đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MCGROW HILL EDUCATION PHYSICS (HINGLISH)

MOTION

Elementary Question

1. Unti of acceleration is
A. m / s
B. ms
C. $\frac{m}{s_{2}}$
D. none of these

Answer: C

D Watch Video Solution
2. A body goes from A to b with a velocity of
$20 \mathrm{~m} / \mathrm{s}$ and comes back from B to A with a
velocity of $30 \mathrm{~m} / \mathrm{s}$. The average velocity of the body during he whole journey is
A. zero
B. $25 \mathrm{~m} / \mathrm{s}$
C. $24 \mathrm{~m} / \mathrm{s}$
D. none of these

Answer: A
(Watch Video Solution
3. A body covers half the distance with a speed of $20 \mathrm{~m} / \mathrm{s}$ the other half with a speed of $30 \mathrm{~m} / \mathrm{s}$.

The average velocity ogf the body during the whole journey is
A. zero
B. $24 \mathrm{~m} / \mathrm{s}$
C. ($25 \mathrm{~m} / \mathrm{s}$
D. none of these

Answer: B
4. In the equation of motion, ${ }^{`} S=u t+1 / 2 a^{\wedge}(2), s$ stands for
A. distance in t seconds
B. maximum height reached
C. distance in the $t^{t h}$ second
D. none of these

Answer: A

D Watch Video Solution

5. Choose the wrong statement

A. retardation is a vector quantity
B. accelaration due to gravity is a vector

quantity

C. average speed is a vector quantity

D. displacement is a vector quantity

Answer: C

6. In the euqation of motion, $x=a t+b t^{2}$, the units of a and b are respectively
A. $\frac{m}{s^{2}}$
B. $\frac{m}{s}, \frac{m}{s^{2}}$
C. $\mathrm{m} / \mathrm{s}, \mathrm{m} / \mathrm{s}$
D. none of these

Answer: B

- Watch Video Solution

7. A body is thrown up with an initial velocity u

and covers a maximum hieght of h, then h is equal to

> A. $\frac{u^{2}}{2 g}$
> B. $\frac{u}{2 g}$
C. 2 ug
D. none of these

Answer: A

8. The speed's hand of a which is 2 cm long. The speed of the tip of this hand is
A. $0.21 \mathrm{~cm} / \mathrm{s}$
B. $2.1 \mathrm{~cm} / \mathrm{s}$
C. $21.0 \mathrm{~cm} / \mathrm{s}$
D. none of these

Answer: A

D View Text Solution
9. A body is thrown vertically upwards and rises to a height of 10 m . The velocity with which the body was thrown is (g-9.8m/(s^{2})
A. $10 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $14 \mathrm{~m} / \mathrm{s}$
D. none of these

Answer: C

D Watch Video Solution
10. In question number nine the time taken by
the bady to reach the highest point is
A. 1.43 s
B. 4.1 s
C. 1.24 s
D. none of these

Answer: A

- View Text Solution

11. If the time-displacement graph of a particle is parallel to the-axis, the velocity of the particle is
A. infinity
B. unity
C. equal to accleration of the body
D. zero

Answer: D

12. Velocity-time graph $A B$ (Fig.) shows that the

body has

A. a uniform accleration

B. a non-uniform retardtion

C. uniform speed

D. initial velocity $O A$ and is moving with

uniform retardation

Answer: D

D View Text Solution

13. Velocity-time graph $A B$ (Fig. 2.2) show that

A. uniform acceleration

B. unifoprm retardation

C. uniform velocity throughout its motion
and has zero initial velocity
D. none of these

Answer: D

D View Text Solution

14. The distance travelled by a freely falling body is propotional to
A. the mass of the body
B. the square of the acceleration due to
gravity
C. the square of the time of fall

D. the time of fall

Answer: C

D View Text Solution

15. The rate of change of displacement with
time is
A. speed
B. accerelation
C. retardation

D. velocity

Answer: D

D Watch Video Solution

16. A body strikes the floor vertically with a
velocity u and rebounds at the same speed.

The change inspeed would be
A. uniform acceleration
B. 3 u
C. 2 u
D. zero

Answer: D

D Watch Video Solution

17. The moon is $4 \times 10^{8} \mathrm{~m}$ from the earth. A
radar signal transmitted from the earth will
reach the moon in about
A. 5.2 s
B. 1.3 s
C. 2.6 s
D. 0.70 s

Answer: B

D Watch Video Solution

18. A and B are arguing about uniform accerelation. A states that accelarton means
"the linger you gop." B states that accerelaton means " the further you go." Who is right?
A. A
B. B
C. Both
D. None

Answer: C

D View Text Solution

19. A particle experiences constant acceleration for 20 s after starting from rest. If
it travels a distance X_{1}, in the first 10 s and
distance X_{2}, in the remaining 10s, then which of the following is true?
A. $X_{1}=2 X_{2}$
B. $\left(X_{1}=X_{2}\right.$
C. $X_{1}=3 X_{2}$
D. None of these

Answer: D

D Watch Video Solution
20. If a trolley starts from rest with an accerelaton of $2 \frac{m}{s^{2}}$, the velocity of the body after 4 s would be
A. $2 \mathrm{~m} / \mathrm{s}$
B. $8 \mathrm{~m} / \mathrm{s}$
C. $4 \mathrm{~m} / \mathrm{s}$
D. $6 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution
21. A train passes over a 400 m long bridge. If
the speed of the tralN IS $30 \mathrm{M} / \mathrm{S}$ and the train
takes 20 s to cross the brigde, then the length of the train is
A. 400 m
B. 600 m
C. 800 m
D. 200 m

Answer: D

22. the Si unit for the average velocity is

A. m / s
B. km / s
C. cm / s
D. mm / s

Answer: A

23. The SI unit for the resultant velocity is

A. m / s
B. km / s
C. cm / s
D. $\mathrm{min} / \mathrm{s}$

Answer: A

D Watch Video Solution
24. A train 50m long passes over a bridge at a
velocity of $30 \mathrm{~km} / \mathrm{m}$. If it takes 36 s to cross the bridge, the length of the bridge will be
A. 100 m
B. 200 m
C. 250 m
D. 300 m

Answer: C

D Watch Video Solution
25. The SI unit for angular velocity is
A. m / s
B. rad
C. rad/s
D. $\mathrm{m} / \mathrm{rad}$

Answer: C
26. $\mathrm{N} \mathrm{kg}{ }^{-1}$ is the unit of
A. retardation
B. acceleration
C. rate of change of velocity

D. all the above

Answer: D

27. A ball is thrown up with certain velocity. It attains a height of 40 m and comes back to the thrower . Then the
A. total distance covered by it is 40 m
B. total displacement covered by it is 80 m
C. total displacement is zero
D. total distance covered by it is zero

Answer: C

D View Text Solution
28. The acceleration of a body projected upwards with a certain velocity is
A. $9.8 \frac{m}{s^{2}}$
B. $-9.8 \frac{m}{s^{2}}$
C. zero
D. insufficient data

Answer: B
(Watch Video Solution
29. A driver is driving his car along a road as
shown in Fig. 2.3. The driver makes sure that the speedometer reads exactly $40 \mathrm{~km} / \mathrm{h}$. What happens to the speed of the car from P to Q ?

A. Speed remains constant
B. Speed first increases then decreases
C. Speed first decreases then increases
D. Nothing can be decided

Answer: A

D View Text Solution

30. In the above question, what happens to the velocity of the car from P to Q ?
A. velocity remains constant
B. Velocity first increases then decreases
C. Velocity first decreases then increases
D. Nothing can be decided

D View Text Solution

31. From Question 29, we can say that
A. the average speed is $40 \mathrm{~km} / \mathrm{h}$
B. the average velocity is $40 \mathrm{~km} / \mathrm{h}$
C. the average speed is $80 \mathrm{~km} / \mathrm{h}$
D. the average velocity is $80 \mathrm{~km} / \mathrm{h}$
32. A stone tied to a string is whirled in a circle. As it is revolving, the rope suddenly breaks. Then
A. the stone flies off tangentially
B. the stone moves radially inward
C. the stone moves radially outward
D. the motion of the stone depends upon
its velocity

Answer: A

D Watch Video Solution

33. In the following graph (Fig. 2.4) of
displacement
versus
time,

A. the body is at rest
B. the body has some initial speed
C. the body moves with sonstant speed
D. the body moves with constant velocity

Answer: A

D Watch Video Solution
34. It follows from Question 34, that the velocity in case of (b) is
A. more than the velocity in case of (a)
B. less than the velocity in case of (a)
C. equal to the velocity in case of (a)
D. square of the velocity in case of (a)

Answer: B

D View Text Solution
35. In Fig. 2.6, BC represents a body moving

A. backward with uniform velocity
B. forward with uniform velocity
C. backward with non-uniform velocity
D. forward with non-uniform velocity

Answer: A

- Watch Video Solution

36. In Fig. 2.7, the velocity of the body at A is

A. zero
B. unity
C. maximum
D. infinite

Answer: A

D Watch Video Solution
37. In the above question, the velocity
A. increases between points O and A

B. increases between points A and B

C. decreases between points A and B
D. is zero throughout

Answer: B

D View Text Solution

38. A body moving along a circular path has
A. a constant speed
B. a constant velocity

C. no tangential velocity

D. no radial acceleration

Answer: A
(Watch Video Solution

A. retardation is uniform
B. velocity is decreasing with time
C. beyond M, the body has negative velocity
D. all the above are incorrect

Answer: D

D Watch Video Solution

40. A body whose speed in a particular direction is constant
A. must be accelerating
B. must be retarding
C. has a constant velocity
D. all the above

Answer: C

D Watch Video Solution

41. The velocity of a particle increases from u
to v in a time t during which it covers a distances S. If the particle has a uniform
accerelation, which one of the following equations does not apply to the motion?
A. $2 S=(v+u) t$
B. $a=\frac{v-u}{t}$
C. $v^{2}=u^{2}-2 a S$
D. $S=\left(u+\frac{1}{2} a t\right) t$

Answer: C

D Watch Video Solution

42. A body has an acceleration of $-4 m s^{-2}$. What is its retardation?
A. $-4 m s^{2}$
B. $4 m s^{-2}$
C. Zero
D. nothing can be decided

Answer: B

D Watch Video Solution
43. A cyclist moves from a certain point X and goes round a circle of radius 'r' and reaches Y , exactly at the other side of the point X , as shown in Fig. 2.9. The displacement of the cyclist would be

A. πr
B. $2 \pi r$
C. $2 r$
D. $2 \frac{\pi}{r}$

Answer: C

D Watch Video Solution

44. In the above problem, the distance covered
by the cyclist would be
A. πr
B. $2 \pi r$
C. $2 r$
D. $2 \frac{\pi}{r}$

Answer: A

D View Text Solution

45. Which of the following relations represents the relationship between the average speed, time and distance correctly?
A. Avera \geq speed $=d i s \tan c e \times t i m e$

B. Average speed $=\frac{\text { total distance }}{\text { total time }}$

C. Time = average speed + distance
D. Distance = average speed-time

Answer: B

D Watch Video Solution

46. When a graph between two physical quantities is a straight line, the two quantities are:
A. both constant
B. independent of each other
C. directly proportional
D. inversely proportional

Answer: C

D View Text Solution

47. A man walks 8 m towards East and then 6
m towards North. His magnitude of
displacement is
A. 10 m
B. 14 m
C. 2 m
D. zero

Answer: A

- View Text Solution

48. Area under a velocity-time graph gives
A. the time taken by a moving object
B. the distance travelled by a moving object
C. the acceleration of moving object
D. the retardation of a moving object

Answer: B

D Watch Video Solution

49. A player completes a circular path of radius r in 40 s. At the end of 2 minutes 20 seconds,
A. $2 r$
B. $2 \pi r$
C. $7 \pi r$
D. zero

Answer: A

D View Text Solution

50. Which of the following physical quantities
is different from others?
A. Speed
B. Distance
C. Energy
D. Average velocity

Answer: D

D Watch Video Solution

51. Which of the following physical quatities is different from others?
A. Displacement
B. Velocity
C. Force
D. Kinetic energy

Answer: D

- Watch Video Solution

52. The speed of a body describing its motion
is

A. direction

B. state
C. type

D. rapidity

Answer: D

D View Text Solution

53. The unit for the rate of change of velocity
will be
A. m / s
B. $\frac{m}{s^{2}}$
C. Ns
D. N / s

Answer: B

D Watch Video Solution

54. The velocity -time graph for a body with
A. straight line
B. straight line parallel to x-axis
C. straight line parallel to y-axis
D. curved line

Answer: D

D Watch Video Solution
55. The ratio of SI units to CGS units of retardation is
A. 10^{-2}
B. 10^{2}
C. 10
D. 10^{-1}

Answer: B

D Watch Video Solution

56. The physical quantity corresponding to the rate of change of displacement is
A. speed
B. velocity
C. acceleration
D. retardation

Answer: B

D Watch Video Solution
57. The velocity of a body at rest is always
A. unity
B. negative
C. zero
D. infinite

Answer: C

D Watch Video Solution

58. When the distance an object travels is directly proportional to the length of time, it is said to travel with
A. zero velocity
B. constant speed
C. constant acceleration
D. uniform velocity

Answer: B

D Watch Video Solution
59. In the following speed-time graph (Fig.
2.10), the shaded portion gives

A. distance travelled
B. average speed
C. average velocity
D. displacement travelled

Answer: A

D Watch Video Solution
60. A car increases its speed form $20 \mathrm{~km} / \mathrm{h}$ to $50 \mathrm{~km} / \mathrm{h}$ in 10 seconds. Its acceleration is
A. $30 m s^{-2}$
B. $3 m s^{-2}$
C. $18 m s^{-2}$
D. none of these

Answer: D

61. If the velocity of a body does not change with time, its acceleraton is
A. zero
B. infinite
C. unity
D. none of these

Answer: A
(Watch Video Solution

1. The location of a particle has changed. What
can you say about the displacement and the distance covered by the particle?
A. One may be zero
B. Both may be zero
C. Neither can be zero
D. One is positive, other is negative and
vice versa

Answer: C

D View Text Solution

2. A train 120 m long is going towards north direction at a speed of $8 m s^{-1}$. A parrot flies
at the speed of $4 m s^{-1}$ towards south direction parallel to the railway track. The time taken by the parrot to cross the train is
A. 30 s
B. 15 s

C. 10 s

D. 5 s

Answer: C

- Watch Video Solution

3. Which of the following velocity-time graphs

 does not represent motion in one dimension?
A.

Answer: B

- Watch Video Solution

4. A boy completes one round of a circular track of radius r in 40 s . His displacement at the end of 2 min 20 s will be

A. zero

B. $2 r$
C. $2 \pi r$
D. $7 \pi r$

Answer: B

- Watch Video Solution

5. A particle starts from the origin, goes along

X-axis to the point $(30 m, 0)$ and then returns
along the same line to the point $(-30 m, 0)$. The displacement and distance of the particle during the trip are
A. $0,60 \mathrm{~m}$
B. $60 \mathrm{~m}, 30 \mathrm{~m}$
C. $90 \mathrm{~m},-30 \mathrm{~m}$
D. $-30 m, 90 m$
6. A car runs on a circular track at a constant speed. The circular track has a radius of 100 m .

If the car takes 62.8 on each lap, its average speed is
A. $20 m s^{-1}$
B. $10 m s^{-1}$
C. $5 m s^{-1}$
D. zero

Answer: B

D Watch Video Solution

7. In question 68 above, the average velocity of
the car is
A. $10 m s^{-1}$
B. $20 \mathrm{~ms}^{-1}$
C. zero
D. $5 m s^{-1}$

Answer: C

D View Text Solution

8. Which of the following distance-time graphs
is not possible?

Answer: A

- Watch Video Solution

9. Two persons start running towards each other from two points that arc 120m apart.

First person ruins with a speed of $5 m s^{-1}$ and
the other wi9th a speed of $7 m s^{-1}$. Both the persons meet after
A. 10 s
B. 24 s
C. 1 min
D. 48 s

Answer: A

D Watch Video Solution
10. In question 71 above, two persons meet each other from the first point at
A. 70 m
B. 80 m
C. 50m
D. 12 m

Answer: C

11. If a car at rest accelerates uniformly to a speed of $144 \mathrm{~km} / \mathrm{h} 20 \mathrm{~s}$, it covers a distance of
A. 400 m
B. 1440 m
C. 2880 m
D. none of these

Answer: A

- View Text Solution

12. A body starting from rest is moving with a uniform acceleration of $8 \frac{m}{s^{2}}$. Then the distance travelled by it in 5th second will be
A. 40 m
B. 36 m
C. 100 m
D. zero

Answer: B
13. A 120 m long train is moving in a direction
with a speed of $20 \mathrm{~ms}^{-1}$. Another train (130m
long) moving with $30 \mathrm{~ms}^{-1}$ in the opposite directon crosses the first train in a time
A. 36 s
B. 30 s
C. 6 s
D. 5 s

Answer: D

14. A bullet is fired with a speed of $10^{3} \mathrm{~ms}^{-1}$ in order to hit s target 100 m away. If $g=10 \mathrm{~ms}^{-2}$, the gun should be aimed at
A. directly towards the target
B. 5 cm below the target
C. 5 cm above the target
D. 15 cm above the target

Answer: C
15. A car moves for half of its time at $80 \mathrm{~km} / \mathrm{h}$ and for rest of time at $40 \mathrm{~km} / \mathrm{h}$. Total distance covered is 60 km . What is the average speed of the car
A. $120 \mathrm{~km} / \mathrm{h}$
B. $100 \mathrm{~km} / \mathrm{h}$
C. $80 \mathrm{~km} / \mathrm{h}$
D. $60 \mathrm{~km} / \mathrm{h}$

Answer: D

- Watch Video Solution

16. The distance (5) travelled varies with time
(t) for four different-bodies as given below. In
which case is the acceleration of the body is

minimum?

Answer: D

D View Text Solution
17. The area under acceleration-time graph

gives

A. distance travelled
B. the displacement
C. Velocity

D. change in velocity

Answer: D

- Watch Video Solution

18. The displacement of a body is given to be proportional to the cube of time elapsed. The magnitude of the acceleration of the body is
A. decreasing with time
B. increasing with time
C. constant but not zero
D. zero

Answer: B

19. Fig. 3.39 shows the acceleration - time graph for a particle in rectilinear motion. Find the average acceleration in first 20 s.

A. $40 m s^{-2}$
B. $30 m s^{-2}$
C. $20 m s^{-2}$
D. $15 m s^{-2}$

Answer: D

D Watch Video Solution

20. A body nis thrown vertically upward. Which
of the following graphs correctly/represents
the velocity of the body with time?
A.
B.
c.
D.

Answer: A

D View Text Solution

21. A body of mass 3 kg moving with a constant acceleration covers a distance of 10 m in the 3rd second and lbm in the 4th ssecond respectively.

The initial velocity of the body is
A. $10 m s^{-1}$
B. $8 m s^{-1}$
C. $5 m s^{-1}$
D. $-5 m s^{-1}$

Answer: D

D Watch Video Solution

22. A bus travelling the first-one-third distance at a speed of $10 \mathrm{~km} / \mathrm{h}$, the next one-fourth at
$20 \mathrm{~km} / \mathrm{h}$ and the remaining at $40 \mathrm{~km} / \mathrm{h}$. The average speed of the bus is about
A. $8 \mathrm{~km} / \mathrm{h}$
B. $9 \mathrm{~km} / \mathrm{h}$
C. $16 \mathrm{~km} / \mathrm{h}$
D. $18 \mathrm{~km} / \mathrm{h}$

Answer: D

D View Text Solution

23. A stone is dropped from the top of a tower
and travels 24.5 m in the last second of its
journey.
Then the height of the tower is
A. 44.1 m
B. 49 m
C. 78.4 m
D. none of these

Answer: A
24. A stone is dropped into a well in which the level of water is H metre below the top of the well. If v is velocity splash is heard will be given by

$$
\begin{aligned}
& \text { A. } \frac{2 H}{V} \\
& \text { B. } \sqrt{\frac{2 H}{g}}+\frac{H}{V} \\
& \text { C. } \sqrt{\frac{H}{2 g}}+\frac{2 H}{V} \\
& \text { D. } \sqrt{\frac{2 H}{V}}+\frac{H}{g}
\end{aligned}
$$

Answer: B

- Watch Video Solution

25. Which of the following shows velocity (v) -
time (t) graph for falling apple?
A.
B.
c.
D.

Answer: D

D View Text Solution

26. A man throws ball into the air one after the
other. Throwing one when other is at the highest point. How high the balls rise if he throws twice a second.
A. 0.49 m
B. 1.25 m
C. 2.45 m

D. 4.9 m

Answer: B

D Watch Video Solution

27. A car moving with a speed of $30 \mathrm{~ms}^{-1}$
takes a U-turn in 6 seconds, without changing
its speed. What is the average acceleration during these 6 seconds?
A. $5 m s^{-2}$
B. $10 m s^{-2}$
C. $2.5 m s^{-2}$
D. zero

Answer: B

D View Text Solution

28. Tripling the speed of a motor car multiplies

the distance required for stopping it by
A. 2
B. 3
C. 6
D. 9

Answer: D

D View Text Solution

29. An insect craws a distance of 3 m along
north in 6 seconds and then a distance of 4 m
along east in 9 seconds. Then the average
velocity of the insect is
A. $3 m s^{-1}$
B. $2 m s^{-1}$
C. $\frac{17}{18} m s^{-1}$
D. $\frac{1}{3} m s^{-1}$

Answer: D

D Watch Video Solution

30. In which of the following velocity (v) - time

(t) graphs, the instantaneous acceleration decreases with time?
A.

E
B.
C.
D.

Answer: C

D View Text Solution

31. If x is the distance at which a car can be stopped when initially it was moving with speed u, then on making the speed of the car

Nu , the distance at which the car can be stopped is
A. Nu
B. $N^{2} u$
C. $\frac{u}{N}$
D. $\frac{u}{N^{2}}$

Answer: B

D View Text Solution
32. When $x \propto t^{n}$, acceleration is constant when n equals
A. greater than 2
B. less than zero
C. 2
D. nothing can be divided

Answer: C
(D) Watch Video Solution
33. Distance covered-time graph cannot be

A. a closed curve

B. below the time-axis
C. a line or curve with negative slope
D. all of he above

Answer: D

D View Text Solution
34. Area between the time-axis and v-t curve when added with proper algebraic sign is equal to magnitude of
A. distance
B. speed
C. displacement
D. instantaneous velocity

Answer: C

D Watch Video Solution
35. An aeroplane moves 400 m towards north, $300 m$ towards west and then $1200 m$ vertically upward. Then its displacement from the initial position is
A. 1.3 km
B. 1.4 km
C. 1.5 km
D. zero

Answer: A
36. A cyclist moving on a circular track of radius 20 m completes half a revolution in 20 seconds.

What is its average velocity?
A. zero
B. $2 \pi m s^{-1}$
C. $2 m s^{-1}$
D. $4 \pi m s^{-1}$

Answer: C

- Watch Video Solution

37. Acceleration (a) - time (t) graph of a body is
given

Fig.2.21(a)

Which of the following graphs the corresponding veolcity (v) - time (t) variation?
A.

B.
C.
D.

Answer: B

D View Text Solution

38. A car accelerates from rest at a constant
rate α for sometime , after which it decelerates at a constant rate β and comes to
rest. If T is the total time elapsed, the maximum velocity acquired by the car is
A. $\left(\frac{\alpha \beta}{\alpha+\beta}\right) T$
B. $\left(\left(\alpha+\frac{\beta}{\alpha \beta}\right) T\right.$
C. $\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right) T$
D. $\frac{1}{2} \frac{\alpha T}{\beta}$

Answer: A

D Watch Video Solution

39. A body falls from a height H . Its velocity (v)distance (x) graph is
A.
B.
C.
D.

Answer: A

- View Text Solution

40. A person sitting in a train moving with a constant velocity along a straight line throws a ball vertically upwards, then the ball will
A. full onwards the train
B. behind the thrower's hand
C. return to thrower's hand
D. nothing can be decided

Answer: C

41. A body starting from rest moves with constant acceleration. The ratio of distance covered by the body during the 5th second to that covered in 5 seconds is

$$
\begin{aligned}
& \text { A. } \frac{1}{25} \\
& \text { B. } \frac{3}{25} \\
& \text { C. } \frac{9}{25} \\
& \text { D. } \frac{1}{25}
\end{aligned}
$$

Answer: C

42. A bullet loses $\frac{1}{20}$ of its velocity after penetrating a plank. How many planks are required to stop the bullet?
A. 9
B. 11
C. 7
D. 5

Answer: B

D View Text Solution
43. Which of the following cannot be speed (v)

- time (t) graph?
A.
B.
c.
D.

Answer: C

44. Figure shows the displacement (x)-time (t) graph of particles A and B. Which of the following statements is correct?

Fig. 2.26
A. A is accelerated B is restarted
B. A and B move with uniform equal speed
C. Both A and B move with uniform speeds
but speed of A is more that that of B

D. Both A and B move with uniform speeds

but speed if A is less than that of B

Answer: C

D View Text Solution

45. Velocity (v) - time (t) graphis shown in
figure What will be displacement of the body
in 5 seconds?

Fig.2.27
A. 2 m
B. 3 m
C. 4 m
D. 6 m

Answer: B

D View Text Solution

46. If a body is realeased from the top of a tower, the graph between distance (x) and
time (t) is correctly shown by
A.
B.
C.
D.

Answer: A

D View Text Solution

47. A body is thrown vertically upwards. If air resistance is to be taken into account, then the time during which the body rises is.
A. equal to the time of fall
B. less than the velocity in case of (a)
C. greater than the time of fall
D. nothing can be decided

Answer: B

D Watch Video Solution

48. A body freely falling from rest has a velocity V after it falls through a height H . The
distance it has to fall down further for its

velocity to become double is

A. 3 H
B. 2 H
C. H
D. $\frac{H}{2}$

Answer: A

D View Text Solution

