2}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\alpha t$.The sum of the common ratio and its reciprocal is denoted by S .

Complete set of α^{2} is
A. $\left(\frac{1}{3}, 3\right)$
B. $\left[\frac{1}{3}, 3\right]$
C. $\left(\frac{1}{3}, 3\right)-\{1\}$
D. $\left(-\infty, \frac{1}{3}\right) \cap(3, \infty)$

Answer: C

- Watch Video Solution

35. Consider three distinct real numbers a,b,c in a G.P with $a^{2}+b^{2}+c^{2}=t^{2}$ and $\mathrm{a}+\mathrm{b}+\mathrm{c}=\alpha t$. The sum of the common ratio and its reciprocal is denoted by S .

Complete set of α^{2} is
A. $(-2,2)$
B. $(-\infty,-2) \cup(2, \infty)$
C. $(-1,1)$
D. $(-\infty,-1) \cup(1, \infty)$

Answer: B

- Watch Video Solution

36. If a, b and c also represent the sides of a triangle and a, b, c are in g.p then the complete set of $\alpha^{2}=\frac{r^{2}+r+1}{r^{2}-r+1}$ is
A. $\left(\frac{1}{3}, 3\right)$
B. $(2,3)$
C. $\left[\frac{1}{3}, 2\right]$
D. $\left(\frac{\sqrt{5+3}}{2}, 3\right)$

Answer: D

37. In a G.P the sum of the first and last terms is 66, the product of the second and the last but one is 128 , and the sum of the terms is 126 If the decresing G.P is considered , then the sum of infinite terms is
A. 9
B. 8
C. 12
D. 6

Answer: D

- Watch Video Solution

38. In a n increasing G.P. , the sum of the first and the last term is 66 , the product of the second and the last but one is 128 and the sum of the terms is 126 . How many terms are there in the progression?
A. 64
B. 128
C. 256
D. 729

Answer: B

- Watch Video Solution

39. In a G.P the sum of the first and last terms is 66 , the product of the second and the last but one is 128 nd the sum of the terms is 126 in any case, the difference of the least and greatest terms is
A. 78
B. 126
C. 126
D. none of these

- Watch Video Solution

40. Four different integers form an increasing A.P .One of these numbers is equal to the sum of the squares of the other three numbers. Then The product of all numbers is
A. -2
B. 1
C. 0
D. 2

Answer: C

41. The sum of four numbers in A.P. is 28 and the sum of their squares is 216. Find the number's.
A. 3
B. 0
C. 4
D. 2

- Watch Video Solution

42. The common difference of the divisible by
A. 1
B. 3
C. 2
D. -2

D View Text Solution

43. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)

The $2000^{\text {th }}$ term of the sequence is not divisible by
A. 3
B. 9
C. 7
D. none of these

Answer: D

44. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)

The sum of first 2000 terms is

A. 84336
B. 96324
C. 78466
D. none of these

Answer: A

- Watch Video Solution

45. Consider the sequence in the form of group (1),(2,2)(3,3,3),(4,4,4,4), (5,5,5,5,5.....)

A. 1088

B. 1008
C. 1040
D. none of these

Answer: B

D Watch Video Solution

46. There are two sets A and B each of which consists of three numbers in
A.P. whose sum is $15 . \mathrm{D}$ and d are their respective common difference such that $D-d=1, D>0 . I f \frac{p}{q}=\frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :
A. 51
B. 71
C. 74
D. 86

Answer: B

- Watch Video Solution

47. There are two sets A and B each of which consists of three numbers in A.P. whose sum is $15 . \mathrm{D}$ and d are their respective common difference such that $D-d=1, D>0 . I f \frac{p}{q}=\frac{7}{8}$ where p and q are the product of the number in those sets A and B respectively.

Sum of the product of the numbers in set B taken two at a time is :
A. 74
B. 64
C. 73
D. 81

Answer: A

48. There are two sets M_{1} and M_{2} each of which consists of three numbers in arithmetic sequence whose sum is 15 . Let d_{1} and d_{2} be the common differences such that $d_{1}=1+d_{2}$ and $8 p_{1}=7 p_{2}$ where p_{1} and p_{2} are the product of the numbers respectively in M_{1} and M_{2}. If $d_{2}>0$ then find the value of $\frac{p_{2}-p_{1}}{d_{1}+d_{2}}$
A. 20
B. 30
C. 15
D. 25

Answer: C

- Watch Video Solution

49. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic

means is 1024×171

The value of ' n

(Watch Video Solution

50. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The n umber of arithmetic means is
A. 442
B. 342
C. 378
D. none of these

Answer: B

51. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{m}$ be the arithmetic means between -2 and 1027 and $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be the gemetric means between 1 and 1024 .The product of gerometric means is 2^{45} and sum of arithmetic means is 1024×171

The value of ' n
A. A.P
B. G.P
C. H.P
D. none of these

Answer: A

- Watch Video Solution

52. Two consecutive numbers from $1,2,3, \ldots, n$ are removed, then arithmetic mean of the remaining numbers is $\frac{105}{4}$ then $\frac{n}{10}$ must be equal to
A. $[45,55]$
B. $[52,60]$
C. $[41,49]$
D. none of these

Answer: A

- Watch Video Solution

53. Two consecutive numbers from $1,2,3$...., n are removed.The arithmetic mean of the remaining numbers is 105/4.

The removed numbers
A. lie between 10 and 20
B. are less than 1500
C. are less than 1500
D. none of these

Answer: C

- Watch Video Solution

54. Two consecutive numbers from $1,2,3 \ldots, n$ are removed .The arithmetic mean of the remaining numbers is 105/4

The sum of all numbers
A. exceeds 1600
B. is less than 1500
C. lies between 1300 and 1500
D. none of these

Answer: B

55. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .
A. 12
B. 24
C. 26
D. 9

Answer: C

- Watch Video Solution

56. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .
A. $6 / 5$
B. $7 / 2$
C. $9 / 5$
D. none of these

Answer: B

- Watch Video Solution

57. Two arithmetic progressions have the same numbers. The reatio of the last term of the first progression to the first term of the second progression is equal to the ratio of the last term of the second progression to the first term of first progression is equal to 4. The ratio of the sum of the n terms of the first progression to the sum of the n terms of teh first progression to the sum of the n terms of the second progerssion is equal to 2 .

The ratio of their first term is

- Watch Video Solution

58. Find three numbers a, b,c between 2 \& 18 such that; O their sum is 25
@ the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an $\mathrm{AP} \& \mathrm{Q} .3$ the numbers b?c?18 are consecutive terms ofa GP
A. 500
B. 450
C. 720

Answer: D

- Watch Video Solution

59. The number a, b and c are between 2 and 18 , such that
(i) their sum is 25
(ii) the numbers $2, \mathrm{a}$ and b are consecutive terms of and A.P
(iii) the numbers b,c 18 are consecutive terms of a G.P

The value of $a b c$ is
A. real and poistive
B. real and negative
C. imaginary
D. real and of oppositve sign

Answer: C

60. If a, b and c are roots of the equation $x^{3}+q x^{2}+r x+s=0$ then the value of r is
A. 184
B. 196
C. 224
D. none of these

Answer: B

- Watch Video Solution

EXERCIESE (NUMERICAL VALUE TYPE)

1. Let a, b, c, d be four distinct real numbers in A.P. Then half of the smallest positive valueof
k
satisfying

$$
a(a-b)+k(b-c)^{2}=(c-a)^{3}=2(a-x)+(b-d)^{2}+(c-d)^{3} \text { is }
$$

- Watch Video Solution

2. Let fourth therm of an arithmetic progression be 6 and $m^{\text {th }}$ term be 18 . If A.P has intergal terms only then the numbers of such A.P s is

- Watch Video Solution

3. The 5th and 8th terms of a geometric sequence of real numbers are 7!

And 8! Respectively. If the sum to first n tems of the G.P. is 2205 , then n equals \qquad .

- Watch Video Solution

4. Let $a_{1}, a_{2}, a_{3} \ldots ., a_{101}$ are in G.P with $a_{101}=25$ and $\Sigma_{i=1}^{201} a_{i}=625$ Then the value of $\Sigma_{i=1}^{201} \frac{1}{a_{i}}$ eaquals \qquad .

(Watch Video Solution

5. Let $a, b>0$, let $5 a-b, 2 a+b, a+2 b$ be in A.P. and $(b+1)^{2}, a b+1,(a-1)^{2}$ are in G.P., then the value of $\left(a^{-1}+b^{-1}\right)$ is
\qquad .

- Watch Video Solution

6. Let $a+a r_{1}+a r 12++\infty a n d a+a r_{2}+a r 22++\infty$ be two infinite series of positive numbers with the same first term. The sum of the first series is r_{1} and the sum of the second series r_{2}. Then the value of $\left(r_{1}+r_{2}\right)$ is \qquad .

- Watch Video Solution

7. If he equation $x^{3}+a x^{2}+b x+216=0$ has three real roots in G.P., then b / a has the value equal to \qquad .

- Watch Video Solution

8. Let $a_{n}=16,4,1, \ldots$ be a geometric sequence .Define P_{n} as the product of the first n terms. The value of $\Sigma_{n=1}^{\infty} n \sqrt{P}_{n}$ is \qquad .

- Watch Video Solution

9. The terms a_{1}, a_{2}, a_{3} from an arithmetic sequence whose sum s 18 . The terms $a_{1}+1, a_{2}, a_{3},+2$, in that order, form a geometric sequence. Then the absolute value of the sum of all possible common difference of the A.P. is \qquad .

- Watch Video Solution

10. Let the sum of first three terms of G.P. with real terms be $13 / 12$ and their product is -1 . If the absolute value of the sum of their infinite terms is S, then the value of $7 S$ is \qquad .

- Watch Video Solution

11. The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.

- Watch Video Solution

12. A person drops a ball from an 80 m tall building and each time the ball bounces, it rebounds to $\mathrm{p} \%$ of its previous height. If the ball travels a total distance of 320 m , then the value of p is
13. Metals have conductivity in the order of $\mathrm{ohm} \mathrm{m}^{-1} \mathrm{~cm}^{-1}$

- Watch Video Solution

14. The number of positive integral ordered pairs of (a, b) such that $6, a, b$ are in harmonic progression is \qquad .

- Watch Video Solution

15. If the roots of $10 x^{3}-n x^{2}-54 x-27=0$ are in harmonic oprogresion, then n eqauls \qquad .

- Watch Video Solution

16. Given a, b, c are in A.P.,b,c,d are in G.P and c, d, e are in H.P .If $a=2$ and $e=18$, then the sum of all possible value of c is \qquad .

- Watch Video Solution

17. Let S_{k} be sum of an indinite G.P whose first term is ' K ' and commmon ratio is $\frac{1}{k+1}$. Then $\Sigma_{k=1}^{10} S_{k}$ is equal to \qquad .

- Watch Video Solution

18. The value of the sum $\Sigma_{i=1}^{20} i\left(\frac{1}{i}+\frac{1}{i+1}+\frac{1}{i+2}+\ldots .+\frac{1}{2}\right)$ is
\qquad .

- Watch Video Solution

19. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}+\ldots .+n^{3}$ and the sum of the first k terms of $1+2+3+\ldots .+n$ is 1980 . The value of k is:

- Watch Video Solution

20. The vlaue of the $\Sigma_{n=0}^{\infty} \frac{2 n+3}{3^{n}}$ is equal to \qquad .

- Watch Video Solution

21. The sum of the infinite Arithmetico -Geometric progression $3,4,4, \ldots$ is
\qquad .

- Watch Video Solution

22. $\Sigma_{r=1}^{50} \frac{r^{2}}{r^{2}+(11-r)^{2}}$ is equal to \qquad .

- Watch Video Solution

23. If $\sum_{r=1}^{50} \frac{2}{r^{2}+\left(11-r^{2}\right)}$, then the value of n is
24. Let $\left.<a_{n}\right\rangle$ be an arithmetic sequence of 99 terms such that sum of its odd numbered terms is 1000 then the value of $\Sigma_{r=1}^{50}(-1)^{\frac{r(r+1)}{2}} \cdot a_{2 r-1}$ is \qquad .

- Watch Video Solution

25. Find the sum of series upto n terms $\left(\frac{2 n+1}{2 n-1}\right)+3\left(\frac{2 n+1}{2 n-1}\right)^{2}+5\left(\frac{2 n+1}{2 n-1}\right)^{3}+\ldots$

- Watch Video Solution

26. Let $S=\Sigma_{n=1}^{999} \frac{1}{(\sqrt{n}+\sqrt{n+1})(4 \sqrt{n}+4 \sqrt{n}+1)}$, then S equals
\qquad .

- Watch Video Solution

27. Let S denote sum of the series $\frac{3}{2^{3}}+\frac{4}{2^{4} .3}+\frac{5}{2^{6} .3}+\frac{6}{2^{7} .5}+\infty$ Then the value of S^{-1} is \qquad .

Watch Video Solution

28. The sum $\frac{7}{2^{2} \times 5^{2}}+\frac{13}{5^{2} \times 8^{2}}+\frac{19}{8^{2} \times 11^{2}}+\ldots 10$ terms is S , then the value of 1024(S) is \qquad .

- Watch Video Solution

ARCHIVES (JEE MAIN)(SINGLE CORRECT ANSWER TYPE)

1. The sum to infinity of the series $1+\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\frac{14}{3^{4}} \ldots \ldots$ is (1) $2(2) 3(3) 4(4) 6$
A. 2
B. 3
C. 4
D. 6

Answer: B

D Watch Video Solution

2. A person is to count 4500 currency notes. Let a_{n}, denote the number of notes he counts in the $n t h$ minute if $a_{1}=a_{2}=a_{3}=\ldots \ldots \ldots=a_{10}=150$ and $a_{10}, a_{11}, \ldots \ldots$. are in an $A P$ with common difference -2 , then the time taken by him to count all notes is :- (1) 24 minutes 1011 (2) 34 minutes (3) 125 minutes (4) 135 minutes
A. 135 min
B. 24 min
C. 34 min
D. 125 min

Answer: C

- Watch Video Solution

3. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months In each of ther mupienent montha his saving increases by Rs, 40 more than the saving of immediately previous month. His total saving s from the start of service will be Rs. 11040 after
A. 21 months
B. 18 months
C. 19 months
D. 20 months

Answer: A

4. Statement 1 :

The sum of the series $1+(1+2+4)+(4+6+9)+(9+12+16)+\ldots .+(361+380+400)$ is 8000

Statement 1:
$\Sigma_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)=n^{3}$, for any natural number n.
A. Statement 1 is fasle ,statement 2 is true
B. Statement 1 is true ,statement 2 is true, statement 2 is a correct explanation for statement 1.
C. Statement 1 is true, statements 2 is true statement 2 is not a correct explanation for statement 1
D. Statement 1 is true, statement 2 is false

Answer: B

D Watch Video Solution

5. If 100 times the $100^{\text {th }}$ term of an AP with non zero common difference equals the 50 times its $50^{\text {th }}$ term, then the $150^{\text {th }}$ term of this AP is (1) 150
(2) 150 times its $50^{\text {th }}$ term (3) 150 (4) zero
A. -150
B. 150 times its 50 th term
C. 150
D. Zero

Answer: D

- Watch Video Solution

6. The sum of first 20 terms of the sequence $0.7,0.77,0.777$, ,. , is

$$
\begin{array}{lll}
\frac{7}{9}\left(99-10^{-20}\right) & \text { (2) } \quad \frac{7}{81}\left(179+10^{-20}\right) & \text { (3) } \quad \frac{7}{9}\left(99+10^{-20}\right) \\
\frac{7}{81}\left(179-10^{-20}\right) & & \tag{1}
\end{array}
$$

A. $\left.\frac{7}{81}(179-10)^{20}\right)$
B. $\frac{7}{9}\left(99-10^{20}\right)$
C. $\frac{7}{81}\left(179+10^{-20}\right)$
D. $\frac{7}{9}\left(99+10^{-20}\right)$

Answer: C

- Watch Video Solution

7. If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots \ldots \ldots . .+10(11)^{9}=k(10)^{9}$, then k is equal to :
A. $\frac{121}{10}$
B. $\frac{441}{100}$
C. 100
D. 110

Answer: C

8. If m is the A.M. of two distinct real numbers l and $n(l, n>1)$ and G1, G2 and G3 are three geometric means between l and n , then $G 14+2 G 24+G 34$ equals, (1) $4 l^{2} \mathrm{mn}$ (2) $4 l^{m \wedge} 2 \mathrm{mn}$ (3) $4 l m n^{2}$ $4 l^{2} m^{2} n^{2}$
A. $4 l^{2} m n$
B. $4 l m^{2} n$
C. $4 l m n^{2}$
D. $4 l^{2} m^{n}{ }^{\wedge} 2$

Answer: B

- Watch Video Solution

9. The sum of the first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5} \ldots . .$. is :
A. 71
B. 96
C. 142
D. 192

Answer: B

- Watch Video Solution

10. If the $2 \mathrm{nd}, 5$ th and 9 th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is : (1) $\frac{8}{5}$ (2) $\frac{4}{3}$ (3) 1 (4) $\frac{7}{4}$
A. $\frac{4}{3}$
B. 1
C. $\frac{7}{4}$
D. $\frac{8}{5}$
11. If the surm of the first ten terms of the series, $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$. , is $\frac{16}{5} m$, then m is equal to
A. 101
B. 100
C. 99
D. 102

Answer: A

- Watch Video Solution

12. If, for a positive integer n, the quadratic equation, $x(x+1)+(x-1)(x+2)++(x+n-1)(x+n)=10 n$ has two consecutive integral solutions, then n is equal to : (1)10 (2) 11 (3) 12 (4) 9
A. 11
B. 12
C. 9
D. 10

Answer: A

- Watch Video Solution

13. For any three positive real numbers a, b and c, $9\left(25 a^{2}+b^{2}\right)+25\left(c^{2}-3 a c\right)=15 b(3 a+c)$ Then: (1) b, c and a are in G.P. (2) b, c and a are in A.P. (3) a, b and c are in A.P (4) a, b and c are in G.P
A. a,b and c are in G.P
B. b,c and a are in G.P
C. b, c and a are in A.P
D. a, b and c are in A.P

- Watch Video Solution

14. Let $a, b, c \in R . \operatorname{Iff}(x)=a x^{2}+b x+c$ is such that $a+b+c=3$ and $f(x+y)=f(x)+f(y)+x y, \forall x, y \in R$, then $\Sigma_{n=1}^{10} f(n)$ is equal to
A. 255
B. 330
C. 165
D. 190

Answer: B

- Watch Video Solution

15. Let A be the sum of the first 20 terms and B be the sum of the first 40 terms of the series $1^{2}+2.2^{2}+3^{2}+2.4^{2}+5^{2}+2.6^{2}+\ldots \quad$ If
$B-2 A=100 \lambda$ then λ is equal to (1) 232 (2) 248 (3) 464 (4) 496
A. 496
B. 232
C. 248
D. 464

Answer: C

- Watch Video Solution

16. Let $a_{1}, a_{2}, a_{3} \ldots, a_{49}$ be in A.P. Such that $\Sigma_{k=0}^{12} a_{4 k+1}=416$ and $a_{9}+a_{43}=66$.If $a_{1}^{2}+a_{2}^{2}+\ldots+a_{17}=140 \mathrm{~m}$ then m is equal to
A. 33
B. 66
C. 68
D. 34

Answer: D

- Watch Video Solution

ARCHIVES (JEE ADVANCED)(SINGLE CORRECT ANSWER TYPE)

1. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a harmonic progression with $a_{1}=5$ and $a_{20}=25$. The least positive integer n for which $a_{n}<0$, is
A. 22
B. 23
C. 24
D. 25

Answer: D

Watch Video Solution
2. The value of $\sum_{k=1}^{13} \frac{1}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)}$ is equal to
A. $3-\sqrt{3}$
B. $2(3-\sqrt{3})$
C. $2(3-\sqrt{3})$
D. $2(\sqrt{3}-1))$

Answer: C

- Watch Video Solution

3. Let $b_{i}>1$ for $\mathrm{i}=1,2, \ldots, ., 101$. Suppose $\log _{e} b_{1}, \log _{e} b_{2}, \ldots ., \log _{e} b_{101}$ are in Arithmetic Progression (A.P.) with the common difference $\log _{e} 2$. Suppose $a_{1}, a_{2}, \ldots, a_{101}$ are in A.P. such that $a_{1}=b_{1}$ and $a_{51}=b_{51}$. If $t=b_{1}+b_{2}+\ldots .+b_{51}$ and $s=a_{1}+a_{2}+\ldots .+a_{51}$ then
A. $s>t$ and $a_{101}>b_{101}$
B. $s>t$ and $a_{101}<b_{101}$
C. $s<t$ and $a_{101}>b_{101}>b_{101}$
D. $s<t$ and $a_{101}<b_{101}$

Answer: B

- Watch Video Solution

ARCHIVES (MULTIPLE CORRECT ANSWERS TYPE)

1. $\operatorname{Let} S_{n}=\Sigma_{k=1}^{4 n}(-1)^{\frac{k(k+1)}{2}} k^{2}$.Then S_{n} can take value (s)
A. 1056
B. 1088
C. 1120
D. 1332

Watch Video Solution

ARCHIVES (NUMERICAL VALUE TYPE)

1. Let $S_{k}, k=1,2, \ldots .100$ denote the sum of the infinite geometric series whose first term is $\frac{k-1}{K!}$ and the common ration is $\frac{1}{k}$ then the value of $\frac{(100)^{2}}{100!}+\Sigma_{k=1}^{100}\left|\left(k^{2}-3 k+1\right) S_{k}\right|$ is

- Watch Video Solution

2. Let $a 1, a 2, a 3$...... a11 be real numbers satisfying
$a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4, \ldots .11$ If $\frac{a 1^{2}+a 2^{2} \ldots \ldots . a 11^{2}}{11}=90$ then find the value of $\frac{a_{1}+a_{2} \ldots+a_{11}}{11}$

- Watch Video Solution

3. Let $a_{1}, a_{2}, a_{3}, a_{100}$ be an arithmetic progression with $a_{1}=3$ ands $_{p}=\sum_{i=1}^{p} a_{i}, 1 \leq p \leq 100$. For any integer n with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m}}{S_{n}}$ does not depend on n, then a_{2} is \qquad .

- Watch Video Solution

4. A pack contains n cards numbered from 1 to n. Two consecutive numbered cards are removed from the pack and the sum of the numbers on the remaining cards is 1224 . If the smaller of het numbers on the removed cards is k, then $k-20=$ \qquad .

- Watch Video Solution

5. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that $\frac{b}{a}$ is an integer. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in GP and the arithmetic mean of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, is $\mathrm{b}+2$ then the value of $\frac{a^{2}+a-14}{a+1}$ is
6. Suppose that all the terms of an arithmetic progression (A.P.) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is 6: 11 and the seventh term lies in between 130 and 140 , then the common difference of this A.P. is

- Watch Video Solution

7. The sides of a right angled triangle are in arithmetic progression. If the triangle has area 24 , then what is the length of its smallest side?

- Watch Video Solution

8. Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, ; and Y be the set consisting of the first 2018 terms of the arithmetic progression $9,16,23, \cdots$ Then, the number of elements in the set $X \cup Y$ is \qquad .

EXERCIESE (MATRIX MATCH TYPE)

1. If α and β are roots of the equation $x^{2}-8 x+4=0$, then match the following lists :
A. $\begin{array}{llll}a & b & c & d\end{array}$
(1) $r p q s$
B.
(2) $q s p r$
$\begin{array}{llll}a & b & c & d\end{array}$
C.
(3) $r q p q$
D.
(4) $s p q r$

Answer: A::B::C::D

- View Text Solution

2. Match the following lists :

A.
(1) $r \quad p \quad q \quad s$
B.
(2) $q \quad s \quad p \quad r$
C. $\begin{array}{llll} \\ (3)\end{array} \begin{array}{llll}a & b & c & d \\ r & q & p & q\end{array}$
$\begin{array}{llll}a & b & c & d\end{array}$
D.
(4) $s \quad p \quad q \quad r$

Answer: A::B::C::D

- View Text Solution

3. Match the following lists
$\begin{array}{llll}a & b & c & d\end{array}$
(1) $r \quad p \quad q \quad s$
B.
(2) $q \quad s \quad p \quad r$
C.
$\begin{array}{llll}a & b & c & d\end{array}$
(3) r $q \quad p \quad q$
D.
$\begin{array}{llll}a & b & c & d\end{array}$
(4) $s \quad p \quad q \quad r$

Answer: C

ARCHIVES (MATRIX MATCH TYPE)

1. Match the statements /expression given in List I with the values given in List II.

[^0]: A. ab

