© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - KUMAR PRAKASHAN KENDRA

PHYSICS (GUJRATI ENGLISH)

MOTION

Example

1. A bus starts from village A to $7: 00$ am and
reaches village B at $8: 30 \mathrm{am}$. If the discatnace
between the villages A and B is 60 km . Find the average speed of the bus.

D Watch Video Solution

2. A bus starts from village A to $7: 00$ am and
reaches village B at $8: 30 \mathrm{am}$. If the discatnace
between the villages A and B is 60 km . Find the average speed of the bus.

1. Discuss whether the walls of your classroom

 are at rest or in motion.
D Watch Video Solution

2. Have you ever experienced that the train in
which you are sitting appears to move while it
is at rest ? Discuss and share your experience.
3. Take a metre scale and a long rope.

Walk from one corner A of a basketball court
to its opposite corner Calong its sides $A B$ and

AC.

Measure the distance covered by you and magnitude of the displacement.

What difference would you notice between the two in this case?

Watch Video Solution

4. Automobiles are fitted with a device that
shows the distance travelled. Such a device is
known as an odometer. A car is driven from
Bhubaneshwar to New Delhi. The difference
between the final reading and the initial reading of the odometer is 1850 km .

Find the magnitude of the displacement between Bhubaneshwar and New Delhi by using the Road Map of India.
5. The data regarding the motion of two different objects A and B are given in the following table :

The	Dintasce truvelled by othject A $\mathbf{6}$	
9.30 am	10	12
9.45 am	20	18
10.00 mm	30	23
10.15 am	40	35
10.30 am	50	37
10.45 mm	60	41
11.00 mm	70	14

Examine them carefully and state whether the motion of the objects is uniform or nonuniform.

- Watch Video Solution

6. Measure the time it takes you to walk from
your house to your bus stop or the school. If you consider that your average walking speed is $4 k m s p e r h r$ estimate the distance of the bus stop or school from your house.

D Watch Video Solution

7. At a time when it is cloudy. there may be
frequent thunder and lightning. The sound of
thunder takes some time to reach you after
you see the lightning .

Can you answer why this happens ?

D Watch Video Solution

8. Measure this time interval using a digital wrist watch or a stopwatch.

Calculate the distance of the nearest point of lightning (Speed of sound in air $=346 \mathrm{~ms}^{-1}$)

- Watch Video Solution

9. In your everyday life you come across a range of motions in which
(a) acceleration is in the direction of motion.
(b) acceleration is against the direction of motion.
(c) acceleration is uniform.
(d) acceleration is non-uniform.

Can you identify one example each of the above type of motion ?
10. The time of arrival and departure of a train at three stations A, B and Cand the distance of stations B and C from A are given in the following table:

Diatances of stations B and C from A and times of arrival and departure of the traln			
Station	Distance from A (km)	Time of arrival (hour)	$\begin{aligned} & \text { Time of } \\ & \text { departure thour) } \end{aligned}$
A	0	08:00	08: 15
B	120	11:15	11:30
C	180	13:00	13:15

'Plot and interpret the distance-time graph for the train assuming that its motion between any two siations in uniform.
11. Feroz and his sister Sania go to school on
their bicycle. Both of them start the at the
same time from their home but take different
times to reach the school although they follow
the same route.

The table given below shows the distance travelled by them in different times:

Distance covered by Feros and Sanla at difierent thmes on their Bleycles		
Time	Distance travelled by Feroz (km)	Distance travelled by Santa (km)
$8: 00 \mathrm{am}$	0	0
B:05 am	1.0	0.8
$8: 10 \mathrm{am}$	1.9	1.6
$8: 15 \mathrm{~mm}$	2.8	2.3
$8: 20 \mathrm{am}$	3.6	3.0
$8: 25 \mathrm{am}$	-	3.6

Draw
the graph for distance-time graph
12. Take a piece of thread and tie a small place of stone at one of its ends. Hold the other end of the thread and move the stone to describe
a circular path with constant speed.

A stone describing a circular path with a velocity of constant magnitude

Now, release the thread.

Can you tell the direction in which the stone moves after it is released?

- Watch Video Solution

13. If n capacitors are connected in series then what is the equivalent capacitance?

- Watch Video Solution

14. If n capacitance are connected in parallel
and all are equal then find equivalent
capacitance.

- Watch Video Solution

15. Take a metre scale and a long rope.

Walk from one corner A of a basketball court to its opposite corner Calong its sides $A B$ and AC.

Measure the distance covered by you and magnitude of the displacement.

What difference would you notice between the two in this case?

Watch Video Solution

16. If n equal resistance are first connected in series then find the equivalent resistance

D Watch Video Solution

17. The data regarding the motion of two different objects A and B are given in the following table :

Examine them carefully and state whether the motion of the objects is uniform or nonuniform.

D View Text Solution
18. Measure the time it takes you to walk from
your house to your bus stop or the school. If
you consider that your average walking speed
is $4 k m s p e r h r$ estimate the distance of the bus stop or school from your house.

D Watch Video Solution

19. If n equal resistance are connected in parallel then find the equivalent resistance.

D Watch Video Solution
20. Measure this time interval using a digital wrist watch or a stopwatch.

Calculate the distance of the nearest point of lightning (Speed of sound in air $=346 m s^{-1}$)

D View Text Solution

21. In your everyday life you come across a
range of motions in which
(a) acceleration is in the direction of motion.
(b) acceleration is against the direction of
motion.
(c) acceleration is uniform.
(d) acceleration is non-uniform.

Can you identify one example each of the above type of motion ?

D Watch Video Solution

22. The time of arrival and departure of a train at three stations A, B and Cand the distance of stations B and C from A are given in the following table:

Distances of stations B and C from A and times of			
arrival and departure of the traln			
Station	Distance from	Time of arrival	Time of
	A (km)	(hour)	departure (hour)
A	0	$08: 00$	$08: 15$
B	120	$11: 15$	$11: 30$
C	180	$13: 00$	$13: 15$

'Plot and interpret the distance-time graph for the train assuming that its motion between any two siations in uniform.

D View Text Solution

23. Feroz and his sister Sania go to school on
their bicycle. Both of them start the at the
same time from their home but take different
times to reach the school although they follow
the same route.

The table given below shows the distance travelled by them in different times:

Distance covered by Feros and Sania at diflerent times on thelr bleycles		
Time	Distance travelled by Feroz (km)	Distance travelled by Sania (km)
$8: 00 \mathrm{am}$	0	0
B:05 mm	1.0	0.8
$8: 10 \mathrm{am}$	1.9	1.6
$8: 15 \mathrm{~mm}$	2.8	2.3
$8: 20 \mathrm{am}$	3.6	3.0
$8: 25 \mathrm{am}$	-	3.6

D View Text Solution

24. Take a piece of thread and tie a small place
of stone at one of its ends. Hold the other end
of the thread and move the stone to describe
a circular path with constant speed.

A stone describing a circular path with a velocity of constant magnitude

Now, release the thread.

Can you tell the direction in which the stone moves after it is released?

1. We sometimes are endangered by the motion of objects around us, especially if that motion is erratic and uncontrolled as observed in a flooded river, a hurricane or a tsunami. On the other hand, controlled motion can be a service to human beings such as in the generation of hydroelectric power.

Do you feel the necessity to study the erratic motion of some objects and learn to control them?

- View Text Solution

2. We sometimes are endangered by the motion of objects around us, especially if that motion is erratic and uncontrolled as observed in a flooded river, a hurricane or a tsunami. On the other hand, controlled motion can be a service to human beings such as in the generation of hydroelectric power.

Do you feel the necessity to study the erratic motion of some objects and learn to control them?

- View Text Solution

Intext Questions And Answers

1. An object has moved through a distance.

Can it have zero displacement ? If yes, support your answer with an example.

- Watch Video Solution

2. A farmer moves along the boundry of a square field of side 10 M in 40 s . What will be the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds from his initial position?

D Watch Video Solution

3. Which of the following is true for displacement?
(a) It cannot be zero.
(b) Its magnitude is greater than the distance travelled by the object.

- Watch Video Solution

4. Distinguish between speed and velocity.

D Watch Video Solution

5. Under what condition (s) is the magnitude of average velocity of an object is equal to its average speed ?
6. What does the odometer of an automobile measure ?

D Watch Video Solution
7. What does the path of an object look like when it is in uniform motion ?

D Watch Video Solution
8. During an experiment, a signal from spaceship reached the ground station in five minute. What was the distance of the speceship from the ground station ? The signal travels at the speed of light, that is, $3 \times 10^{8} \mathrm{~ms}^{-1}$.

D Watch Video Solution

9. When will you say a body is in (i) uniform acceleration ?
(ii) non-uniform acceleration ?
10. A bus decreases its speed from $80 \mathrm{kmh}^{-1}$
to $60 \mathrm{kmh}^{-1}$ in 5 s . Find the acceleration of the bus.

D Watch Video Solution

11. A train starting from a railway station and moving with uniform acceleration attains a
speed of $40 \mathrm{~km}^{-1}$ in 10 minute. Find its acceleration.

D Watch Video Solution

12. What is the nature of the distance-time graphs for uniform and non-uniform motion of an object?

D Watch Video Solution
13. What can you say about the motion of an
object whose distance-time graph is a straight
line parallel to the time axis ?

D Watch Video Solution

14. What can you say about the motion of an
object if its speed-time graph is a straight line parallel to the time axis ?
15. What is the quantity which is measured by the area occupied below the velocity-time graph ?

- Watch Video Solution

16. A bus starting from rest moves with a uniform acceleration of $0.1 m s^{-2}$ for 2 minutes. Find (a) the speed acquiresd (b) the distance travelled.
17. A train is travelling at a peed of $90 \mathrm{kmh}^{-1}$.

Breakes are applied so as to produce a uniform acceleration of $-0.5 \mathrm{~ms}^{-2}$. Find how far the train will go before it is brought to rest.

D Watch Video Solution

18. A trolley, while going doen an inclined plance, has an acceleration of $2 \mathrm{cms}^{-2}$. What will be its velocity 3 s after the start?
19. A racing car has a uniform acceleration of
$4 m s^{-2}$. What distance will it cover in 10 s after the start ?

- Watch Video Solution

20. A stone is throuwn in a vertically upward direction with a velocity of $5 m s^{-1}$. If the acceleration of the stone during its motion is
$10 \mathrm{~ms}^{-2}$ in the downword direction, what will
be the height attained by the stone and how much time will it take to reach there ?

- Watch Video Solution

21. An object has moved through a distance.

Can it have zero displacement ? If yes, support your answer with an example.

- Watch Video Solution

22. A farmer moves along the boundary of a square field of side 10 m in 40 s . What will be the magnitude of displacement of the farmer at the end of 2 minute 20 second from his initial position?

D Watch Video Solution

23. Which of the following is true for displacement?
(a) It cannot be zero.
(b) Its magnitude is greater than the distance travelled by the object.

- Watch Video Solution

24. Distinguish between speed and velocity.

- Watch Video Solution

25. Under what condition (s) is the magnitude of average velocity of an object is equal to its average speed ?
26. What does the odometer of an automobile measure ?

D Watch Video Solution

27. If n equal resistance are first connected in series and then in parallel. The ratio of resistance in series and parallel arrangements will be

Watch Video Solution

28. During an experiment, a signal from spaceship reached the ground station in five minute. What was the distance of the speceship from the ground station ? The signal travels at the speed of light, that is, $3 \times 10^{8} \mathrm{~ms}^{-1}$.

D Watch Video Solution

29. When will you say a body is in (i) uniform acceleration ?
(ii) non-uniform acceleration?

D Watch Video Solution

30. A bus accelerates its speed from $24 k \mathrm{kh}^{-1}$
to $54 \mathrm{kmh}^{-1}$ in 5 s . Find the acceleration of the bus.
31. A train starting from a railway station and moving with uniform acceleration attains a speed of $40 \mathrm{~km}^{-1}$ in 10 minute. Find its acceleration.

D Watch Video Solution

32. What is the nature of the distance-time graphs for uniform and non-uniform motion of an object?
33. What can you say about the motion of an
object whose distance-time graph is a straight
line parallel to the time axis ?

D Watch Video Solution

34. What can you say about the motion of an
object if its speed-time graph is a straight line parallel to the time axis?
35. What is the quantity which is measured by the area occupied below the velocity-time graph ?

- Watch Video Solution

36. A bus starting from rest moves with a uniform acceleration of $0.1 m s^{-2}$ for 2 minutes. Find (a) the speed acquiresd (b) the distance travelled.
37. A train is travelling at a peed of $90 \mathrm{kmh}^{-1}$.

Breakes are applied so as to produce a uniform acceleration of $-0.5 m s^{-2}$. Find how far the train will go before it is brought to rest.

D Watch Video Solution

38. A trolley, while going doen an inclined plance, has an acceleration of $2 \mathrm{cms}^{-2}$. What will be its velocity 3 s after the start?
39. A racing car has a uniform acceleration of
$4 m s^{-2}$. What distance will it cover in 10 s after the start ?

D Watch Video Solution

40. A stone is throuwn in a vertically upward direction with a velocity of $5 m s^{-1}$. If the acceleration of the stone during its motion is
$10 \mathrm{~ms}^{-2}$ in the downword direction, what will
be the height attained by the stone and how

much time will it take to reach there ?

D Watch Video Solution

Question And Answer

1. What is motion ?
(D) Watch Video Solution
2. What is uniform motion?
3. What is displacement ?

- Watch Video Solution

4. Is it possible that displacement is greater than the distance travelled by an object ?

5. Define : Speed

- Watch Video Solution

6. State the units of speed

D Watch Video Solution
7. Define : Average speed
8. Can the average speed of an object in motion be zero ?

D Watch Video Solution
9. What is displacement of an object in motion in unit time called ?

D Watch Video Solution

10. Define : Accelaration

- Watch Video Solution

11. What is the SI unit of acceleration?

D Watch Video Solution

12. A train starting from a railway station attains a velocity of $30 \mathrm{~ms}^{-1}$ in one minute.

What is its acceleration ?

D Watch Video Solution

13. Give an example of uniform acceleration.

D Watch Video Solution

14. Give an example of negative acceleration.
(Watch Video Solution
15. Name two quantities which you can calculate from speed-time graph.
16. What do the following distance-time graphs indicate?

17. What does the area under velocity-time graph and the time axis represent?

D Watch Video Solution
18. Define : Uniform circular motion

D Watch Video Solution

19. What type of motion does an athlete moving along a circular path with constant speed execute?
20. A driver decreases the speed of a car from
$25 m s^{-1}$ to $10 m s^{-1}$ in 5 second. Find the acceleration of the car.

- Watch Video Solution

21. What is motion ?

- Watch Video Solution

22. What is uniform motion ?

D Watch Video Solution

23. What is displacement?

D Watch Video Solution

24. Is it possible that displacement is greater
than the distance travelled by an object ?

D Watch Video Solution

25. Define : Speed

- Watch Video Solution

26. State the units of speed

D Watch Video Solution

27. Define : Average speed

D Watch Video Solution
28. Can the average speed of an object in motion be zero ?

D Watch Video Solution

29. What is displacement of an object in motion in unit time called?

- Watch Video Solution

30. Define : Accelaration

D Watch Video Solution

31. What is the SI unit of acceleration ?

D Watch Video Solution
32. A train starting from a railway station
attains a velocity of $30 \mathrm{~ms}^{-1}$ in one minute.

What is its acceleration?

- Watch Video Solution

33. Give an example of uniform acceleration.

- Watch Video Solution

34. Give an example of negative acceleration.

- Watch Video Solution

35. Name two quantities which you can calculate from speed-time graph.

D Watch Video Solution

36. What do the following distance-time graphs indicate?

D Watch Video Solution

37. What does the area under velocity-time graph and the time axis represent ?

38. Define : Uniform circular motion

- Watch Video Solution

39. What type of motion does an athlete moving along a circular path with constant speed execute?

- Watch Video Solution

40. A driver decreases the speed of a car from
$25 m s^{-1}$ to $10 m s^{-1}$ in 5 second. Find the acceleration of the car.

D Watch Video Solution

Choose Corect Option

1. For which of the following physical quantities it is necessary to indicate direction along with its magnitude?
A. Speed
B. Path length
C. Displacement Temperature
D. Temperature

Answer: C

D Watch Video Solution
2. A sprinter completes a round on a circular path of circumference 400 m , what is his displacement?
A. 400 m
B. 200 m
C. 100 m
D. zero

Answer:

D Watch Video Solution

3. Constant speed oof a train is $54 k i m h^{-1}$. What is its speed in unit ' $m s^{-1}$. ?
A. $15 m s^{-1}$
B. $90 m s^{-1}$
C. $1.5 m s^{-1}$
D. $9 m s^{-1}$

Answer: A

D Watch Video Solution
4. A scooterist travels at $30 \mathrm{kmh}^{-1}$ along a stright path for 20 min . How much distance has he travelled?
A. 1.5 km
B. 6 km
C. 10 km
D. 90 km

Answer: A

D Watch Video Solution
5. A cyclist travels 5 km in the east direction.

Then he travels 12 km in the south direction.

What is the magnitude of displacement of the

cyclist?

A. 17 km
B. 13 km
C. 7 km
D. zero

Answer: B
(Watch Video Solution
6. If velocity-time graph for a body in motion is
a straight line parallel to time axis, what type of motion is the body performing ?
A. would be stationary
B. non-uniform motion
C. motion with constant acceleration
D. motion with constant velocity

Answer: A:C

- Watch Video Solution

7. Which type of motion is described by a

graph in figure?

A. uniform motion
B. uniformly accelerated motion

C. non-uniform acce lerated motion

D. body is in stationary state

Answer: B

- Watch Video Solution

8. Velocity of a vehicle increases from 5 ms to
$15 m s^{-1}$ in 5 s . What is the magnitude of acceleration ?
A. $4 m s^{-2}$
B. $4 m s^{-1}$
C. $2 m s^{-1}$
D. $2 m s^{-2}$

Answer: B

D Watch Video Solution
9. Velocity-time graphs vehicle A for vehicles A
and B are shown in figure Which vehicle has accelerated motion vehicle B and which vehicle
has retarded motion?

A. Vehicle A retardation, vehicle B
acceleration
B. Vehicle A acceleration, vehicle B
retardation

C. Both vehicles A and B acceleration

D. Both vehicles A and B retardation

Answer: B

D Watch Video Solution

10. Acceleration of a car in motion is
$1.5 m s^{-2}$. How much is the increase in
velocity in 4s?
A. $6 m s^{-1}$
B. $4 m s^{-1}$
C. $4 m s^{-1}$
D. $2.66 m s^{-1}$

Answer: A

D Watch Video Solution

11. For which physical quantity from the following, direction is not required to be mentioned with its magnitude?
A. Speed
B. Displacement
C. Velocity
D. Acceleration

Answer: D

- Watch Video Solution

12. When is it said that the object performs
uniform motion?
A. Covers different distances in equal intervals of time.
B. Covers equal distances in different time intervals.
C. Covers equal distances in equal time intervals.
D. Covers different distances in different time intervals.

Answer: C

13. A person walks distance of 4 km from his
home in the north direction. Then he covers
distance of 3 km in west direction. Now t from
this place he direction walks toward home on
the path of minimum distance between that place and home. What would be the total

Home distance covered by this person?

A. 5 km
B. 7 km
C. 12 km
D. zero

Answer: C

D Watch Video Solution

14. A vehicle covers certain distance at constant speed of $20 \mathrm{kmh}^{-1}$ in time interval 't' on linear path. Then it covers certain distance at constant speed of $30 \mathrm{kmh}^{-1}$ in the same time interval. What is the average speed of the vehicle?
A. $25 \mathrm{kmh}^{-1}$
B. $24 \mathrm{kmh}^{-1}$
C. $50 \mathrm{kmh}^{-1}$
D. $12 k m h^{-1}$

Answer: A

D Watch Video Solution
15. What is acceleration?
A. Rate of position changing with time
B. Rate of velocity changing with time

C. Rate of speed changing with time

D. Rate of displacement changing with time

Answer: B

- Watch Video Solution

16. Which of the following relations is correct
for a vehicle performing uniform accelerated motion?

$$
\text { A. } v=\frac{a}{t}
$$

> B. $u=\frac{a}{t}$
> C. $t=-\frac{(v-u)}{a}$
> D. $v=u+a t$

Answer: A

- Watch Video Solution

17. A graph of velocity versus time ($v-t$) for an object performing motion with uniform acceleration is shown

What would be the velocity of the object at time $t=0$?
A. 0
B. $2 m s^{-1}$
C. $4 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

18. What is constant for an object performing
uniform circular motion?
A. Acceleration
B. Velocity
C. Displacement
D. Speed

Answer: D

D Watch Video Solution

19. What value is given by the area of a region
surrounded below the graph of v-t of a moving
object in the given time period ?
A. Distance
B. Velocity
C. Acceleration
D. Force

Answer: A::C::D

D Watch Video Solution

20. Velocity of a moving car goes on increasing
with time. In which direction would the acceleration of this car be?
A. in direction of velocity
B. in opposite direction to velocity
C. in perpendicular direction to velocity
D. in any direction

Answer: A

- Watch Video Solution

21. A graph of velocity-time (v-t) for an object performing motion is shown, what would you

conclude about motion of the object?

A. It would be performing uniform motion.
B. It would be performing non-uniform
motion.
C. It would be in steady state.
D. It would be performing constant accelerated motion,

Answer: A

D Watch Video Solution

22. Which of the following graphs represents
uniform motion of an object?

Answer:

23. Four motorcars A, B, C and D are moving on
a road in the same direction. Their graphs for distance-time are shown in the same graph paper, which of the following state is true?

A. Motorcar A is faster than car c.
B. Motorcar D is the fastest.
C. Motorcar B is faster than car D.
D. Motorcar is slower than car B.

Answer: A::C::D

D Watch Video Solution

24. The speed-time graphs for three objects X,
Y and Z are represented on the same graph paper. Which object would cover the highest
distance in given interval of time (t)?

A. Z
B. X
C. Y

D. All three objects would cover the same

(equal) distance

Answer:

D Watch Video Solution

25. A particle is moving on a circle of radius r.

The displacement at the end of half revolution
would be ...
A. zero
B. $p r$
C. $2 e$
D. $2 \pi r$

Answer: B

- Watch Video Solution

26. An object is thrown in vertical upward direction with velocity ' u ' then the maximum height attained by the object would be....
A. $\frac{u}{g}$
B. $\frac{u^{2}}{2 g}$
C. $\frac{u^{2}}{g}$
D. $\frac{u}{2 g}$

Answer: B

D Watch Video Solution

27. The numerical ratio of displacement to
distance for a moving object is......
A. always less than 1
B. always equal to 1
C. always more than 1
D. equal to or less than 1

Answer: A

D Watch Video Solution
28. If the distance (s), covered by an object is directly proportion to the square of time (t). then the object
A. would be performing motion with constant velocity.
B. would be performing motion with constant acceleration.
C. would be performing motion with increasing acceleration.
D. would be performing motion with
decreasing acceleration

Answer: B

29. If a boy is sitting on a merry-go-round, moves with constant speed of $10 \mathrm{~ms}^{-1}$ he would be ...
A. in steady state
B. moving with no acceleration
C. performing accelerated motion
D. moving with constant velocity

Answer: C

D Watch Video Solution
30. Area under a velocity-time graph represents a physical quantity which has the unit
A. m^{2}
B. m
C. m^{3}
D. $m s^{-1}$

Answer:

Watch Video Solution

31. in which of the following cases of motion, the distance covered and magnitude of displacement can be same?
A. If the car performs motion on linear path.
B. If the car performs motion on circular path.
C. If the oscillator oscillates to and fro about the mean-position.
D. If the earth revolves around the sun.

Answer: A

D Watch Video Solution

32. For which of the following physical quantities it is necessary to indicate direction along with its magnitude?
A. Speed
B. Path length
C. Displacement Temperature
D.

Answer: A::C::D

D Watch Video Solution

33. A sprinter completes a round on a circular path of circumference 400 m , what is his displacement?
A. 400 m
B. 200 m
C. 100 m
D. zero

Answer:

D Watch Video Solution

34. Constant speed oof a train is $54 \mathrm{kimh}^{-1}$.

What is its speed in unit ' $m s^{-1}$. ?
A. $15 m s^{-1}$
B. $90 m s^{-1}$
C. $1.5 m s^{-1}$
D. $9 m s^{-1}$

Answer: A

D Watch Video Solution

35. A scooterist travels at $30 \mathrm{kmh}^{-1}$ along a stright path for 20 min . How much distance has he travelled?
A. 1.5 km
B. 6 km
C. 10 km
D. 90 km

Answer: A

D Watch Video Solution
36. A cyclist travels 5 km in the east direction.

Then he travels 12 km in the south direction.

What is the magnitude of displacement of the

cyclist?

A. 17 km
B. 13 km
C. 7 km
D. zero

Answer: A::C
(Watch Video Solution
37. If velocity-time graph for a body in motion
is a straight line parallel to time axis, what type of motion is the body performing ?
A. would be stationary
B. non-uniform motion
C. motion with constant acceleration
D. motion with constant velocity

Answer: D

- Watch Video Solution

38. Which type of motion is described by a

graph in figure?

A. uniform motion
B. uniformly accelerated motion

C. non-uniform acce lerated motion

D. body is in stationary state

Answer: B

- Watch Video Solution

39. Velocity of a vehicle increases from 5 ms to
$15 m s^{-1}$ in 5 s . What is the magnitude of acceleration ?
A. $4 m s^{-2}$
B. $4 m s^{-1}$
C. $2 m s^{-1}$
D. $2 m s^{-2}$

Answer: D

D Watch Video Solution

40. Velocity-time graphs vehicle A for vehicles
A and B are shown in figure Which vehicle has accelerated motion vehicle B and which vehicle
has retarded motion?

A. Vehicle A retardation, vehicle B
acceleration
B. Vehicle A acceleration, vehicle B
retardation

C. Both vehicles A and B acceleration

D. Both vehicles A and B retardation

Answer: B

D Watch Video Solution

41. Acceleration of a car in motion is
$1.5 m s^{-2}$. How much is the increase in
velocity in 4s?
A. $6 m s^{-1}$
B. $4 m s^{-1}$
C. $4 m s^{-1}$
D. $2.66 m s^{-1}$

Answer: A

- Watch Video Solution

42. For which physical quantity from the following, direction is not required to be mentioned with its magnitude?
A. Speed
B. Displacement
C. Velocity
D. Acceleration

Answer: D

D Watch Video Solution
43. When is it said that the object performs
uniform motion?
A. Covers different distances in equal intervals of time.
B. Covers equal distances in different time intervals.
C. Covers equal distances in equal time intervals.
D. Covers different distances in different time intervals.

Answer: A::C::D

44. A person walks distance of 4 km from his
home in the north direction. Then he covers
distance of 3 km in west direction. Now t from
this place he direction walks toward home on
the path of minimum distance between that place and home. What would be the total

Home distance covered by this person?

A. 5 km
B. 7 km
C. 12 km
D. zero

Answer: C

D Watch Video Solution

45. A vehicle covers certain distance at constant speed of $20 \mathrm{kmh}^{-1}$ in time interval 't' on linear path. Then it covers certain distance at constant speed of $30 \mathrm{kmh}^{-1}$ in the same time interval. What is the average speed of the vehicle?
A. $25 \mathrm{kmh}^{-1}$
B. $24 \mathrm{kmh}^{-1}$
C. $50 \mathrm{kmh}^{-1}$
D. $12 k m h^{-1}$

Answer: A

D Watch Video Solution
46. What is acceleration?
A. Rate of position changing with time
B. Rate of velocity changing with time

C. Rate of speed changing with time

D. Rate of displacement changing with time

Answer: A::C

D Watch Video Solution

47. Which of the following relations is correct for a vehicle performing uniform accelerated motion?

$$
\text { A. } v=\frac{a}{t}
$$

> B. $u=\frac{a}{t}$
> C. $t=-\frac{(v-u)}{a}$
> D. $v=u+a t$

Answer: A

D Watch Video Solution

48. A graph of velocity versus time ($v-t$) for an object performing motion with uniform acceleration is shown

What would be the velocity of the object at time $t=0$?
A. 0
B. $2 m s^{-1}$
C. $4 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

49. What is constant for an object performing uniform circular motion?
A. Acceleration
B. Velocity
C. Displacement
D. Speed

Answer: D

D Watch Video Solution

50. What value is given by the area of a region
surrounded below the graph of v - t of a moving
object in the given time period ?
A. Distance
B. Velocity
C. Acceleration
D. Force

Answer: A

D Watch Video Solution

51. Velocity of a moving car goes on increasing
with time. In which direction would the acceleration of this car be?
A. in direction of velocity
B. in opposite direction to velocity
C. in perpendicular direction to velocity
D. in any direction

Answer: A

- Watch Video Solution

52. A graph of velocity-time (v-t) for an object performing motion is shown, what would you

conclude about motion of the object?

A. It would be performing uniform motion.
B. It would be performing non-uniform
motion.
C. It would be in steady state.
D. It would be performing constant accelerated motion,

Answer: A

D Watch Video Solution

53. Which of the following graphs represents
uniform motion of an object?

Answer:

D Watch Video Solution
54. Four motorcars A, B, C and D are moving on a road in the same direction. Their graphs
for distance-time are shown in the same graph paper, which of the following state is true?

A. Motorcar A is faster than car c.
B. Motorcar D is the fastest.
C. Motorcar B is faster than car D.
D. Motorcar is slower than car B.

Answer: A::C::D

D Watch Video Solution

55. The speed-time graphs for three objects X, Y and Z are represented on the same graph paper. Which object would cover the highest
distance in given interval of time (t)?

A. Z
B. X
C. Y

D. All three objects would cover the same

(equal) distance

Answer:

D Watch Video Solution

56. A particle is moving on a circle of radius r.

The displacement at the end of half revolution
would be ...
A. zero
B. $p r$
C. $2 e$
D. $2 \pi r$

Answer: B

- Watch Video Solution

57. An object is thrown in vertical upward direction with velocity ' u ' then the maximum height attained by the object would be....
A. $\frac{u}{g}$
B. $\frac{u^{2}}{2 g}$
C. $\frac{u^{2}}{g}$
D. $\frac{u}{2 g}$

Answer: B

D Watch Video Solution
58. The numerical ratio of displacement to distance for a moving object is......
A. always less than 1
B. always equal to 1
C. always more than 1
D. equal to or less than 1

Answer: A

- Watch Video Solution

59. If the distance (s), covered by an object is directly proportion to the square of time (t). then the object
A. would be performing motion with constant velocity.
B. would be performing motion with constant acceleration.
C. would be performing motion with increasing acceleration.
D. would be performing motion with
decreasing acceleration

Answer: B

60. If a boy is sitting on a merry-go-round, moves with constant speed of $10 \mathrm{~ms}^{-1}$ he would be ...
A. in steady state
B. moving with no acceleration
C. performing accelerated motion
D. moving with constant velocity

Answer: A::C::D

D Watch Video Solution
61. Area under a velocity-time graph represents a physical quantity which has the unit
A. m^{2}
B. m
C. m^{3}
D. $m s^{-1}$

Answer:
62. in which of the following cases of motion, the distance covered and magnitude of displacement can be same?
A. If the car performs motion on linear path.
B. If the car performs motion on circular path.
C. If the oscillator oscillates to and fro about the mean-position.
D. If the earth revolves around the sun.

Answer: A::C

D Watch Video Solution

Fill In The Blanks

1. A car moving with constant speed of 72 km h

1 is said to be moving at $m s^{-1}$.
2. The slope given by the line in the x - t graph of an object moving with uniform speed gives the magnitude of
(Watch Video Solution
3. The formula to find the linear speed of an object performing uniform circular motion is

Watch Video Solution

4. Velocity of a bus moving with 36 km h increases to $72 \mathrm{kmh}^{-1}$ in 20 s , then its acceleration would be ms^{-2}

- Watch Video Solution

5. A bus is moving with speed of $20 s^{-1}$ on a linear path and an acceleration $4 m s^{-2}$ is produced in it, then its speed after 2 s would be $m s^{-1}$.
6. An electric train is moving at the constant speed of $120 \mathrm{kmh}^{-1}$. It would have covered km distance in 1 minute.

- Watch Video Solution

7. A train takes 2 hour to reach Vadodara from

Ahmedabad. The same train take 3 hour while coming back to Ahmedabad. The distance
between Ahmedabad and Vadodara is 100 km .

The average speed of this train would be $\mathrm{km} h^{-1}$

D Watch Video Solution

8. A train covers 's' distance at the constant speed of $30 \mathrm{kmh}^{-1}$. Then it covers the same distance in opposite direction at constant speed of $45 \mathrm{kmh}^{-1}$, then its average velocity would be km h^{-1}.
9. The distance covered by a car is known by the instrument fitted in the car.

- Watch Video Solution

10. The speed of a motorcycle is $40 \mathrm{kmh}^{-1}$ for
first 10 minute and $50 \mathrm{kmh}^{-1}$ for the next 10 minute, then the average speed of this motorcycle during the 20 minute would be $\mathrm{km} h^{-1}$.
11. Acceleration of an object moving with constant velocity is (positive, negative, zero)

D Watch Video Solution

12. The speed of a scooter moving with constant speed $10 \mathrm{~ms}^{-1}$ is $\mathrm{km} h^{-1}$. (600, $36,30)$

- Watch Video Solution

13. The ratio of displacement and distance travelled for a moving body is (always more than 1, always less than 1 , less than 1 or equal to 1)

- Watch Video Solution

14. If the distance (s), covered by an object is
directly proportion to the square of time (t).
then the object
15. A boy is running on a circular path of radius r at the constant speed $20 \mathrm{~ms}^{-1}$, then
he is said to perform motion (with constant velocity, with acceleration, with constant acceleration)

D Watch Video Solution

16. The slope of graph y-t give the magnitude of (displacement, speed, acceleration)

- Watch Video Solution

17. If for a moving object, the distance-time graph is (half) parabola, then the object would be performing motion. (uniform, with constant acceleration, non-uniform)

- Watch Video Solution

18. A scooterist is moving with speed 36 km h .

When breaks are applied, it stops after 10 s ,
hence the acceleration of the scooter would be $m s^{-2}(-10,-3.6,-1)$

D Watch Video Solution

19. The odometer of a car reads 2000 km at the start of a trip and 2400 km at the end of the trip. If the trip took 8 hours, then the average of the car would be $k m h^{-1}$.
20. A train covers 's' distance at the constant speed $30 k \mathrm{kh}^{-1}$ Then it covers the same distance in opposite direction at constant speed $45 k m h^{-1}$, then its average speed would be $\mathrm{km} h^{-1}$. $(37.5,36,25)$

D Watch Video Solution

21. A free falling ball is an example of motion.
(constant velocity, constant acceleration, uniform)
22. An object travels 25 m in 4 s on a linear path and then another 50 m in 6 s . The average speed of this object is $m s^{-1}$.

D Watch Video Solution

23. Mahesh goes for morning walk along a semicircular path of 70 m radius. He starts from eastern end and reaches western end, then his displacement is said to be m.
(220, 140, 70)

- Watch Video Solution

24. is not a vector quantity. (Speed,

Velocity, Displacement)
25. Velocity of a bus moving on a linear path with $10 \mathrm{~ms}^{-1}$ increases to $18 \mathrm{~ms}^{-1}$ in 2 s , then
the acceleration of this bus would be $m s^{-2}(5,9,4)$

- Watch Video Solution

26. A car moving with constant speed of 72 km
h 1 is said to be moving at $m s^{-1}$.

- Watch Video Solution

27. The slope given by the line in the x-t graph of an object moving with uniform speed gives the magnitude of

D Watch Video Solution

28. The formula to find the linear speed of an
object performing uniform circular motion
is

- Watch Video Solution

29. Velocity of a bus moving with 36 km h increases to $72 \mathrm{kmh}^{-1}$ in 20 s , then its acceleration would be $m s^{-2}$

D Watch Video Solution

30. A bus is moving with speed of $20 s^{-1}$ on a
linear path and an acceleration $4 m s^{-2}$ is
produced in it, then its speed after 2 s would be $m s^{-1}$.
31. An electric train is moving at the constant speed of $120 \mathrm{kmh}^{-1}$. It would have covered km distance in 1 minute.

D Watch Video Solution

32. A train takes 2 hour to reach Vadodara
from Ahmedabad. The same train take 3 hour while coming back to Ahmedabad. The distance between Ahmedabad and Vadodara is

100 km . The average speed of this train would be $\mathrm{km} h^{-1}$

D Watch Video Solution

33. A train covers 's' distance at the constant
speed of $30 \mathrm{kmh}^{-1}$. Then it covers the same distance in opposite direction at constant speed of $45 \mathrm{kmh}^{-1}$, then its average velocity would be km h^{-1}.
34. The distance covered by a car is known by the instrument fitted in the car.

- Watch Video Solution

35. The speed of a motorcycle is $40 \mathrm{kmh}^{-1}$ for
first 10 minute and $50 \mathrm{kmh}^{-1}$ for the next 10 minute, then the average speed of this motorcycle during the 20 minute would be $\mathrm{km} h^{-1}$.
36. Acceleration of an object moving with constant velocity is (positive, negative, zero)

- Watch Video Solution

37. The speed of a scooter moving with constant speed $10 \mathrm{~ms}^{-1}$ is $\mathrm{km} h^{-1}$. (600, $36,30)$
38. The ratio of displacement and distance travelled for a moving body is (always more than 1 , always less than 1 , less than 1 or equal to 1)

- Watch Video Solution

39. A stationary object starts moving. Its displacement is directly proportional to the square of the time, hence this object is said to perform motion (with constant velocity, with constant acceleration, uniformly)
40. A boy is running on a circular path of radius r at the constant speed $20 \mathrm{~ms}^{-1}$, then he is said to perform motion (with constant velocity, with acceleration, with constant acceleration)

- Watch Video Solution

41. The slope of graph y-t give the magnitude of (displacement, speed, acceleration)

- Watch Video Solution

42. If for a moving object, the distance-time graph is (half) parabola, then the object would be performing motion. (uniform, with constant acceleration, non-uniform)
43. A scooterist is moving with speed 36 km h .

When breaks are applied, it stops after 10 s ,
hence the acceleration of the scooter would be $m s^{-2}(-10,-3.6,-1)$

- Watch Video Solution

44. The odometer of a car reads 2000 km at the start of a trip and 2400 km at the end of the trip. If the trip took 8 h , calculate the average speed of the car in $k m h^{-1}$ and $m s^{-1}$.
45. A train covers 's' distance at the constant speed of $30 \mathrm{kmh}^{-1}$. Then it covers the same distance in opposite direction at constant speed of $45 \mathrm{kmh}^{-1}$, then its average velocity would be $\mathrm{km} h^{-1}$.
46. A free falling ball is an example of motion.
(constant velocity, constant acceleration, uniform)

- Watch Video Solution

47. An object travels 25 m in 4 s on a linear path and then another 50 m in 6 s . The average speed of this object is $m s^{-1}$.
48. Mahesh goes for morning walk along a semicircular path of 70 m radius. He starts from eastern end and reaches western end, then his displacement is said to be m.
(220, 140, 70)

- Watch Video Solution

49. is not a vector quantity. (Speed, Velocity, Displacement)

D Watch Video Solution

50. Velocity of a bus moving on a linear path with $10 \mathrm{~ms}^{-1}$ increases to $18 \mathrm{~ms}^{-1}$ in 2 s , then
the acceleration of this bus would be $m s^{-2}(5,9,4)$

True Or False

1. Motion is an absolute concept.

- Watch Video Solution

2. For both the distance and displacement SI unit is metre.
3. The magnitude of the displacement of an object is 20 m , then it can be said that the distance covered by it is also 20 m .

- Watch Video Solution

4. The distance covered by an object in the given time duration may be positive, negative or zero.
5. The displacement of an object in a given time interval may be zero.

- Watch Video Solution

6. Average speed is an average of different speeds.

D Watch Video Solution

7. An object performs motion with constant speed along a circular path, then it is said that its velocity is constant (uniform).

D Watch Video Solution

8. An object performing uniform circular motion performs accelerated motion.

D Watch Video Solution

9. An object had covered 120 km distance, half of this distance was covered at $20 \mathrm{~km} h^{-1}$ speed and the remaining distance at 30 km h^{-1}. Then its average speed is said to be $25 k m h^{-1}$,

- Watch Video Solution

10. A train travels with speed $40 \mathrm{kmh}^{-1}$ for first 15 minutes and then 60 km h for next 15
minutes, hence its average speed during this time interval is $50 \mathrm{~km} h^{-1}$.

D Watch Video Solution

11. The slope of the distance-time (xt) graph gives the magnitude of acceleration.

D Watch Video Solution

12. The unit of retardation is $m s^{-2}$.

D Watch Video Solution

13. The direction of acceleration of an object performing uniform circular motion is towards the centre.

D Watch Video Solution

14. If the final velocity of an object is less than
the initial velocity, then it performs accelerated motion.

D Watch Video Solution
15. The SI unit of speed is $\mathrm{km} h^{-1}$.

- Watch Video Solution

16. Motion is a relative concept.

- Watch Video Solution

17. For both the distance and displacement SI
unit is metre.

Watch Video Solution

18. The magnitude of the displacement of an object is 20 m , then it can be said that the distance covered by it is also 20 m .

D Watch Video Solution

19. The distance covered by an object in the given time duration may be positive, negative or zero.
20. The displacement of an object in a given time interval may be zero.

- Watch Video Solution

21. Average speed is an average of different speeds.
22. An object performs motion with constant speed along a circular path, then it is said that its velocity is constant (uniform).

D Watch Video Solution

23. An object performing uniform circular motion performs accelerated motion.

D Watch Video Solution

24. An object had covered 120 km distance, half of this distance was covered at $20 \mathrm{~km} h^{-1}$ speed and the remaining distance at 30 km
h^{-1}. Then its average speed is said to be $25 k m h^{-1}$,

- Watch Video Solution

25. A train travels with speed $40 \mathrm{kmh}^{-1}$ for
first 15 minutes and then 60 km h for next 15
minutes, hence its average speed during this
time interval is $50 \mathrm{~km} h^{-1}$.

D Watch Video Solution
26. The slope of the distance-time (xt) graph gives the magnitude of acceleration.

D Watch Video Solution

27. The unit of retardation is $m s^{-2}$.

- Watch Video Solution

28. The direction of acceleration of an object performing uniform circular motion is towards the centre.

D Watch Video Solution

29. If the final velocity of an object is less than
the initial velocity, then it performs accelerated motion.

D Watch Video Solution
30. The SI unit of speed is $\mathrm{km} h^{-1}$.
(D) Watch Video Solution

Question In Short

1. The displacement of a moving object in a given interval of time is zero. Is the distance travelled by the object zero? Comment
2. What is uniform motion?

- Watch Video Solution

3. Explain non-uniform motion.

- Watch Video Solution

4. The velocity-time graph shows the motion of a cyclist. Find (i) acceleration (ii) its velocity
(iii) the distance covered by the cyclist in 15

second

(Watch Video Solution

5. State which of the following situations are
possible and give an example for each of these
(a) an object with a constant acceleration but with zero velocity.
(b) an object moving in a certain direction with an acceleration in the perpendicular direction.

- Watch Video Solution

6. An artificial satellite is moving in a circular orbit of radius $42,250 \mathrm{~km}$. Calculate its speed if it takes 24 hour to revolve around the earth.
7. A motorboat starting from rest on a lake accelerates in a straight line at a constant rate of $3.0 \mathrm{~ms}^{-2}$ for 8.0 s. How far does the boat travel during this time?

- Watch Video Solution

8. An object starting from rest undergoes an acceleration of $8 \mathrm{~ms}^{-2}$ for 10 second. Find (a)
the speed (b) the distance travelled.

- Watch Video Solution

9. A motorcycle moving with a speed of $5 m s^{-1}$ is subjected to an acceleration of $0.2 m s^{-2}$ for 10 second. Calculate (a) the speed (b) the distance travelled.

D Watch Video Solution

10. The displacement of a moving object in a given interval of time is zero. Is the distance
travelled by the object zero? Comment

- Watch Video Solution

11. What is uniform motion ?

- Watch Video Solution

12. Explain non-uniform motion.
13. The velocity-time graph shows the motion of a cyclist. Find (i) acceleration (ii) its velocity
(iii) the distance covered by the cyclist in 15 second

- Watch Video Solution

14. State which of the following situations are possible and give an example for each of these
:
(a) an object with a constant acceleration but with zero velocity.
(b) an object moving in a certain direction with an acceleration in the perpendicular direction.

- Watch Video Solution

15. An artificial satellite is moving in a circular orbit of radius $42,250 \mathrm{~km}$. Calculate its speed if it takes 24 hour to revolve around the earth.

D Watch Video Solution

16. A motorboat starting from rest on a lake accelerates in a straight line at a constant rate
of $3.0 \mathrm{~ms}^{-2}$ for 8.0 s . How far does the boat travel during this time?
17. An object starting from rest undergoes an acceleration of $8 \mathrm{~ms}^{-2}$ for 10 second. Find (a) the speed (b) the distance travelled.

- Watch Video Solution

18. A motorcycle moving with a speed of
$5 m s^{-1}$ is subjected to an acceleration of $0.2 m s^{-2}$ for 10 second. Calculate (a) the speed (b) the distance travelled.

Statements

1. Motion is a relative concept.

D Watch Video Solution
2. An object performing uniform circular motion performs accelerated motion.
3. In rainy season flashes of lightning is seen
at first, but the sounds piercing the sky are heard afterwards.

- Watch Video Solution

4. Objects of different masses falling freely from top of a tower, reach surface of the earth simultaneously.

D Watch Video Solution
5. Area of the region under graph of velocity-
time for an object performing uniform motion on a linear path, suggests distance covered by the object during given time interval

- Watch Video Solution

6. Motion is a relative concept.

-
 Watch Video Solution

7. An object performing uniform circular motion performs accelerated motion.

- Watch Video Solution

8. In rainy season flashes of lightning is seen at first, but the sounds piercing the sky are heard afterwards.

- Watch Video Solution

9. Objects of different masses falling freely
from top of a tower, reach surface of the earth
simultaneously.

D Watch Video Solution

10. Area of the region under graph of velocity-
time for an object performing uniform motion
on a linear path, suggests distance covered by
the object during given time interval

Match The Following

Column 1	Column I
1. Untform circular motion	a. Constant retardation
2. Motion of a free talling stone	b. Constant acceleration
3. Motion of a stone thrown upward	c. Constant speed
1. Constant velocity	

- Watch Video Solution

Cohuman I		Cotaman
1. Speed	2. km	
2. Weiocty	b. $\mathrm{m} \mathrm{s}^{-2}$	-
3. Unft of acceleration	c. vector quantity d. aceler quentity	

D Watch Video Solution

- Watch Video Solution

1.

2.

3.

a.

b.

c.

5.

- Watch Video Solution

Column 1	
1. Untform circular motion	a. Constant retardation
2. Motion of a free falling stone	b. Constant acceleration
3. Motion of a stone thrown upward	c. Constant speed d. Constant velocty
i. -t in 2. in --	

- Watch Video Solution

(4)	Column 1	Column II
	1. Negative acceleration 2. Positive acceleration 3. Zero acceleration	a. The car starts from the stationary position and obtains velocity $60 \mathrm{~km} \mathrm{~h}^{-1}$ in 10 s b. The car moves with velocity $15 \mathrm{~ms}^{-1}$ c. The car moving with velocity $10 \mathrm{~ms}^{-1}$ becomes stationary after 10 s

- Watch Video Solution

1.

2.

3.

nime (n) \rightarrow
a.

b.

c.

10.

Watch Video Solution

Answer The Following

1. A man travels a distance of 1.5 m towards

East, then 2.0 m towards South and finally 4.5 m towards north.
(i) Calculate the total distance travelled.
(ii) Calculate the resultant displacement.
2. Joseph jogs from one end A to the other end

B of a straight 300 m road in 2 minute 30
second and then turns around and jogs 100 m
back to point in another 1 minute. What are
Joseph's average speeds and velocities in jogging (a) from A to B and (b) from A to C ?

- Watch Video Solution

3. Abdul, while driving to school, computes the average speed for his trip to be $20 \mathrm{~km} \mathrm{~h}^{-1}$.

On his return trip along the same route, there is less traffic and the average speed is $30 \mathrm{kmh}^{-1}$. What is the average speed for Abdul's trip?

- Watch Video Solution

4. The distance-time graph of three objects A,
B and C is shown below. Study the graph and answer the following questions :

: Distance-time graph)
(a) Which of the three is travelling the fastest?
(b) Are all three ever at the same point on the road ?
(c) How far has travelled when B passes A?
(d) How far has B travelled by the time it passes C?

- Watch Video Solution

5. A train travels at a speed of $60 \mathrm{kmh}^{-1}$ for $0.5 h, 24 k m h^{-1}$ for the next 0.25 h and then
$72 k m h^{-1}$ for the next 0.75 h . Calculate the total distance covered by the train and its average speed.
6. A ball is gently dropped from a height of 20 m . If its velocity increases uniformly at the rate of $10 \mathrm{~ms}^{-2}$, with what velocity will it strike the ground ? After what time will it strike the ground?

- Watch Video Solution

7. (a) A body thrown in the vertically upward direction rises up to a height ' h ' and comes back to the position of rest. Calculate the
displacement of the body.
(b) A body starts to slide over a horizontal
surface with an initial velocity of $0.5 m s^{-1}$.

Due to friction, its velocity decreases at the rate of $0.05 \mathrm{~ms}^{-2}$. How much time will it take for the body to stop?

D Watch Video Solution

8. An athlete completes one round of a circular track of diameter 200 m in 40 s . What will be
the distance covered and the displacement at the end of 2 minute 20 s ?

D Watch Video Solution

9. A driver of a car travelling at the speed of
$52 \mathrm{kmh}^{-1}$ applies the brakes and accelerates
uniformly in the opposite direction. The car stops in 5 s . Another driver going at $34 \mathrm{kmh}^{-1}$ in another car applies his brakes slowly and stops in 10 s . On the same graph paper, plot the speed versus time graphs for the two cars.

Which of the two cars travelled farther after the brakes were applied?

- Watch Video Solution

10. The speed-time graph of a car is shown in
figure given below

Speed-time graph]
(a) Find how far does the car travel in the first

4 second. Shade the area on the graph that
represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car ?

D Watch Video Solution

11. Derive graphically $s=u t+\frac{1}{2} a t^{2}$, where symbols have their usual meaning.
12. write three equations of motion.

D Watch Video Solution

13. A man travels a distance of 1.5 m towards

East, then 2.0 m towards South and finally 4.5 m towards north.
(i) Calculate the total distance travelled.
(ii) Calculate the resultant displacement.
14. Joseph jogs from one end A to the other end B of a straight 300 m road in 2 minute 30
second and then turns around and jogs 100 m back to point in another 1 minute. What are Joseph's average speeds and velocities in jogging (a) from A to B and (b) from A to C ?

- Watch Video Solution

15. Abdul, while driving to school, computes
the average speed for his trip to be 20 km
h^{-1}. On his return trip along the same route,
there is less traffic and the average speed is $30 k m h^{-1}$. What is the average speed for Abdul's trip?

- Watch Video Solution

16. The distance-time graph of three objects A, B and C is shown below. Study the graph and answer the following questions :

: Distance-time graph)
(a) Which of the three is travelling the fastest?
(b) Are all three ever at the same point on the road ?
(c) How far has travelled when B passes A?
(d) How far has B travelled by the time it passes C?

- Watch Video Solution

17. A train travels at a speed of $60 \mathrm{kmh}^{-1}$ for
$0.5 h, 24 k m h^{-1}$ for the next 0.25 h and then
$72 k m h^{-1}$ for the next 0.75 h . Calculate the total distance covered by the train and its average speed.
18. A ball is gently dropped from a height of 20 m . If its velocity increases uniformly at the rate of $10 \mathrm{~ms}^{-2}$, with what velocity will it strike the ground ? After what time will it strike the ground?

- Watch Video Solution

19. (a) A body thrown in the vertically upward direction rises up to a height ' h ' and comes back to the position of rest. Calculate the
displacement of the body.
(b) A body starts to slide over a horizontal
surface with an initial velocity of $0.5 m s^{-1}$.

Due to friction, its velocity decreases at the rate of $0.05 \mathrm{~ms}^{-2}$. How much time will it take for the body to stop?

D Watch Video Solution

20. An athlete completes one round of a ciruclar track of radius R in 40 seconds. What
will be his diplacement at the end of 2 minute

20 second?

D Watch Video Solution

21. A driver of a car travelling at the speed of
$52 \mathrm{kmh}^{-1}$ applies the brakes and accelerates
uniformly in the opposite direction. The car stops in 5 s . Another driver going at $34 \mathrm{kmh}^{-1}$ in another car applies his brakes slowly and stops in 10 s . On the same graph paper, plot the speed versus time graphs for the two cars.

Which of the two cars travelled farther after the brakes were applied?

- Watch Video Solution

22. The speed-time graph of a car is shown in
figure given below

Speed-time graph]
(a) Find how far does the car travel in the first

4 second. Shade the area on the graph that
represents the distance travelled by the car during the period.
(b) Which part of the graph represents uniform motion of the car ?

D Watch Video Solution

23. Derive graphically $s=u t+\frac{1}{2} a t^{2}$, where symbols have their usual meaning.
24. Derive graphically $v^{2}=u^{2}+2 a s$, where symbols have their usual meaning.

D Watch Video Solution

Textbook Examples Numericals

1. An object travels 16 m in 4 s and then another 16 m in 2 s . What is the average speed of the object?
2. The odometer of a car reads 2000 km at the start of a trip and 2400 km at the end of the trip. If the trip took 8 h , calculate the average speed of the car in $k m h^{-1}$ and $m s^{-1}$.

D Watch Video Solution

3. Usha swims in a 90 m long pool. She covers

180 m in one minute by swimming from one end to the other and back along the same
straight path. Find the average speed and average velocity of Usha.

D Watch Video Solution

4. Starting from a stationary position, Rahul
paddles his bicycle to attain a velocity of
$6 m s^{-1}$ in 30 s . Then he applies brakes such
that the velocity of the bicycle comes down to
$4 m s^{-1}$ in the next 5 s . Calculate the acceleration of the bicycle in both the cases.
5. A train starting from rest attains a velocity of $72 \mathrm{kmh}^{-1}$ in 5 minute. Assuming that the acceleration is uniform, find (i) the acceleration and (ii) the distance travelled by the train for attaining this velocity.

D Watch Video Solution

6. A car accelerates uniformly from $18 \mathrm{kmh}^{-1}$
to $36 \mathrm{kmh}^{-1}$ in 5 s . Calculate (i) the
acceleration and (ii) the distance covered by the car in that time.

D Watch Video Solution

7. The brakes applied to a car produce an acceleration of $6 m s^{2}$ in the opposite direction to the motion. If the car takes 2 s to stop after the application of brakes, calculate the distance it travels during this time.
8. An object travels 16 m in 4 s and then another 16 m in 2 s . What is the average speed of the object?

- Watch Video Solution

9. The odometer of a car reads 2000 km at the
start of a trip and 2400 km at the end of the trip. If the trip took 8 h , calculate the average speed of the car in $k m h^{-1}$ and $m s^{-1}$.
10. Usha swims in a 90 m long pool. She covers

180 m in one minute by swimming from one
end to the other and back along the same straight path. Find the average speed and average velocity of Ushas.

D Watch Video Solution

11. Starting from a stationary position, Rahul paddles his bicycle to attain a velocity of $6 m s^{-1}$ in 30 s . Then he applies brakes such
that the velocity of the bicycle comes down to
$4 m s^{-1}$ in the next 5 s . Calculate the acceleration of the bicycle in both the cases.

D Watch Video Solution

12. A train starting from rest attains a velocity
of $72 \mathrm{kmh}^{-1}$ in 5 minute. Assuming that the
acceleration is uniform, find (i) the acceleration and (ii) the distance travelled by
the train for attaining this velocity.
13. A car accelerates uniformly from $18 \mathrm{kmh}^{-1}$
to $36 \mathrm{kmh}^{-1}$ in 5 s . Calculate (i) the acceleration and (ii) the distance covered by the car in that time.

D Watch Video Solution

14. The brakes applied to a car produce an acceleration of $6 m s^{2}$ in the opposite direction to the motion. If the car takes $2 s$ to stop after
the application of brakes, calculate the distance it travels during this time.

D Watch Video Solution

Additional Numericals For Practice

1. A person completes 5 rounds (revolutions) on a circular path of radius 50 m . Find out the
distance travelled by that person and magnitude (value) of displacement.
2. The distance between Ahmedabad and

Vadodara is 100 km . A scooterist travels at the average speed of $50 \mathrm{kmh}^{-1}$. If he travels first 60 km at a uniform speed of $45 \mathrm{kmh}^{-1}$, what will be his speed for the remaining distance?

- Watch Video Solution

3. The speed of the scooter moving with
uniform acceleration of $4 m s^{-2}$ becomes
$20 \mathrm{~ms}^{-1}$ at a certain time. What will be the
speed of the scooter, when it has covered a distance of 112 m after that time?

D Watch Video Solution

4. The velocity of a particle performing motion with uniform acceleration on a linear path, at position ' x ' is ' v ' and $v=\sqrt{196-16 x}$, where x is in metre. What would be the acceleration of this particle? Take initial velocity of particle $=14 \mathrm{~ms}^{-1}$

D Watch Video Solution

5. A person takes observations from odometer of his own motorcar while starting journey as well as after 40 min of his journey, which are found as 1046 km and 1096 km respectively. What would be the average speed of the motorcar?
(D) Watch Video Solution
6. A train was moving at the rate of $36 \mathrm{~km} / \mathrm{h}$.

When brakes are applied to a train running on
a straight line, it stops after covering 200 m distance. What would be the retardation produced in the train ?

D Watch Video Solution

7. A graph of velocity versus time ($v-t$) for a moving particle on linear path is shown in figure. What would be the displacement of the
particle in first 30 s?

D Watch Video Solution

8. An object is allowed to fall freely from the top of a 150 m high tower. At the same time another object is allowed to fall freely from the top of a 100 m high tower. If the acceleration of both the free falling objects is
same, then find the difference between their heights after 2 s from their motion. How does the difference of their heights change with the time?

D Watch Video Solution

9. Two stones are thrown vertically upward simultaneously with velocity u_{1} and u_{2} Prove that ratio of their maximum height attained is
$u_{1}^{2}: u_{2}^{2}$. (Take -g for acceleration in upward
direction and $+g$ for acceleration in downward direction.)

D Watch Video Solution

10. An object is moving on a linear path in definite direction with initial velocity ' u ' with constant acceleration. Prove that the distance travelled by it during ' n 'th second is
$u+\frac{a}{2}(2 n-1)$.
11. A stationary object, when starts motion, covers 20 m distance in first 28 and 160 m in next 4 second. Calculate the velocity at the end 7 second from the beginning of the motion.

- Watch Video Solution

12. Use the data given in the following table and draw the displacement-time graph for the object :

Time (s)	0	2	4	6	8	10	12	14	16
Displacement (m)	0	2	4	4	4	6	4	2	0

Using the graph, find the average velocity (i) for first 4s (ii) for next 4s and (iii) for last 6 s .

D Watch Video Solution

13. An electron enters in uniform electric field with initial velocity $5 \times 10^{4} \mathrm{~ms}^{-1}$ such that it attains the acceleration $10^{4} \mathrm{~ms}^{-2}$ in the direction of its initial motion.
(i) Calculate the necessary time required for the electron to attain the double velocity as
compared to its initial velocity.
(ii) How much distance the electron would cover during this interval of time?

D Watch Video Solution

14. A motorcyclist moves from position A to B
at the constant speed $30 \mathrm{kmh}^{-1}$, then he returns from it and comes back to original position A at the speed $20 \mathrm{kmh}^{-1}$, final his average speed.
15. A person walks 50 m in the north direction and from there he walks 30 m in the west direction.

Now, he/she walks 50 m distance in south direction. Find the distance travelled by the person and his/her displacement.

Find out the average speed and average velocity of person if he/she takes 100 s time to move from initial to final position.
16. For two cars A and B in motion distance
time graph is shown:

(a) State initial positions of car A and car B.
(b) When and at what distance from the origin, these two cars would meet?
(c) Find final speed of car A and car B.
17. When brakes are applied to a car running on a straight road, retardation of $4 m s^{-2}$ is produced. It stops after 3 s . Calculate the distance travelled by car after brakes are applied.

- Watch Video Solution

18. A particle covers equal distances in same direction on a linear path with different
velocities v_{1}, v_{2} and v_{3} find the formula for its average speed.

D Watch Video Solution

19. Kalpesh, before going out, takes the reading of the odometer of his motorcycle. It was 8245 km . Driving at uniform velocity of $60 \mathrm{kmh}^{-1}$ for 30 min on a straight highway, he reaches his friend's village. What would be the odometer reading of his motorcycle there?
20. For a particle in motion, distance-time graph is shown in figure. From graph answer the following:
(i) During which time period the particle is stationary?
(ii) Find magnitude of velocity in $O A, A B$ and

BC parts.

(D) Watch Video Solution
21. For moving train velocity-time graph is
shown in the figure :

(1) What is the mastinum speed of the train and how long n we matatatined?
(1) What is the maximum speed of the train and how long it is maintained?
(ii) What are the accelerations of the train in
$O A, A B$ and $B C$ parts ? (ii) Find total distance travelled by the train.
22. A car from stationary state moves in positive X direction with constant acceleration
$5 m s^{-2}$ for 8 s . Then it moves with constant velocity, then find the total distance covered by car after 12 s from the initial position.

D Watch Video Solution

23. A man walks 1.5 m in the east direction,
then he walks 2.0 m in south direction and at
last walks 4.5 m in the east direction, then
using appropriate scale (e.g., $1 \mathrm{~cm}=1 \mathrm{~m}$) using scale... (i) Calculate the distance covered by the man. (ii) Find the resultant displacement (magnitude) of the man.

D View Text Solution

24. A girl walks from her house on a straight path to drop a letter in the letter-box. Then
she returns to the origin point. Her displacementtime graph is shown in the figure, draw its velocity-time graph.

\rightarrow Slope of the graph OA = Velocity

$$
=\frac{100-0}{50-0}=+2 m s^{-1}
$$

Slope of the graph $A B=$ Velocity

$$
=\frac{0-100}{100-50}=-2 m s^{-1}
$$

\rightarrow It is clear from the given displacement-
time graph that the girl moves with constant
positive velocity v from O to A . At point A for a moment her velocity becomes zero and moves
back to origin (her house) at constant negative velocity by changing the

D View Text Solution

25. A person completes 5 rounds (revolutions) on a circular path of radius 50 m . Find out the distance travelled by that person and magnitude (value) of displacement.
26. The distance between Ahmedabad and

Vadodara is 100 km . A scooterist travels at the average speed of $50 \mathrm{kmh}^{-1}$. If he travels first 60 km at a uniform speed of $45 \mathrm{kmh}^{-1}$, what will be his speed for the remaining distance?

D Watch Video Solution

27. The speed of the scooter moving with
uniform acceleration of $4 m s^{-2}$ becomes
$20 \mathrm{~ms}^{-1}$ at a certain time. What will be the
speed of the scooter, when it has covered a distance of 112 m after that time?

D Watch Video Solution

28. The velocity of a particle performing motion with uniform acceleration on a linear path, at position ' x ' is ' v ' and
$v=\sqrt{196-16 x}$, where x is in metre. What would be the acceleration of this particle?

Take initial velocity of particle $=14 m s^{-1}$
29. A person takes observations from odometer of his own motorcar while starting journey as well as after 40 min of his journey, which are found as 1046 km and 1096 km respectively. What would be the average speed of the motorcar?

- Watch Video Solution

30. A train was moving at the rate of $36 \mathrm{~km} / \mathrm{h}$.

When brakes are applied to a train running on
a straight line, it stops after covering 200 m distance. What would be the retardation produced in the train ?

D Watch Video Solution

31. A graph of velocity versus time $(v-t)$ for a moving particle on linear path is shown in figure. What would be the displacement of the
particle in first 30 s?

D Watch Video Solution

32. An object is allowed to fall freely from the top of a 150 m high tower. At the same time another object is allowed to fall freely from the top of a 100 m high tower. If the acceleration of both the free falling objects is
same, then find the difference between their heights after 2 s from their motion. How does the difference of their heights change with the time?

- Watch Video Solution

33. Two stones are thrown vertically upward
simultaneously with velocity u_{1} and u_{2} Prove
that ratio of their maximum height attained is
$u_{1}^{2}: u_{2}^{2}$. (Take -g for acceleration in upward
direction and $+g$ for acceleration in downward direction.)

D Watch Video Solution

34. An object is moving on a linear path in definite direction with initial velocity 'u' with constant acceleration. Prove that the distance travelled by it during ' n 'th second is
$u+\frac{a}{2}(2 n-1)$.
35. A stationary object, when starts motion, covers 20 m distance in first 28 and 160 m in next 4 second. Calculate the velocity at the end 7 second from the beginning of the motion.

- Watch Video Solution

36. Use the data given in the following table and draw the displacement-time graph for the object :

Time (s)	0	2	4	6	8	10	12	14	16
Displacement (m)	0	2	4	4	4	6	4	2	0

Using the graph, find the average velocity (i) for first 4s (ii) for next 4s and (iii) for last 6 s .

- Watch Video Solution

37. An electron enters in uniform electric field with initial velocity $5 \times 10^{4} \mathrm{~ms}^{-1}$ such that it attains the acceleration $10^{4} \mathrm{~ms}^{-2}$ in the direction of its initial motion.
(i) Calculate the necessary time required for the electron to attain the double velocity as
compared to its initial velocity.
(ii) How much distance the electron would cover during this interval of time?

D Watch Video Solution

38. A motorcyclist moves from position A to B
at the constant speed $30 k m h^{-1}$, then he returns from it and comes back to original position A at the speed $20 \mathrm{kmh}^{-1}$, final his average speed.
39. A person walks 50 m in the north direction and from there he walks 30 m in the west direction.

Now, he/she walks 50 m distance in south direction. Find the distance travelled by the person and his/her displacement.

Find out the average speed and average velocity of person if he/she takes 100 s time to move from initial to final position.
40. For two cars A and B in motion distance
time graph is shown:

(a) State initial positions of car A and car B.
(b) When and at what distance from the origin, these two cars would meet?
(c) Find final speed of car A and car B.
41. When brakes are applied to a car running on a straight road, retardation of $4 \mathrm{~ms}^{-2}$ is produced. It stops after 3 s. Calculate the distance travelled by car after brakes are applied.

- Watch Video Solution

42. A particle covers equal distances in same direction on a linear path with different
velocities v_{1}, v_{2} and v_{3} find the formula for its average speed.

D Watch Video Solution

43. Kalpesh, before going out, takes the reading of the odometer of his motorcycle. It was 8245 km . Driving at uniform velocity of $60 \mathrm{kmh}^{-1}$ for 30 min on a straight highway, he reaches his friend's village. What would be the odometer reading of his motorcycle there?
44. For a particle in motion, distance-time graph is shown in figure. From graph answer the following:
(i) During which time period the particle is stationary?
(ii) Find magnitude of velocity in $O A, A B$ and

BC parts.

(D) Watch Video Solution
45. For moving train velocity-time graph is
shown in the figure :

(1) What is the mastinum speed of the train and how long n we matatatined?
(1) What is the maximum speed of the train and how long it is maintained?
(ii) What are the accelerations of the train in
$O A, A B$ and $B C$ parts ? (ii) Find total distance travelled by the train.
46. A car from stationary state moves in positive X direction with constant acceleration
$5 m s^{-2}$ for 8 s . Then it moves with constant velocity, then find the total distance covered by car after 12 s from the initial position.

D Watch Video Solution

47. A man travels a distance of 1.5 m towards

East, then 2.0 m towards South and finally 4.5 m towards north.
(i) Calculate the total distance travelled.
(ii) Calculate the resultant displacement.

- Watch Video Solution

48. A girl walks from her house on a straight path to drop a letter in the letter-box. Then
she returns to the origin point. Her displacementtime graph is shown in the figure, draw its velocity-time graph.

\rightarrow Slope of the graph OA = Velocity

$$
=\frac{100-0}{50-0}=+2 m s^{-1}
$$

Slope of the graph $A B=$ Velocity

$$
=\frac{0-100}{100-50}=-2 m s^{-1}
$$

\rightarrow It is clear from the given displacement-
time graph that the girl moves with constant
positive velocity v from O to A . At point A for a moment her velocity becomes zero and moves
back to origin (her house) at constant negative velocity by changing the

