

MATHS

BOOKS - CENGAGE MATHS (ENGLISH)

VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS

Dpp 11

1. A line makes an angle θ both with x-axis and y-axis. A possible range of θ is

A.
$$\left[0, \frac{\pi}{4}\right]$$

B.
$$\left[0, \frac{\pi}{2}\right]$$

$$\mathsf{C.}\left[\frac{\pi}{4},\frac{\pi}{2}\right]$$

D.
$$\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$$

Answer: C

Watch Video Solution

2. A line segment has length 63 and direction ratios

are 3, -2, 6. The components of the line vector are

$$A. -27, 18, 54$$

B. 27, -18, 54

C. 27, -18,054

D. -7, -18, -54

Answer: B

3. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are position vectors of A,B,

and C respectively of ΔABC and

 $\left|\overrightarrow{a}-\overrightarrow{b}
ight|=4,\left|\overrightarrow{b}-\overrightarrow{c}
ight|=2,\left|\overrightarrow{c}-\overrightarrow{a}
ight|=3$

, then the distance between the centroid and incenter of \triangle ABC is

A. 1

 $\mathsf{B.}\;\frac{1}{2}$

c. $\frac{1}{3}$

D. $\frac{2}{3}$

er: (

Answer: C

4. Let O be an interior point of ΔABC such that $\overline{OA}+2\overline{OB}+3\overline{OC}=0$. Then the ratio of a ΔABC to area of ΔAOC is

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{D.}\;\frac{5}{2}$$

Answer: C

5. In a three-dimensional coordinate system, P,Q,andR are images of a point A(a,b,c) in the x-y,y-zandz-x planes, respectively. If G is the centroid of triangle PQR, then area of triangle AOG is (O is the origin) a. O b. $a^2+b^2+c^2$ c. $\frac{2}{3}\left(a^2+b^2+c^2\right)$ d. none of these

A. 0

B. $a^2 + b^2 + c^2$

C.
$$rac{2}{3}ig(a^2+b^2+c^2ig)$$

D. none of these

Answer: A

Watch Video Solution

6. ABCDEF is a regular hexagon in the x-y plance with vertices in the anticlockwise direction. If $\overset{
ightarrow}{A}B=2\hat{i}$, then $\overset{
ightarrow}{C}D$ is

A.
$$\hat{i} + \sqrt{3}\hat{j}$$

B.
$$\hat{i} - \sqrt{3}\hat{j}$$

C.
$$-\hat{i}+\sqrt{3}\hat{j}$$

D.
$$\sqrt{3}\hat{i}-\hat{j}$$

Answer: C

Watch Video Solution

7. Let position vectors of point A,B and C of triangle ABC represents be $\hat{i}+\hat{j}+2\hat{k},\,\hat{i}+2\hat{j}+\hat{k}$ and $2\hat{i}+\hat{j}+\hat{k}$. Let

 $l_1 + l_2$ and l_3 be the length of perpendicular

drawn from the orthocenter 'O' on the sides

AB, BC and CA, then $(l_1+l_2+l_3)$ equals

A.
$$\frac{2}{\sqrt{6}}$$
B. $\frac{3}{\sqrt{6}}$

$$\frac{3}{\sqrt{6}}$$

$$\therefore \frac{\sqrt{6}}{2}$$

$$\frac{\sqrt{6}}{3}$$

Answer: C

8. If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and λ is scalar, such that $\overrightarrow{AD} + \frac{2}{3}\overrightarrow{BE} + \frac{1}{3}\overrightarrow{CF} = \lambda \overrightarrow{AC}$, then λ is equal to

A.
$$\frac{1}{2}$$

B. 1

 $\mathsf{C.}\,3/2$

D. 2

Answer: A

9. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tetrahedron, then the point where lines joining the mid-points of opposite edges of concurrent is

A.
$$(1, -1, 2)$$

B.
$$(-1, 1, 2)$$

D.
$$(-1, 1, -2)$$

Answer: A

Watch Video Solution

10. The unit vector parallel to the resultant of the vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $4\hat{i}-3\hat{j}+2\hat{k}$ is

A.
$$\dfrac{1}{\sqrt{37}}\Big(6\hat{i}+\hat{k}\Big)$$

B.
$$\frac{1}{\sqrt{37}}\Big(6\hat{i}+\hat{j}\Big)$$

C.
$$rac{1}{\sqrt{37}}\Big(6\hat{i}+\hat{k}\Big)$$

D. none of these

Answer: A

- **11.** ABCDEF is a regular hexagon. Find the vector $\overrightarrow{A}B+\overrightarrow{A}C+\overrightarrow{A}D+\overrightarrow{A}E+\overrightarrow{A}F$ in terms of the vector $\overrightarrow{A}D$
 - **A.** 1
 - B. 2
 - C. 3
 - D. none of these

Answer: C

Watch Video Solution

12. If

$$|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}|=0, \left|\overrightarrow{a}\right|=3, \left|\overrightarrow{b}\right|=5, \left|\overrightarrow{c}\right|=7$$

, then find the angle between \overrightarrow{a} and \overrightarrow{b} .

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{4}$$

D.
$$\frac{7}{6}$$

Answer: B

Watch Video Solution

13. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

A.
$$\sqrt{2}$$

B.
$$\sqrt{3}$$

D. none of these

Answer: B

Watch Video Solution

14. The position vectors of the points A,B, and

C are
$$\hat{i}+2\hat{j}-\hat{k},\,\hat{i}+\hat{j}+\hat{k}$$
, and

 $2\hat{i}\,+3\hat{j}\,+2\hat{k}$ respectively. If A is chosen as the origin, then the position vectors B and C are

A.
$$\overrightarrow{i} + 2\hat{k},\, \hat{i} + \hat{j} + 3\hat{k}$$

B.
$$\hat{j}+2\hat{k},\,\hat{i}+\hat{j}+3\hat{k}$$

C.
$$-\hat{j}+2\hat{k},\,\hat{i}-\hat{j}+3\hat{k}$$

D.
$$-\hat{j}+2\hat{k},\,\hat{i}+\hat{j}+3\hat{k}$$

Answer: D

Watch Video Solution

15. Orthocenter of an equilateral triangle ABC

is the origin \longrightarrow \longrightarrow \longrightarrow

O. If

$$\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b},\overrightarrow{OC}=\overrightarrow{c}$$
 ,

then

$$\overrightarrow{AB} + 2\overrightarrow{BC} + 3\overrightarrow{CA} =$$

A. $3\overrightarrow{c}$

B.
$$3\overrightarrow{a}$$

$$\mathsf{C.}\stackrel{\longrightarrow}{0}$$

D.
$$3\overset{
ightarrow}{b}$$

Answer: B

Watch Video Solution

16. If the position vectors of P and Q are $\hat{i}+2\hat{j}-7\hat{k}$ and $5\hat{i}-3\hat{j}+4\hat{k}$ respectively, the cosine of the angle between \overrightarrow{PQ} and z-axis is

A.
$$\frac{4}{\sqrt{162}}$$

B.
$$\frac{11}{\sqrt{162}}$$

$$\mathsf{C.}\ \frac{5}{\sqrt{162}}$$

$$\mathsf{D.} - \frac{5}{\sqrt{162}}$$

Answer: B

17. The non zero vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} , and \overrightarrow{c} are related by $\overrightarrow{a} = 8\overrightarrow{b} nd\overrightarrow{c} = -7\overrightarrow{b}$. Then

the angle between \overrightarrow{a} and \overrightarrow{c} is (A) π (B) 0 (C)

$$\frac{\pi}{4}$$
 (D) $\frac{\pi}{2}$

A.
$$\frac{\pi}{4}$$

$$\mathsf{B.}\;\frac{\pi}{2}$$

Answer: C

 $\mathsf{C}.\,\pi$

D. 0

18. The unit vector bisecting \overrightarrow{OY} and \overrightarrow{OZ} is

A.
$$\frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

B.
$$\frac{i-k}{\sqrt{2}}$$

c.
$$\frac{j+k}{\sqrt{2}}$$

D.
$$\frac{-j+k}{\sqrt{2}}$$

Answer: C

19. A unit tangent vector at t=2 on the curve

$$x=t^2+2, y=4t-5$$
 and $z=2t^2-6t$ is

A.
$$\dfrac{1}{\sqrt{3}}igg(\overset{
ightarrow}{i} + \overset{
ightarrow}{j} + \overset{
ightarrow}{k} igg)$$

B.
$$\dfrac{1}{3}igg(2\overrightarrow{i}+2\overrightarrow{j}+\overrightarrow{k}igg)$$

C.
$$\dfrac{1}{\sqrt{6}}igg(2\overset{
ightarrow}{i}+\overset{
ightarrow}{j}+\overset{
ightarrow}{k}igg)$$

D.
$$\dfrac{1}{3} \left(\overset{
ightarrow}{i} + \overset{
ightarrow}{j} + \overset{
ightarrow}{k}
ight)$$

Answer: B

20. If \overrightarrow{a} and \overrightarrow{b} are position vectors of A and B respectively, then the position vector of a point C in \overrightarrow{AB} produced such that \overrightarrow{AC} =2015 \overrightarrow{AB} is

A.
$$2014\overrightarrow{a}-2015\overrightarrow{b}$$

$$\texttt{B.}\ 2014 \, \overrightarrow{b} \, + 2015 \, \overrightarrow{a}$$

C.
$$2015\overrightarrow{b} + 2014\overrightarrow{a}$$

D.
$$2015\overrightarrow{b}-2014\overrightarrow{a}$$

Answer: D

21. Let
$$\overrightarrow{a} = (1, 1, -1), \overrightarrow{b} = (5, -3, -3)$$

and
$$\overrightarrow{c}=(3,\ -1,2).$$
 If \overrightarrow{r} is collinear with \overrightarrow{c}

and has length $\dfrac{\left|\overrightarrow{a}+\overrightarrow{b}\right|}{2}$, then \overrightarrow{r} equals

A.
$$\pm 3\overrightarrow{c}$$

B.
$$\pm \frac{3}{2} \overrightarrow{c}$$

$$\mathsf{C}.\pm\overrightarrow{c}$$

D.
$$\pm \frac{2}{3} \overrightarrow{c}$$

Answer: C

22. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is

A.
$$rac{1}{5} \Big(5 \hat{i} \hat{j} - 7 \hat{k} \Big)$$

B.
$$rac{1}{5}ig(4\hat{i}+9\hat{j}-15\hat{k}ig)$$

C.
$$\left(\hat{i}-4\hat{j}+3\hat{k}
ight)$$

D.
$$rac{1}{5}ig(\hat{i}-4\hat{j}+3\hat{k}ig)$$

Answer: A

Watch Video Solution

23. Three points A,B, and C have position

vectors
$$-2\overrightarrow{a}+3\overrightarrow{b}+5\overrightarrow{c},\overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}$$

and $7\overrightarrow{a}-\overrightarrow{c}$ with reference to an origin O.

Answer the following questions?

Which of the following is true?

A.
$$\overrightarrow{AC}=2\overrightarrow{AB}$$

B.
$$\overrightarrow{AC} = -3\overrightarrow{AB}$$

C.
$$\overrightarrow{AC}=\overrightarrow{3AB}$$

D. None of these

Answer: C

Watch Video Solution

24. Three points A,B, and C have position vectors $-2\overrightarrow{a}+3\overrightarrow{b}+5\overrightarrow{c}, \overrightarrow{a}+2\overrightarrow{b}+3\overrightarrow{c}$ and $7\overrightarrow{a}-\overrightarrow{c}$ with reference to an origin O.

Answer the following questions?

Which of the following is true?

A.
$$2\overrightarrow{OA} - 3\overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$$

B.
$$2\overrightarrow{OA} + 7\overrightarrow{OB} + 9\overrightarrow{OC} = \overrightarrow{0}$$

$$\mathsf{C.}\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$$

D. None of these

Answer: A

25. Three points A,B, and C have position vectors
$$-2\overrightarrow{a} + 3\overrightarrow{b} + 5\overrightarrow{c}$$
, $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$ and $7\overrightarrow{a} - \overrightarrow{c}$ with reference to an origin O.

Answer the following questions?

B divided AC in ratio

- A. 2:1
- B.2:3
- C. 2: -3
- D. 1:2

Answer: B

