đ゙’ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KUMAR PRAKASHAN KENDRA CHEMISTRY (GUJRATI ENGLISH)

THE SOLID STATE

Section A Try Yourself

1. Calculate the number of atoms in a cubic based unit cell having one atom at each
corner and two atoms on each diagonal.

D View Text Solution

2. In a compound $A B_{2} O_{4}$ oxide ions are arranged in ccp, cations A are present in octahedral voids and cations B are equally distributed between tetrahedral and octahedral voids. What percentage of octahedral voids are occupied?
3. A compound is made of three elements A, B
and C. Atoms A form face centred cubic cell.
Atoms B occupies all octahedral voids and atoms C occupies all tetrahedral voids. If all atoms across one body diagonal are removed, calculate the formula of a compound.

- View Text Solution

4. An element crystallizes in body - centred
cubic structure. If the edge length of the unit
cell is 400 pm . Calculate interatomic distance in the crystal.

- View Text Solution

5. The radius of atom is 300 pm . If it crystallizes in a face-centred cubic lattice, calculate the distance between nearest neighbour.
6. Predict the close packed structure of an
ionic compound $A^{+} B^{-}$in which the radius of cation and anion are 148 pm and 195 pm respectively.

D View Text Solution

7. A body centred cubic element of density
$10.3 \mathrm{~g} \mathrm{~cm}^{3}$ has a cell edge of 314 pm . Calculate the atomic mass of element.
8. Lithium borohydride crystallizes in an orthorhombic system. With four molecules per unit cell. The unit cell dimensions are $a=6.8 A^{\circ}, b=4.4 A^{\circ}$ and $c=7.2 A^{\circ}$. If the molar mass is 21.76 , calculate the density of a crystal.

- View Text Solution

9. The crystal of CsBr has edge length of 437 pm . If the density of the crystal is $4.24 \mathrm{~g} \mathrm{~cm}^{-3}$,
determine the type of crystal structure of CsBr (At. mass of $\mathrm{Cs}=133, \mathrm{Br}=80$)

D View Text Solution

10. Iron occurs as body-centred as well as face centred cubic systems. If the effectiveness radius of an atom of iron is 124 pm , calculate the density of iron in both the structures.

D View Text Solution

11. Calcium crystallizes in Face-centred cubic
lattice with edge length equals to 556 pm.
calculate the density if : (i) There is 0.1\%
Schottky defect (ii) There is 0.1 \% Frenkel defect

D View Text Solution

Section A Questions

1. Why liquids and gases are called fluids while solids are rigid ?

D View Text Solution
2. On what factors do the stability of the state of matter depends upon?

D View Text Solution
3. Enlist the characteristic properties of solid state.

D View Text Solution
4. Explain crystalline and amorphous solids.

D View Text Solution
5. Differentiate Crystalline solids and

Amorphous solids.

- View Text Solution

6. What is anisotropy ? Explain.
(D) View Text Solution
7. Give classification of crystalline solids.

- View Text Solution

8. Write a note on ionic solids or electrovalent solids. State its properties.

- View Text Solution

9. What are covalent solids ? Give example and state its properties.
10. Explain why graphite is good conductor of electricity?

D View Text Solution
11. What are molecular solids ? State its types.

D View Text Solution
12. Explain types of molecular solids.

D View Text Solution
13. Write a note on metallic solids.

D View Text Solution
14. What is crystal lattice ? How it is formed ?

D View Text Solution
15. Enlist the characteristics of crystal lattice.

D View Text Solution
16. What are unit cells ? State its types.

- View Text Solution

17. Enlist the characteristics of unit cell.

D View Text Solution
18. Explain different types of unit cells.
19. Explain how each sphere (particles) contributes in formation of particular unit cell.

D View Text Solution

20. Calculate the number of atoms per unit cell in primitive, body centred and face centred cubi unit cells.
21. Explain close packing in one dimension.

D View Text Solution

22. Explain close packing in two dimensions.

D View Text Solution

23. Explain three dimensional close packing
from two dimensional square close-packing.
24. How the primitive cubic unit cell is obtained?

- View Text Solution

25. Explain three dimensional close packing
from two dimensional hexagonal close packing.
26. Explain formation of face centred cubic unit cell and hexagonal close packing in three dimensions.

D View Text Solution
27. Write a note on interstitials

D View Text Solution

28. Write a note on Voids.

- View Text Solution

29. How the formula of a compound can be known on the basis of voids filled in a lattice structure?

D View Text Solution
30. Explain how the voids can be located in a crystal lattice?
31. What is packing efficiency ?

- View Text Solution

32. Calculate packing efficiency in HCP and CCP
structures.

- View Text Solution

33. Calculate packing efficiency in body-centred cubic structure.
34. Calculate the packing efficiency in simple cubic unit cell.

Simple cubic unit cell. The spheres are in contact with each other along the edge of the cube.

D View Text Solution

35. How the density of an unit cell is calculated
?
36. Derive the expression to calculate density of unit cell.
(D) View Text Solution
37. What are imperfections or defects in solids
?

D View Text Solution
38. What are atomic defects ? State its types.

D View Text Solution

39. What are point defects and stoichiometric defects?

D View Text Solution
40. Explain vacancy and interstitial defects.
41. Explain stoichiometric defects shown by non ionic solids.

D View Text Solution
42. Explain Schottky defect and Frenkel defect.

D View Text Solution
43. Explain stoichiometric defects shown by ionic solids.

D View Text Solution
44. Write a short note on non-stoichiometric defects.

D View Text Solution
45. Explain metal excess defects.

- View Text Solution

46. Explain metal deficiency defects.

- View Text Solution

47. Explain defects caused by impurity in ionic solids.

- View Text Solution

48. Classify solids on basis of electrical conductivities.

- View Text Solution

49. Explain conduction of electricity in metals.

D View Text Solution
50. What are intrinsic semiconductors?

51. What are extrinsic semiconductors ?

- View Text Solution

52. Explain doping.

D View Text Solution
53. Explain n-type and p-type semiconductors.
54. Give applications of n-type and p-type semiconductors.

D View Text Solution

55. Explain the cause of magnetism in a substance.

D View Text Solution
56. Explain origin of magnetic properties in a substance.

D View Text Solution
57. Explain paramagnetism and diamagnetism.

D View Text Solution
58. Write a note on Ferromagnetism.
59. Explain antiferromagnetism.

D View Text Solution

60. Explain Ferrimagnetism.

D View Text Solution

Section A Examples

1. A compound is formed by two elements X and Y . Atoms of the element Y (as anions) make ccp and those of the element X (as cations) occupy all the octahedral voids. What is the formula of the compound?

D View Text Solution

2. Atoms of element B form hap lattice and
those of the element A occupy $2 / 3^{r d}$ of
tetrahedral voids. What is the formula of the

compound formed by the elements A and B ?

D View Text Solution

3. An element has a body-centred cubic (bcc) structure with a cell edge of 288 pm. The density of the element is $7.2 \mathrm{~g} / \mathrm{cm}^{3}$. How many atoms are present in 280 g of the element?
4. X-ray diffraction studies show that copper crystallises in an fcc unit cell with cell edge of $3.608 \times 10^{-8} \mathrm{~cm}$. In a separate experiment, copper is determined to have a density of $8.92 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the atomic mass of copper.

D View Text Solution

5. Silver forms ccp lattice and X-ray studies of
its crystals show that the edge length of its
unit cell is 408.6 pm. Calculate the density of silver (Atomic mass $=107.9 \mathrm{u})$.

- View Text Solution

Section B Intext Questions And Answers

1. Why are solids rigid ?

- View Text Solution

2. Why do solids have a definite volume ?

- View Text Solution

3. Classify the following as amorphous or crystalline solids: Polyurethane, naphthalene, benzoic acid, teflon, potassium nitrate, cellophane, polyvinyl chloride, fibre glass, copper.

D View Text Solution

4. Refractive index of a solid is observed to have the same value along all directions.

Comment on the nature of this solid. Would it show cleavage property?

D View Text Solution

5. Classify the following solids in different categories based on the nature of intermolecular forces operating in them :

Potassium sulphate, tin, benzene, urea,
ammonia, water, zinc sulphide, graphite, rubidium, argon, silicon carbide.

D View Text Solution

6. Solid A is a very hard electrical insulator in solid as well as in molten state and melts at extremely high temperature. What type of solid is it?
7. Ionic solids conduct electricity in molten state but not in solid state. Explain.

D View Text Solution
8. What type of solids are electrical conductors, malleable and ductile ?

D View Text Solution

9. Give the significance of a 'lattice point'.

- View Text Solution

10. Name the parameters that characterise a unit cell.

D View Text Solution

11. Distinguish between
(i) Hexagonal and monoclinic unit cells
(ii) Face-centred and end-centred unit cells.

D View Text Solution
12. Explain how much portion of an atom located at (i) corner and (ii) body-centre of a cubic unit cell is part of its neighbouring unit cell.

- View Text Solution

13. What is the two dimensional coordination number of a molecule in square close-packed layer?
14. A compound forms hexagonal close-packed
structure. What is the total number of voids in
0.5 mol of it ? How many of these are tetrahedral voids?

D View Text Solution
15. A compound is formed by two elements M and N . The element N forms ccp and atoms of

M occupy $\left(\frac{1}{3}\right)^{r d}$ of tetrahedral voids. What is the formula of the compound ?

- View Text Solution

16. Which of the following lattices has the highest packing efficiency (i) simple cubic (ii) bodycentred cubic and (iii) hexagonal closepacked lattice?
17. An element with molar mass
$2.7 \times 10^{-2} \mathrm{~kg} \mathrm{~mol}^{-1}$ forms a cubic unit cell with edge length 405 pm . If its density is
$2.7 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$, what is the nature of the cubic unit cell ?

D View Text Solution

18. What type of defect can arise when a solid is heated ? Which physical property is affected by it and in what way?
19. What type of stoichiometric defect is shown by : (i) ZnS (ii) AgBr

D View Text Solution

20. Explain how vacancies are introduced in an ionic solid when a cation of higher valence is added as an impurity in it.
21. Ionic solids, which have anionic vacancies due to metal excess defect, develop colour. Explain with the help of a suitable example.

- View Text Solution

22. A group 14 element is to be converted into ntype semiconductor by doping it with a suitable impurity. To which group should this impurity belong ?
23. What type of substances would make better permanent magnets, ferromagnetic or ferrimagnetic. Justify your answer.

D View Text Solution

Section C Textual Exercise

1. Define the term 'amorphous'. Give a few examples of amorphous solids.
2. What makes a glass different from a solid such as quartz ? Under what conditions could quartz be converted into glass?

D View Text Solution

3. Classify each of the following solids as ionic, metallic, molecular, network (covalent) or amorphous.
(i) Tetra phosphorus decoxide $\left(P_{4} O_{10}\right)$
(ii) Ammonium phosphate $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
(iii) $\operatorname{SiC} \quad$ (viii) Brass
(iv) $I_{2} \quad$ (ix) Rb
(v) $P_{4} \quad$ (x) LiBr
(vi) Plastic (ix) Si
(vii) Graphite .

D View Text Solution
4. (i) What is meant by the term 'coordination number' ?
(ii) What is the coordination number of atoms
(a) in a cubic close-packed structure ?
(b) in a body-centred cubic structure?

D View Text Solution

5. How can you determine the atomic mass of an unknown metal if you know its density and the dimension of its unit cell ? Explain.
6. 'Stability of a crystal is reflected in the magnitude of its melting points'. Comment.

Collect melting points of solid water, ethyl alcohol, diethyl ether and methane from a data book. What can you say about the intermolecular forces between these molecules ?

- View Text Solution

7. How will you distinguish between the following pairs of terms :
(i) Hexagonal close-packing and cubic close packing ?
(ii) Crystal lattice and unit cell ?
(iii) Tetrahedral void and octahedral void?

D View Text Solution

8. How many lattice points are there in one unit cell of each of the following lattice?
(i) Face-centred cubic
(ii) Face-centred tetragonal
(iii) Body-centred

D View Text Solution

9. Explain (i) The basis of similarities and differences between metallic and ionic crystals. (ii) Ionic solids are hard and brittle.
10. Silver crystallises in fcc lattice. If edge length of the cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and density is $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the atomic mass of silver.

D View Text Solution

11. A cubic solid is made of two elements P and

Q . Atoms of Q are at the corners of the cube and P at the body-centre. What is the formula
of the compound? What are the coordination numbers of P and Q ?

D View Text Solution

12. Niobium crystallises in body-centred cubic structure. If density is $8.55 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate atomic radius of niobium using its atomic mass 93 u .
13. If the radius of the octahedral void is r and radius of the atoms in close-packing is R, derive relation between r and R.

D View Text Solution

14. Copper crystallises into a fcc lattice with edge length $3.61 \times 10^{-8} \mathrm{~cm}$. Show that the calculated density is in agreement with its measured value of $8.92 \mathrm{~g} \mathrm{~cm}^{-3}$.
15. Analysis shows that nickel oxide has the
formula $N i_{0.98} O_{1.00}$. What fractions of nickel exist as $N i^{2+}$ and $N i^{3+}$ ions ?

D View Text Solution

16. What is a semiconductor ? Describe the
two main types of semiconductors and contrast their conduction mechanism.
17. Non-stoichiometric cuprous oxide, $\mathrm{Cu}_{2} \mathrm{O}$
can be prepared in laboratory. In this oxide,
copper to oxygen ratio is slightly less than 2:1.

Can you account for the fact that this substance is a p-type semiconductor?

D View Text Solution

18. Ferric oxide crystallises in a hexagonal
close packed array of oxide ions with two out of every three octahedral holes occupied by
ferric ions. Derive the formula of the ferric oxide.

D View Text Solution

19. Classify each of the following as being either a p-type or a n-type semiconductor:
(i) Ge doped with In (ii) Si doped with B.

D View Text Solution
20. Gold (atomic radius $=0.144 \mathrm{~nm}$) crystallises
in a face-centred unit cell. What is the length of a side of the cell ?

D View Text Solution

21. In terms of band theory, what is the difference
(i) between a conductor and an insulator
(ii) between a conductor and a semiconductor
22. Explain the following terms with suitable examples : (i) Schottky defect (ii) Frenkel defect (iii) Interstitial defects and (iv) Fcentres.

- View Text Solution

23. Aluminium crystallises in a cubic closepacked structure. Its metallic radius is 125 pm .
(i) What is the length of the side of the unit

cell ?

(ii) How many unit cells are there in $1.00 \mathrm{~cm}^{3}$ of aluminium?

D View Text Solution

24. If NaCl is doped with $10^{-3} \mathrm{~mol} \%$ of SrCl_{2},
what is the concentration of cation vacancies?

D View Text Solution
25. Explain the following with suitable examples:

12-16 and 13-15 group compounds.

D View Text Solution

Section D Ncert Exemplar Solution Multiple Choice Questions

1. Which of the following conditions favours
the existence of a substance in the solid state
A. High temperature
B. Low temperature
C. High thermal energy
D. Weak cohesive forces

Answer: B

D View Text Solution
2. Which of the following is not a characteristic of a crystalline solid?
A. Definite and characteristic heat of fusion.
B. Isotropic nature.
C. A regular periodically repeated pattern
of arrangement of constituent particles
in the entire crystal.

D. A true solid

Answer: B

3. Which of the following is an amorphous solid?
A. Graphite (C)
B. Quartz glass $\left(\mathrm{SiO}_{2}\right)$
C. Chrome alum
D. Silicon carbide (SIC)

Answer: B

- View Text Solution

4. Which of the following arrangements shows schematic alignment of magnetic moments of antiferromagnetic substances ?
A. (1)(1)(1)(1)(1)(1)
B. (1)(1)(1)(1)(1)(1)
C. (1)(1)(1)(1)(1)(1)
D. (1)(1)(1)(1)(1)(1)

Answer: D

5. Which of the following is true about the value of refractive index of quartz glass?
A. Same in all directions
B. Different in different directions
C. Cannot be measured
D. Always zero

Answer: A

D View Text Solution
6. Which of the following statement is not true about amorphous solids?
A. On heating they may become crystalline at certain temperature.
B. They may become crystalline on keeping
for long time.
C. Amorphous solids can be moulded by
heating
D. They are anisotropic in nature.

Answer: D

D View Text Solution

7. The sharp melting point of crystalline solids

is due to
A. a regular arrangement of constituent particles observed over a short distance in the crystal lattice.
B.a regular arrangement of constituent particles observed over a long distance in the crystal lattice.
C. same arrangement of constituent particles in different directions.
D. different arrangement of constituent particles in different directions.

Answer: B

D View Text Solution

8. Iodine molecules are held in the crystals lattice by
A. London forces
B. dipole-dipole interactions
C. covalent bonds
D. coulombic forces

Answer: A

- View Text Solution

9. Which of the following is a network solid ?
A. $S O_{2}$ (Solid)
B. I_{2}
C. Diamond
D. $\mathrm{H}_{2} \mathrm{O}$ (Ice)

Answer: C

D View Text Solution
10. Which of the following solids is not an electrical conductor?
${ }_{(i)} \mathrm{Mg}_{(s)}(i i) \mathrm{TiO} \mathrm{O}_{(s)}(i i i) I_{2_{s}}(i v) \mathrm{H}_{2} \mathrm{O}_{(s)}$
A. (i) only
B. (ii) Only
C. (iii) and (iv)
D. (ii), (iii) and (iv)

Answer: C

- View Text Solution

11. Which of the following is not the characteristic of ionic solids?
A. Very low value of electrical conductivity in the molten state.
B. Brittle nature.
C. Very strong forces of interactions.
D. Anisotropic nature.

Answer: A

D View Text Solution
12. Graphite is a good conductor of electricity due to the presence of
A. lone pair of electrons
B. free valence electrons
C. cations
D. anions

Answer: B

- View Text Solution

13. Which of the following oxides behaves as conductor or insulator depending upon temperature?
A. TiO
B. SiO_{2}
C. TiO_{3}
D. $M g O$

Answer: C
14. Which of the following oxides shows electrical properties like metals?
A. SiO_{2}
B. $M g O$
C. $S O_{2(s)}$
D. CrO_{2}

Answer: D

D View Text Solution
15. The lattice site in a pure crystal cannot be occupied by
A. molecule
B. ion
C. electron
D. atom

Answer: C

D View Text Solution

16. Graphite cannot be classified as

A. conducting solid
B. network solid
C. covalent solid

D. ionic solid

Answer: D

17. Cations are present in the interstitial sites in
A. Frenkel defect
B. Schottky defect
C. Vacancy defect
D. Metal deficiency defect

Answer: A

D View Text Solution
18. Schottky defect is observed in crystals when
A. some cations move from their lattice site to interstitial sites.
B. equal number of cations and anions are missing from the lattice.
C. some lattice sites are occupied by electrons.
D. some impurity is present in the lattice.

Answer: B
19. Which of the following is true about the charge acquired by p-type semiconductors?
A. Positive
B. neutral
C. negative
D. depends on concentration of p-impurity

Answer: B
20. To get a n-type semiconductor from silicon,
it should be doped with a substance with
valency
A. 2
B. 1
C. 3
D. 5
21. The total number of tetrahedral voids in the face centred unit cell is
A. 6
B. 8
C. 10
D. 12

Answer: B
22. Which of the following point defects are shown by $\mathrm{AgBr}(\mathrm{s})$ crystals ? (i) Schottky defect
(ii) Frenkel defect (iii) Metal excess defect (iv)

Metal deficiency defect
A. (i) and (ii)
B. (iii) and (iv)
C. (i) and (iii)
D. (ii) and (iv)
23. In which pair most efficient packing is present?
A. hcp and bcc
B. hcp and ccp
C. bcc and ccp
D. bcc and simple cubic cell

Answer: B
24. The percentage of empty space in a body centred cubic arrangement is
A. 74
B. 68
C. 32
D. 26

Answer: C

- View Text Solution

25. Which of the following statement is not true about the hexagonal close packing ?
A. The coordination number is 12 .
B. It has 74\% packing efficiency.
C. Tetrahedral voids of the second layer are
covered by the spheres of the third
layer.
D. In this arrangement spheres of the
fourth layer are exactly aligned with

Answer: D

D View Text Solution

26. In which of the following structures
coordination number for cations and anions in
the packed structure will be same ?
A. $C l^{-}$ion form foc lattice and $N a^{+}$ions occupy all octahedral voids of the unit
cell.
B. $C a^{2+}$ ions form fcc lattice and F^{-}ions occupy all the eight tetrahedral voids of the unit cell.
C. O^{2-} ions form fcc lattice and Na^{+}ions
occupy all the eight tetrahedral voids of
the unit cell.
D. S^{2-} ions form fcc lattice and $Z n^{2+}$ ions
go into alternate tetrahedral voids of
the unit cell.

Answer: A

D View Text Solution

27. What is the coordination number in a square close packed structure in two dimensions?
A. 2
B. 3
C. 4
D. 6

Answer: C

D View Text Solution

28. Which kind of defects are introduced by doping ?
A. Dislocation defect
B. Schottky defect
C. Frenkel defect
D. Electronic defect

Answer: D

D View Text Solution

29. Silicon doped with electron-rich impurity

forms

A. P-type semiconductor
B. n-type semiconductor
C. intrinsic semiconductor
D. insulator

D View Text Solution

30. Which of the following statements is not true?
A. Paramagnetic substances are weakly
attracted by magnetic field.
B. Ferromagnetic substances cannot be
magnetised permanently.
C. The domains in antiferromagnetic
substances are oppositely oriented with
respect to each other.
D. Pairing of electrons cancels their magnetic moment in the diamagnetic substances.

Answer: B

D View Text Solution
31. Which of the following is not true about the ionic solids?
A. Bigger ions form the close-packed structure.
B. Smaller ions occupy either the
tetrahedral or the octahedral voids
depending upon their size.
C. Occupation of all the voids is not necessary.

D. The fraction of octahedral or tetrahedral

voids occupied depends upon the radii of the ions occupying the voids.

Answer: D

D View Text Solution

32. A ferromagnetic substance becomes a permanent magnet when it is placed in a magnetic field because
A.all the domains get oriented in the direction of magnetic field.
B. all the domains get oriented in the direction opposite to the direction of magnetic field.
C. domains get oriented randomly.
D. domains are not affected by magnetic field.

Answer: A

33. The correct order of the packing efficiency in different types of unit cells is
A.fcc $<$ bcc $<$ simple cubic
B. fcc $>$ bcc $>$ simple cubic
C. fcc $<$ bcc $>$ simple cubic
D. $\mathrm{bcc}<$ fcc $>$ simple cubic

Answer: B

D View Text Solution
34. Which of the following defects is also known as dislocation defect?
A. Frenkel defect
B. Schottky defect
C. Non-stoichiometric defect
D. Simple interstitial defect

Answer: A

D View Text Solution
35. In the cubic close packing, the unit cell has
A. 4 tetrahedral voids each of which is shared by four adjacent unit cells.
B. 4 tetrahedral voids within the unit cell.
C. 8 tetrahedral voids each of the which is
shared by four adjacent unit cells.
D. 8 tetrahedral voids within the unit cells.

Answer: D

36. The edge lengths of the unit cells in terms of the radius of spheres constituting fcc, bcc and simple cubic unit cell are respectively

$$
\text { A. } 2 \sqrt{2} r, \frac{4 r}{\sqrt{3}}, 2 r
$$

B. $\frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r, 2 r$
C. $2 r, 2 \sqrt{2} r, \frac{4 r}{\sqrt{3}}$

$$
\text { D. } 2 r, \frac{4 r}{\sqrt{3}}, 2 \sqrt{2} r
$$

Answer: A

37. Which of the following represents correct

order of conductivity in solids?

A. $k_{\text {metals }} \gg k_{\text {insulators }}<k_{\text {semiconductors }}$
B. $k_{\text {metals }} \ll k_{\text {insulators }}<k_{\text {semiconductors }}$
C.
$k_{\text {metals }}<k_{\text {semiconductors }}>k_{\text {insulators }}=$ zero
D. $k_{\text {metals }}<k_{\text {semiconductors }}>k_{\text {insulators }} \neq$
zero

Answer: A

D View Text Solution

Section D Ncert Exemplar Solution Multiple Choice Questions More Than One Options

1. Which of the following is not true about the
voids formed in 3 dimensional hexagonal close packed structure ?
A. A tetrahedral void is formed when a
sphere of the second layer is present
above triangular void in the first layer.
B. All the triangular voids are not covered
by the spheres of the second layer.
C. Tetrahedral voids are formed when the
triangular voids in the second layer lie
above the triangular voids in the first
layer and the triangular shapes of these
voids do not overlap.

D. Octahedral voids are formed when the

 triangular voids in the second layer exactly overlap with similar voids in the first layer.
Answer: A::C::D

D View Text Solution

2. The value of magnetic moment is zero in the case of antiferromagnetic substances because the domains
A. get oriented in the direction of the applied magnetic field.
B. get oriented opposite to the direction of
the applied magnetic field.
C. are oppositely oriented with respect to
each other without the application of magnetic field.
D. cancel out each other's magnetic moment.

- View Text Solution

3. Which of the following statements are not true?
A. Vacancy defect results in a decrease in
the density of the substance.
B. Interstitial defects results in an increase in the density of the substance.
C. Impurity defect has no effect on the density of the substance.

D. Frenkel defect results in an increase in

 the density of the substance.
Answer: A::C::D

D View Text Solution

4. Which of the following statements are true about metals ?
A. Valence band overlaps with conduction
band.
B. The gap between valence band and conduction band is negligible.
C. The gap between valence band and conduction band cannot be determined. D. Valence band may remain partially filled.

Answer: A::B::D

- View Text Solution

5. Under the influence of electric field, which of
the following statements is true about the movement of electrons and holes in a p-type semiconductor?
A. Electron will move towards the positively
charged plate through electron holes.
B. Holes will appear to be moving towards
the negatively charged plate.
C. Both electrons and holes appear to
move towards the positively charged
plate.

D. Movement of electrons is not related to

the movement of holes.

Answer: A::B::D

D View Text Solution

6. Which of the following statements are true about semiconductors ?
A. Silicon doped with electron rich impurity is a p-type semiconductor.
B. Silicon doped with an electron rich impurity is an n-type semiconductor.
C. Delocalised electrons increase the conductivity of doped silicon.
D. An electron vacancy increases the conductivity of n-type semiconductor.

Answer: A::B::C::D

7. An excess of potassium ions makes KCl crystals appear violet or lilac in colour since
A. some of the anionic sites are occupied by an unpaired electron.
B. some of the anionic sites are occupied
by a pair of electrons.
C.there are vacancies at some anionic
sites.
D. F-centres are created which impart colour to the crystals.

Answer: A::D

D View Text Solution

8. The number of tetrahedral voids per unit cell in NaCl crystal is
A. 4
B. 8

C. Twice the number of octahedral voids.

D. Four times the number of octahedral

voids.

Answer: A::B::C::D

D View Text Solution
9. Amorphous solid can also be called
A. pseudo solids
B. true solids

C. super cooled liquids

D. super cooled solids

Answer: A::C::D

D View Text Solution

10. A perfect crystal of silicon (Fig.) is doped with some elements as given in the options.

Which of these options shows n-type semiconductors?
A.

B.
C.
D.

Answer: A::C::D

- View Text Solution

11. Which of the following statements are correct?
A. Ferrimagnetic substances lose ferri
magnetism on heating and become paramagnetic.
B. Ferrimagnetic substances do not lose
ferrimagnetism on heating and remain
ferrimagnetic.
C. Antiferromagnetic substances have
domain structures similar to
ferromagnetic substances and their
magnetic moments are not cancelled by
each other.
D. In ferromagnetic substances all the
domains get oriented in the direction of
magnetic field and remain as such even
after removing magnetic field.

Answer: A::D

D View Text Solution

12. Which of the following features are not shown by quartz glass?
A. This is a crystalline solid.
B. Refractive index is same in all the directions.
C. This has definite heat of fusion.
D. This is also called super cooled liquid.

Answer: A::C::D

13. Which of the following cannot be regarded as molecular solid?
A. SiC (Silicon carbide)
B. AIN
C. Diamond
D. I_{2}

Answer: A::B::C::D

- View Text Solution

14. In which of the following arrangements octahedral voids are formed?
A. hcp
B. bcc
C. simple cubic
D. fcc

Answer: A:D

- View Text Solution

15. Frenkel defect is also known as
A. stoichiometric defect
B. dislocation defect
C. impurity defect
D. non-stoichiometric defect

Answer: A::B::D

D View Text Solution
16. Which of the following defects decrease the density?
A. Interstitial defect
B. Vacancy defect
C. Frenkel defect
D. Schottky defect

Answer: A::B::D

D View Text Solution

Section D Ncert Exemplar Solution Short Answer Type Questions

1. Why are liquids and gases categorised as fluids?

D View Text Solution
2. Why are solids incompressible?

- View Text Solution

3. Inspite of long range order in the arrangement of particles why are the crystals usually not perfect?

D View Text Solution
4. Why does table salt NaCl , some times appear yellow in colour?

D View Text Solution
5. Why is $F e O_{(s)}$ not formed in stoichiometric composition ?

- View Text Solution

6. Why does white $\operatorname{ZnO}(s)$ becomes yellow upon heating?
(D) View Text Solution
7. Why does the electrical conductivity of semi conductors increase with rise in temperature ?

- View Text Solution

8. Explain why does conductivity of germanium crystals increase on doping with gallium.

- View Text Solution

9. In a compound, nitrogen atoms (N) make cubic close-packed lattice and metal atoms (M) occupy one-third of the tetrahedral voids present. Determine the formula of the compound formed by M and N ?

D View Text Solution

10. Under which situations can an amorphous substance change to crystalline form ?

Section D Ncert Exemplar Solution Assertion And

 Reason Type1. Assertion : The total number of atoms present in a simple cubic unit cell is one.

Reason: Simple cubic unit cell has atoms at its
corners, each of which is shared between eight adjacent unit cells.
A. Assertion and reason both are correct
explanation for assertion.
B. Assertion and reason both are correct
statements but reason is not correct
explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.

D. Assertion is wrong statement but reason is correct statement.

Answer: A

D View Text Solution
2. Assertion : Graphite is a good conductor of electricity however diamond belongs to the category of insulators.

Reason: Graphite is soft in nature on the other hand diamond is very hard and brittle.
A. Assertion and reason both are correct
statement and reason is correct
explanation for assertion.
B. Assertion and reason both are correct
statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.

D. Assertion is wrong statement but reason

is correct statement.

Answer: B

3. Assertion : Total number of octahedral voids
present in unit cell of cubic close packing including the one that is present at the body centre, is four.

Reason: Besides the body centre there is one octahedral void present at the centre of each of the six faces of the unit cell and each of which is shared between two adjacent unit cells.
A. Assertion and reason both are correct
statement and reason is correct
explanation for assertion.
B. Assertion and reason both are correct
statements but reason is not correct
explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.

D. Assertion is wrong statement but reason is correct statement.

Answer: C

4. Assertion: The packing efficiency is maximum for the fcc structure.

Reason: The co-ordination number is 12 in fcc structures.
A. Assertion and reason both are correct
statement and reason is correct
explanation for assertion.
B. Assertion and reason both are correct
statements but reason is not correct
explanation for assertion.
C. Assertion is correct statement but
reason is wrong statement.
D. Assertion is wrong statement but reason
is correct statement.

Answer: B

D View Text Solution

5. Assertion : Semiconductors are solids with
conductivities in the intermediate range from
10^{-6} to $10^{4} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$.
Reason: Intermediate conductivity in semi
conductor is due to partially filled valence band.
A. Assertion and reason both are correct
statement and reason is correct
explanation for assertion.
B. Assertion and reason both are correct
statements but reason is not correct explanation for assertion.
C. Assertion is correct statement but reason is wrong statement.

D. Assertion is wrong statement but reason

is correct statement.

Answer: C

Section D Ncert Exemplar Solution Long Answer Type Questions

1. With the help of a labelled diagram show that there are four octahedral voids per unit cell in a cubic close packed structure.

D View Text Solution
2. How does the doping increase the conductivity of semiconductors ?
3. A sample of ferrous oxide has actual formula
$F e_{0.93} O_{1.00}$. In this sample what fraction of metal ions are $F e^{2+}$ ions ? What type of nonstoichiometric defect is present in this sample?

- View Text Solution

Section E Multiple Choice Questions Darpan S Exam Oriented Mcqs

1. Which of the following crystallizes in hexagonal close packing ?
A. Cu
B. Na
C. Zn
D. Cs

Answer: C

- View Text Solution

2. Which crystalline solid is used as lubricant ?
A. I_{2}
B. Fullerene
C. KCl

D. Graphite

Answer: D

- View Text Solution

3. Fullerene is example of which type of solid ?
A. Amorphous solid
B. Molecular solid
C. Covalent solid
D. Metallic solid

Answer: B

D View Text Solution

4. For which crystal system, all four type of unit cell may exist?
A. Rhombohedral
B. Monoclinic
C. Trigonal
D. Orthorhombic

Answer: D

D View Text Solution
5. In which of the following solids, constituent particles are atoms ?
A. SiO_{2}

B. Solid SO_{2}

C. $M g O$
D. $K C l$

Answer: A

D View Text Solution

6. Calcite is example of system.
A. Rhombohedral

B. Tetragonal

C. Triclinic

D. Orthorhombic

Answer: A

D View Text Solution

7. In which of the following compounds, the periodicity of the definite formation is not observed?
A. $I_{2(s)}$
B. Naphthalene
C. Fullerene
D. Glass

Answer: D

D View Text Solution
8. The melting points of ionic solids are
A. Normal
B. Very high
C. Abnormal
D. Low

Answer: B

D View Text Solution
9. Which of the following statements is incorrect?
A. Ionic solids are hard and brittle
B. Solid SO_{2} has low melting point with respect to solid CO_{2}
C. In metallic solids, positive ions are present in sea of electrons.
D. In diamond and graphite, carbon has different hybrid state.

Answer: B

D View Text Solution

10. In $C a F_{2}$, the forces present are

A. London forces
B. Dipole-dipole forces
C. Ion-dipole forces
D. Electrostatic forces

Answer: D
11. A crystalline solid conducts electricity in
aqueous state but behaves as non-conductor
in solid state. It shatters when striked with
hammer. The solid shows high melting point.

The solid is ...
A. Graphite
B. NaCl
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{2}

Answer: B
12. Which among the following is true for amorphous solids?
A. They are super cooled solids
B. The graph of temperature \rightarrow time
obtained on cooling after heating is
curvature.
C. Melting points are sharp.
D. Refractive index is different in all directions.

Answer: B

D View Text Solution
13. Which of the following has tetragonal
system?
A. CaSO_{4}
B. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

C. ZnO

D. All of these

Answer: A

D View Text Solution
14. At 283 K , which of the following coil exist in
solid state ?
A. $\mathrm{SO}_{2}, I_{2}, \mathrm{KCl}$

B. $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{CsCl}$

C. $\mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{2}, \mathrm{NaCl}$

D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CaF}_{2}, \mathrm{KCl}$

Answer: B

D View Text Solution

15. Match box is

A. Cubic
B. Monoclinic
C. Rhombohedral

D. Orthorhombic

Answer: D

D View Text Solution

16. What percent of octahedral voids are occupied by cation in a rock-salt structure?
A. 100%
B. 50%
C. 33%
```
D. \(25 \%\)
```


Answer: A

D View Text Solution

17. What is the co-ordination number of cations in antifluorite structure ?
A. 4
B. 6
C. 8

D. 12

Answer: A

D View Text Solution

18. How many times the number of tetrahedral
voids are there as compared to octahedral
voids?
A. 0.5
B. 2
C. 8
D. 4

Answer: B

D View Text Solution

19. What percent of voids are occupid by
Zn^{2+} ions in ZnS crystal ?
A. 50%
B. 100%
C. 25%
D. 75%

Answer: A

D View Text Solution

20. The three dimensional graph of lattice points which sets the pattern of whole lattice is called
A. Space lattice
B. Simple lattice
C. Crystal lattice
D. Unit cell

Answer: D

D View Text Solution
21. Which is not correct for Frenkel defects ?
A. Low co-ordination number
B. Electrical conductivity increases
C. Low radius ratio

D. Equal number of cations and anions are

 missing from lattice sites.
Answer: D

D View Text Solution

22. Identify the incorrect statement :
A. The conductivity of the metals decreases
with the rise in temperature,
B. The conductivity of semiconductors increases with the rise in temperature,
C. Ionic solids conduct electricity due to
presence of ions.
D. There is no super conductor at a room
temperature.

Answer: C

D View Text Solution

23. In crystals, atoms are located at the position of
A. Maximum potential energy
B. Zero potential energy
C. Infinite potential energy

D. Minimum potential energy

Answer: D

24. If an atom from body-centred is removed in bcc, the packing fraction will be
A. 52%
B. 68%
C. 32%
D. 74%

Answer: A

D View Text Solution
25. In a ccp arrangement, atoms A are present
at corners and B are at face-centred. If two
atoms from the corners are missing, the formula of the compound will be
A. $A_{7} B_{6}$
B. $A_{6} B_{7}$
C. $A_{7} B_{24}$
D. $A B_{4}$

Answer: D

26. Metallic gold crystallizes in ccp lattice. The
length of the cubic unit cell is $4.242 A^{\circ}$. The closest distance between two atoms of gold
A. $4 A^{\circ}$
B. $3 A^{\circ}$
C. $2 A^{\circ}$
D. $6 A^{\circ}$

Answer: B
27. Sodium metal exists in bcc unit cell. The distance between nearest sodium atoms is 0.368 nm . The edge length of unit cell is
A. 0.368 nm
B. 0.184 nm
C. 0.425 nm
D. 0.575 nm

Answer: C
28. The distance between two octahedral voids
in a ccp is (a = edge length)
A. $\frac{a}{\sqrt{2}}$
B. $\frac{\sqrt{3} a}{2}$
C. $\sqrt{2} a$
D. $\frac{a}{2}$

Answer: A

D View Text Solution
29. A solid $A B$ has rock salt structure. If the radius of cation is 100 pm , the maximum radius of anion B^{\ominus} is
A. 120.7 pm
B. 68.3 pm .
C. 136.61 pm .
D. 241.54 pm

Answer: D
30. Which defect increases the density of a crystal lattice?
A. Vacancy
B. Frenkel
C. Schottky
D. Interstitial

Answer: D

31. Which will not show Frenkel defect?

A. CsCl
B. Ag
C. AgBr
D. ZnS

Answer: A

- View Text Solution

32. In which crystal structure, both vacancy and interstitial defects are observed at the same time?
A. Agl
B. CCl
C. KCl
D. NaCl

Answer: A

33. F-centres in ionic crystal
A. Lattice sites containing electrons
B. Vacant lattice sites
C. Interstitial sites containing cations
D. Interstitial sites containing electrons

Answer: A

- View Text Solution

34. In stoichiometric defects, the ratio of positive and negative ions as indicated by chemical formula of the compound
A. Decreases
B. Increases
C. Cannot be predicted
D. Remains same

Answer: D

D View Text Solution
35. Anti-ferromagnetic solids has
A. Zero magnetic moment
B. Low magnetic moment
C. High magnetic moment

D. None of these

Answer: A
36. Crystals of KCl appears violet due to
A. Schottky defects
B. Metal excess defects
C. Metal deficiency defect

D. Impurity of violet colour

Answer: B
37. Which substance shows paramagnetism when heated?
A. NaCl
B. $\mathrm{ZnFe} e_{2} \mathrm{O}_{4}$
C. $C r C l_{3}$
D. $C_{6} H_{6}$

Answer: B

D View Text Solution
38. Which of the following is antiferromagnetic?
A. CrO_{2}
B. $T i_{2} O_{3}$
C. $V O_{2}$
D. FeO

Answer: D

D View Text Solution
39. FexO contains one Fe (III) for every three
$\mathrm{Fe}(\mathrm{II})$. What is x ?
A. $\frac{2}{3}$
B. $\frac{8}{9}$
C. $\frac{3}{4}$
D. $\frac{5}{3}$

Answer: B

- View Text Solution

40. What is correct ratio of $N i^{2+}$ ions to

$N i^{3+}$ ions in $N i_{0.98} O ?$

A. 24: 1
B. 1: 4
C. $47: 3$
D. $47: 2$

Answer: D

D View Text Solution
41. Which compound has appearence and conductivity similar to copper?
A. TiO
B. ReO_{3}
C. MnO
D. $T i_{2} O_{3}$

Answer: B

- View Text Solution

42. Which metal oxide behaves as insulators ?
A. TiO
B. VO
C. CuO
D. CrO_{2}

Answer: C

D View Text Solution
43. Which of the following can be used in preparation of permanent magnets?
A. Fe
B. Co
C. Gd
D. All of these

Answer: D

D View Text Solution
44. One of the reasons of the flame test of metal salts is
A. Metal excess defects
B. Metal deficiency defects
C. Schottky defects
D. Frenkel defect

Answer: A

- View Text Solution

45. Which of the following is diamagnetic?
A. KCl
B. NaCl
C. $\mathrm{H}_{2} \mathrm{O}$
D. All of these

Answer: D

- View Text Solution

46. Electrical properties of which oxide varies with the temperature ?
A. $\mathrm{TiO}_{2} \mathrm{O}_{3}$
B. TiO
C. MnO
D. FeO

Answer: A

- View Text Solution

47. A p-type semiconductor is developed by
A. Increase in temperature.
B. Addition of electron deficient impurities.
C. Addition of electron rich impurities.
D. All of these

Answer: B

D View Text Solution
48. Metal deficiency defects is observed in
A. NiO
B. FeS
C. FeO
D. All of these

Answer: D

D View Text Solution
49. When the periodicity of lattice points get disturb in a certain direction it is called
A. Point defects
B. Line defects
C. Plane defects
D. Impurity defect

Answer: B

D View Text Solution
50. Which of the following solid compound possess crystalline properties?
A. S and P like non-metals
B. NaCl and Nepthelene like compound
C. Cu and Fe like metals
D. (A), (B) and (C) all three

Answer: D

D View Text Solution
51. Choose proper option of T (True) or F (False) for the following statement :
(1) Graphite is soft and electrical conductor due to its characteristic structure.
(2) Carbon of graphite possess $s p^{2}$
hybridization.
(3) Fourth electron of valence orbital of
carbon is responsible for conducting current in graphite
(4) Distance between two successive layer in graphite is 141 pm .
A. FFFT

B. TTTF

C. TTTT
D. FTFT

Answer: B

D View Text Solution

52. Silicon carbide (Carborandum) (armor stone) is which type of solid ?
A. Metallic solid
B. Ionic solid
C. Molecular solid
D. Covalent solid

Answer: D

- View Text Solution

53. Choose correct option of True (T) or False
(F) for the statement given for ionic solid :
(1) They possess high melting and boiling
points.
(2) They are electrolytes
(3) They possess directional properties for bonds.
(4) They may possess collective type of structure.
A. TTFT
B. FTTT
C. FTFT
D. TFTF
54. Which of the following is false statement for amorphous solid?
A. It melts in higher temperature ranges.
B. They are true solids
C. They do not possess regular arrangement of particles.

D. They possess different thermal

- View Text Solution

55. is amorphous solid.
A. Liquids in true means
B. Chilled liquids
C. Solids in true means
D. Substance with definite melting points
56. Particles which are present at every corners as well as present on centers of every faces of unit cells are known as
A. Body center
B. End center
C. Face center
D. Primitives
57. For substance having orthorhombic crystalline system edge length would be $a \neq b \neq c$ and angles are....

$$
\begin{aligned}
& \text { A. } \alpha=\beta=\gamma \neq 90^{\circ} \\
& \text { B. } \alpha=\gamma=90^{\circ}, \beta=120^{\circ} \\
& \text { C. } \alpha=\beta=\gamma=90^{\circ} \\
& \text { D. } \alpha \neq \beta \neq \gamma \neq 90^{\circ}
\end{aligned}
$$

A. $4 r^{3}$
B. $2 r^{3}$
C. $\frac{16 \pi r^{3}}{\sqrt{3}}$
D. $8 r^{3}$

Answer: D

59. Voids present in body center unit cells are....
A. 32%
B. 34%
C. 30%
D. 28%

Answer: A

D View Text Solution
60. In body center crystal arrangement of solid
cube, how much percentage of edges is not occupied by atoms ?
A. 39.2%
B. 26%
C. 13.4%
D. 52%

Answer: C

61. If edge length in simple cube, bcc and fcc unit cell is a, then the ratio of atomic radius present in them are

$$
\begin{aligned}
& \text { A. } \frac{a}{2}: \frac{\sqrt{3}}{2}: \frac{\sqrt{2} a}{2} \\
& \text { B. } \frac{a}{2}: \frac{\sqrt{3}}{4}: \frac{a}{2 \sqrt{2}} \\
& \text { C. } \frac{a}{2}: \sqrt{3} a: \frac{a}{\sqrt{2}} \\
& \text { D. } 14: \sqrt{3} a: \sqrt{2} a
\end{aligned}
$$

Answer: B
62. One metal possess bcc arrangement. Its
unit cell has edge length $3.04 \AA$, then the volume of unit cell $=. \mathrm{cm}^{3}$.
A. 2.81×10^{-23}
B. 1.6×10^{21}
C. 6.6×10^{-24}
D. 6.02×10^{-23}

Answer: A

D View Text Solution
63. Element E has bcc crystal arrangement, if
its unit cell has edge length of 1.469×10^{-10} meter, then atomic radius of this element is meter.
A. 2.252×10^{-8}
B. 4.682×10^{-9}
C. 6.361×10^{-11}
D. 3.582×10^{-10}

Answer: C
64. Gold (atomic radius $=0.144 \mathrm{~nm}$) crystallize
into face centered unit cell, then what is the edge length of unit cell ?
A. 0.4574 nm
B. 0.3347 nm
C. 0.5123 nm
D. 0.4073 nm

Answer: D
65. In NaCl crystal, distance between $N a^{+}$and
$C l^{-}$is X pm , then edge length of unit cell $=$
A. $2 X$
B. $\frac{X}{4}$
C. $\frac{X}{2}$
D. $4 X$
66. In bcc unit, how much atoms are required per unit cell ?
A. 1
B. 9
C. 8
D. 6

Answer: B

D View Text Solution
67. In which arrangement 1 atom is present per unit cell ?
A. hcp
B. fcc
C. simple cube
D. bcc

Answer: C

- View Text Solution

68. In compound made up of A and B elements, element B form hcp lattice structure and element A occupy $\frac{2}{3}$ part of tetrahedral voids,
then molecular formula of compound made up of A and $B=\ldots$.
A. $A_{3} B_{4}$
B. $A_{4} B_{3}$
C. $A_{2} B_{3}$
D. $A_{3} B_{5}$

Answer: B

D View Text Solution

69. How many unit cells are present in 2 gm of
potassium (Atomic mass $=39$) ? (bcc
arrangement)
A. 2.88×10^{20}
B. 1.54×10^{22}
C. 5.25×10^{14}
D. 5.85×10^{12}

Answer: B

D View Text Solution

70. CSCl possess bcc arrangement, its edge length in unit cell is 400 pm , then inter ionic

A. $\frac{\sqrt{3}}{2} \times 400$
B. $\sqrt{3} \times 100$
C. 400
D. 800

Answer: B

D View Text Solution

71. Numbers of octahedral voids in cubic close

 pack arrangement isA. 2
B. 4
C. 1
D. 3

Answer: B

D View Text Solution

72. Metal alloy crystal consisting eight coordination number is obtained during crystallization of $L i$ and $A g^{+}$, then which type of crystal arrangement will observed?
A. bcc
B. simple cube
C. hexagonal

D. (A), (B) and (C) all three

Answer: A

D View Text Solution

73. On solidification of molten silver gives crystals.
A. Shows ccp type of arrangement
B. Shows 6 coordination number
C. Shows 10 coordination number

D. Shows hcp type of arrangement

Answer: A

D View Text Solution

74. In $\mathrm{Fe}_{3} \mathrm{O}_{4}\left[\mathrm{Fe}^{I I} \mathrm{Fe}_{2}^{I I I} \mathrm{O}_{4}\right] \mathrm{O}^{2-}$. Ions are arranged on ccp arrangement. If Fe^{2+} ions are arranged on tetrahedral voids and Fe^{3+} ions are arranged on octahedral voids, then
how much portion of tetrahedral and octahedral voids occupied respectively?
A. $\frac{1}{4}, \frac{1}{8}$
B. $\frac{1}{4}, \frac{1}{2}$
C. $\frac{1}{8}, \frac{1}{2}$
D. $\frac{1}{2}, \frac{1}{4}$

Answer: C

D View Text Solution

75. Due to which of the following reason diamond is non conductor of electricity?
A. Hardnes

B. Tetrahedral crystal arrangement

C. High energy gap
D. (A), (B) and (C) all three

Answer: C

D View Text Solution
76. Which element is doped with Si to form p type of semiconductor?
A. Ge
B. Se
C. As
D. B

Answer: D

- View Text Solution

Section E Multiple Choice Questions Mcqs Asked In Jee Neet Aifms

1. How many unit cells are present in a cube shaped ideal crystal of NaCl of mass 1.00 g ?
[Atomic masses : $\mathrm{Na}=23, \mathrm{Cl}=35.5$]
A. 2.57×10^{21}
B. 5.14×10^{21}
C. 1.28×10^{21}
D. 1.71×10^{21}

Answer: A

D View Text Solution
2. An ionic compound has unit cell consisting
A ions at the corners of a cube and B ions on
the centres of the faces of cube. The empirical
formula of compound would be
A. $A_{3} B$
B. $A B_{3}^{-}$
C. $A_{2} B$
D. $A B$

Answer: B
3. Total volume of atoms present in a facecentred cubic unit cell of a metal is ($r=$ atomic radius)
A. $\frac{20}{3} \pi r^{3}$
B. $\frac{24}{3} \pi r^{3}$
C. $\frac{12}{3} \pi r^{3}$
D. $\frac{16}{3} \pi r^{3}$

Answer: D
4. In a compound, atoms of element Y form
ccp lattice and those element X occupy $\frac{2}{3}$ of tetrahedral voids. The formula of a compound will be
A. $X_{4} Y_{3}$
B. $X_{2} Y_{3}$
C. $X_{2} Y$
D. $X_{3} Y_{4}$

- View Text Solution

5. CsCl has bcc arrangement. Its unit cell edge
length is 400 pm . Its interionic distance is
A. 400 pm
B. 800 pm
C. $73 \times 100 \mathrm{pm}$
D. $\frac{\sqrt{3}}{2} \times 400 \mathrm{pm}$

Answer: C

D View Text Solution

6. The arrangement of X-ions around A^{+}ion
in solid AX is given in the figure (not drawn to
scale). If the radius of X^{-}is 250 pm., the radius of A is
A. 104 pm
B. 125 pm
C. 183 pm

D. 57 pm

Answer: A

D View Text Solution

7. The number of carbon atoms per unit cell of

 diamond unit cell isA. 6
B. 1
C. 4

D. 8

Answer: D

D View Text Solution

8. In a solid, atom M occupies ccp lattice and $\left(\frac{1}{3}\right)^{r d}$ of tetrahedral voids are occupied by atom N . The formula of compound is
A. $M_{3} N_{2}$
B. $M_{2} N_{3}$
C. $M_{4} N_{3}$
D. $M_{3} N_{4}$

Answer: A

D View Text Solution

9. CsCl crystallises in body-centred cubic
lattice. If ' a ' is its edge length then which of the following expressions is correct ?

$$
\text { A. } r_{C s^{+}}+r_{C l^{-}}=\sqrt{3} a
$$

B. $r_{C s^{+}}+r_{C l^{-}}=3 a$
C. $r_{C s^{+}}+r_{C l^{-}}=\frac{3 a}{2}$
D. $r_{C s^{+}}+r_{C l^{-}}=\frac{\sqrt{3}}{2} a$

Answer: D

D View Text Solution

10. If a is the length of the side of the cube,
the distance between the body-centred atom and one corner atom in the cube will be
A. $\frac{2}{\sqrt{3}} a$
B. $\frac{4}{\sqrt{3}} a$
C. $\frac{\sqrt{3}}{4} a$
D. $\frac{\sqrt{3}}{2} a$

Answer: D

D View Text Solution

11. A forms hap lattice and B are occupying $\left(\frac{1}{3}\right)^{r d}$ of tetrahedral voids. The formula of
compound is

A. $A B$
B. $A_{3} B_{2}$
C. $A_{2} B_{3}$
D. $A B_{4}$

Answer: B

- View Text Solution

12. Sodium metal crystallizes in a body-centred cubic lattice with a unit cell edge of $4.29 A^{\circ}$.

The radius of sodium atom is
approximately......
A. $5.72 A^{\circ}$
B. $0.93 A^{\circ}$
C. $1.86 A^{\circ}$
D. $3.22 A^{\circ}$

Answer: C

13. The correct statement regarding defects in

 crystalline solids isA. Frenkel defects decreases the density of crystalline solid.
B. Frenkel defect is a dislocation defect.
C. Frenkel defect is found in halides of alkali metals.

D. Schottky defects have no effect on the

 density of crystalline solids.Answer: B

D View Text Solution

14. A given metal crystallizes out in a cubic structure having edge length of 361 pm. If there are four metal atoms in one unit cell, what is the radius of one atom?
A. 80 pm

B. 108 pm

C. 40 pm
D. 127 pm

Answer: D

D View Text Solution

15. A yellow colour in NaCl crystals is due to
A. Excitation of electrons in F-centres
B. Reflection of light from Cl^{-}ions on the surface.
C. Refraction of light from Na^{+}ions.
D. All of the above

Answer: A

D View Text Solution
16. In calcium fluoride, having a fluorite structure, the co-ordination numbers for calcium ion $\left(C a^{2+}\right)$ and fluoride ion $\left(F^{-}\right)$ are :
A. 4 and 2
B. 6 and 6
C. 8 and 4
D. 4 and 8

Answer: C

17. Lithium has a bcc structure. Its density is $530 \mathrm{~kg} \mathrm{~m}^{-3}$ and its atomic mass is $6.94 \mathrm{~g} \mathrm{~mol}^{-1}$. Calculate the edge length of the unit cell of lithium metal
$\left(N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)$
A. 527 pm
B. 264 pm
C. 154 pm
D. 352 pm

Answer: D

D View Text Solution

18. The ionic radii of A^{+}and B^{-}ions are
$0.98 \times 10^{-10} m$ and $1.81 \times 10^{-10} m . \quad$ The coordination number of each ion in $A B$ is
A. 8
B. 2
C. 6
D. 4

Answer: C

D View Text Solution

19. If an atom crystallizes in bcc lattice with $r=4 A^{\circ}$, edge length will be
A. $2 A^{\circ}$
B. $8 A^{\circ}$
C. $2.39 A^{\circ}$
D. $9.23 A^{\circ}$

Answer: D

D View Text Solution

20. Which of the following compound is metallic and ferromagnetic?
A. TiO_{2}
B. CrO_{2}
C. $V O_{2}$
D. MnO_{2}

Answer: B

D View Text Solution

21. A metal crystallises in a face -centred cubic structure. If the edge length of its unit cell is
'a' the closest approach between two atoms in metallic crystal will be
A. $\sqrt{2} a$
B. $\frac{a}{\sqrt{2}}$
C. $2 a$

D. $2 \sqrt{2} a$

Answer: B

D View Text Solution

22. Which is the incorrect statement?
A. Density decreases incase of crystals with

Schottky defect.

B. NaCl is insulator, silicon is

semiconductor, silver is conductor,
quartz is piezo electric crystal
C. Frenkel defect is favoured in those ionic
compounds in which sizes of cations and anions are almost equal.

D. $F e_{0.98}$ has non-stoichiometric metal

deficiency defect

Answer: A::C::D

D View Text Solution

23. Which type of defect has the presence of cations in the interstitial sites ?
A. Schottky defect
B. Vacancy defect
C. Frenkel defect
D. Metal deficiency defects

Answer: C

D View Text Solution
24. Which of the following arrangements show the schematic alignment of magnetic moments of antiferromagnetic substance?
A. $\uparrow \downarrow$
\downarrow
$\downarrow \downarrow$
\uparrow
B. $\uparrow \uparrow \uparrow \uparrow \uparrow$
C. $\uparrow \uparrow \downarrow \downarrow \downarrow$
D. $\uparrow \downarrow \uparrow \downarrow \downarrow$

Answer: D

25. All of the following share the same crystal

structure except.
A. RbCl
B. CCl
C. LiCi
D. NaCl

Answer: B

D View Text Solution
26. Iron exhibits bcc structure at room temperature. Above $900^{\circ} C$, it transforms to
foc structure. The ratio of density of iron at room temperature to that at $900^{\circ} C$
(assuming molar mass and atomic radius of iron remains constant with temperature) is

> A. $\frac{\sqrt{3}}{\sqrt{2}}$
> B. $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
> C. $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
D. $\frac{1}{2}$

Answer: C

D View Text Solution

27. What colour is observed when ZnO is heated?
A. Yellow
B. Violet
C. Green

D. Blue

Answer: A

D View Text Solution

28. Assertion : Metal deficiency defect can be seen in FeO.

Reason : Li compound (LiCl) has pink colour due to F-centres.
A. Both Assertion and Reason are correct
and Reason is correct explanation of

Assertion.
B. Both Assertion and Reason are correct
but Reason is not the correct
explanation of Assertion
C. Assertion is correct, Reason is false.

D. Both Assertion and Reason are false.

Answer: B

29. The radius of the largest sphere which fits properly at the centre of the edge of the bodycentred cubic unit cell is
(Edge length is represented by "a")
A. 0.134 a
B. 0.027 a
C. 0.067 a
D. 0.047 a
30. A solid having density of $9 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ form face centred cubic crystals of edge length $200 \sqrt{2} \mathrm{pm}$. What is the molar mass of solid ?
(Avogadro's
constant
$=6 \times 10^{23} \mathrm{~mol}^{-1}, \pi=3$)
A. $0.0216 \mathrm{~kg} \mathrm{~mol}^{-1}$
B. $0.0432 \mathrm{~kg} \mathrm{~mol}^{-1}$
C. $0.4320 \mathrm{~kg} \mathrm{~mol}^{-1}$

D. $0.0305 \mathrm{~kg} \mathrm{~mol}^{-1}$

Answer: D

D View Text Solution

31. The crystal having hcp is $A_{2} B_{3}$. Which
atom has hcp structure and by other molecules of tetrahedral voids how much space is occupied?
A. hcp crystal - A, $2 / 3$ Tetrahedral Voids - B
B. hcp crystal - A, 1/3, Tetrahedral Voids - B
C. hcp crystal - B, 1/3 Tetrahedral Voids - A
D. hcp crystal - A, $2 / 3$ Tetrahedral Voids - A

Answer: C

D View Text Solution

32. If at $100^{\circ} C$ temperature copper possess
fcc arrangements. Edge length is $x \AA ̊$. Then find out approximate density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ of Cu at
this temperature. (Atomic weight of $\mathrm{Cu}=63.55$
u)

$$
\begin{aligned}
& \text { A. } \frac{105}{x^{3}} \\
& \text { B. } \frac{211}{x^{3}} \\
& \text { C. } \frac{205}{x^{3}} \\
& \text { D. } \frac{422}{x^{3}}
\end{aligned}
$$

Answer: D

D View Text Solution

33. In which primitive unit cell the length of all
sides are unequal and angles are unequal to
90° ?
A. Tetragonal
B. Hexagonal
C. Monoclinic
D. Triclinic

Answer: D

- View Text Solution

34. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is:
A. $C_{4} A_{3}$
B. $C_{2} A_{3}$
C. $C_{3} A_{2}$
D. $C_{3} A_{4}$
35. The relative strength of inter-ionic/ intermolecular forces in the decreasing order is :
A. ion-dipole $>$ dipole-dipole $>$ ion-ion
B. dipole-dipole $>$ ion-dipole $>$ ion-ion
C. ion-ion $>$ ion-dipole $>$ dipole-dipole
D. ion-dipole $>$ ion-ion $>$ dipole-dipole

D View Text Solution

Section E Multiple Choice Questions Mcqs Asked In Board Exams

1. Which of the following solids has highest conductivity of heat and electricity ?
A. W
B. SIC
C. KCI
D. Ice

Answer: A

D View Text Solution
2. The space between valence band and conduction band is called.....
A. Conductivity gap
B. Energy gap
C. Valence gap

D. Both (A) and (C)

Answer: B

D View Text Solution

3. Diamond has fcc crystal structure in which
each carbon atom is attached with four other
carbon atoms, then the number of carbon atoms per unit cell in diamond are.
A. 12
B. 6
C. 8
D. 4

Answer: C

D View Text Solution

4. In NaCl lattice structure if one of the sodium ion is removed from corner, the formula of the resulting compound is
A. $N a_{7} C l_{24}$
B. NaCl
C. NaCl_{3}
D. $N a_{3} C l_{11}$

Answer: A

D View Text Solution
5. The defect due to which crystal of NaCl
shows yellow colour is
A. Frenkel defect
B. Impurity defect
C. Schottky defect
D. Metal excess defect due to vacancy by anion

Answer: D

- View Text Solution

6. Which of the following substances when
heated loses ferrimagnetism and becomes paramagnetic?
A. CrO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. MnO
D. $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Answer: D

D View Text Solution
7. Which of the following is the unit cell dimensions of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?
A. $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
B. $a=b=c, \alpha=\beta=\gamma=90^{\circ}$
C. $a \neq b \neq c, \alpha=\beta=\gamma=90^{\circ}$
D. $a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$

Answer: A

D View Text Solution
8. What is the total volume of atom present in
body centered unit cell having edge length 69.3 pm ?
A. $2.26 \times 10^{4} \mathrm{pm}^{3}$
B. $2.26 \times 10^{5} \mathrm{pm}^{3}$
C. $1.13 \times 10^{6} \mathrm{pm}^{3}$
D. $1.13 \times 10^{5} \mathrm{pm}^{3}$

Answer: A
9. How many defects exists in the arrangement of constituent particles of 7.45 g KCl ?
$[\mathrm{K}=39, \mathrm{Cl}=35.5 \mathrm{~g} / \mathrm{mole}]$
A. 10×10^{23}
B. 1×10^{6}
C. 1.0×10^{-6}
D. 10×10^{4}

Answer: D

D View Text Solution
10. Which defect creates when some P atom is added to Si ?
A. Displacement defect
B. Electron defect
C. Metal deficiency defect
D. Metal excess defect

Answer: B

D View Text Solution
11. Which of the following is diamagnetic?
A. $F e^{2+}$
B. N_{2}
C. $C u^{2+}$
D. O_{2}

Answer: B

D View Text Solution
12. Which of the following compound has highest melting point ?
A. $\mathrm{SiO}_{2(s)}$
B. $\mathrm{H}_{2} \mathrm{O}_{(s)}$
C. $M g_{(s)}$
D. $\mathrm{CO}_{2(s)}$

Answer: A

D View Text Solution
13. How many number of tetrahedral voids in a closed packed structure having 6×10^{24} atoms?
A. 6×10^{25}
B. 3×10^{24}
C. 1.2×10^{-25}
D. 1.2×10^{23}

Answer: C

14. Which of the following is correct distance of edge in crystal unit in ZnS ?
A. $a=b \neq c$
B. $a=b=c$
C. $a \neq b=c$
D. $a \neq b \neq c$

Answer: B

D View Text Solution

15. Which of the following is correct statement for 'Interstitial defect'?
A. Some of the lattice site are vacant.
B. This defects increase the number of atom for a unit volume.
C. This defects increase the density of
substance.
D. Particles like atom or molecule get arranged in the interstitial site of the
crystal.

Answer: B::C::D

D View Text Solution

16. A solid has a structure in which "W" atoms
are located at the corner of the cubic lattice
" O " atoms at the centre of edge and Na atom
at the centre of cube. The formula of the
compound is
A. $\mathrm{NaWO} \mathrm{O}_{2}$
B. $N a_{2} W O_{2}$
C. NaWO_{3}
D. $N a_{2} W O_{3}$

Answer: C

D View Text Solution
17. Which of the oxide shows appearence like metallic copper?
A. ReO_{3}
B. $V O_{2}$
C. TiO_{2}
D. CrO_{2}

Answer: A

D View Text Solution
18. Which is the correct for radius of atom in ccp unit cell?

$$
\text { A. } r=\frac{1}{2 \sqrt{2}} \cdot a
$$

> B. $r=\frac{\sqrt{3}}{4} \cdot a$
> C. $r=\frac{4}{\sqrt{3}} \cdot a$
> D. $r=2 \sqrt{2} \cdot a$

Answer: A

D View Text Solution

19. F-centres are
A. Interstitial sites containing cations.
B. Lattice sites that are vacant.
C. Lattice sites containing electrons.
D. Interstitial sites containing electrons.

Answer: C

D View Text Solution

20. In a fcc lattice, the number of neighbours
for a given lattice point is
A. 12
B. 8
C. 6
D. 14

Answer: A

D View Text Solution
21. What is the coordination number of Cst in

CsCl unit cell ?
A. 8
B. 1
C. 4
D. -1

Answer: A

D View Text Solution

22. Fusion enthalpy of solid KCl is....
A. Not definite and not characteristic
B. Not definite and characteristic
C. Definite and not characteristic

D. Definite and characteristic Ans.

Answer: D

D View Text Solution

23. The co-ordination number of copper which
crystallise in close-packed structure is...
A. 6
B. 8
C. 12
D. 4

Answer: C

D View Text Solution

24. Frenkel defect in the structure of ionic solid is due to.....
A. Charge of the ion.
B. Large difference between ionic sizes of
cations and anions.
C. High co-ordination number.
D. (A) and (C) both

Answer: B

D View Text Solution
25. In which of the following pair both the crystals are not of the same type?
A. Mg and Ar
B. NaCl and Bao

C. SiC and Diamond

D. Ice and solid SO_{2}

Answer: A

D View Text Solution

26. How many spheres are required to form octahedral void?
A. 8
B. 6
C. 4
D. 12

Answer: B

D View Text Solution

27. A compound formed by elements X and Y crystallises in a cubic structure in which atom
X are at corners of the cube and Y are at face centre. The formula of compound is
A. $X_{2} Y$
B. $X Y$
C. $X Y_{2}$
D. $X Y_{3}$

Answer: D

D View Text Solution

28. What are the number of atoms in end centred unit cell ?
A. 4
B. 1
C. 2
D. 6

Answer: C

- View Text Solution

29. Which of the following is paramagnetic ?

A. $Z n^{2+}$
B. O_{2}^{2-}
C. $C u^{+}$
D. $C r^{3+}$

Answer: A

D View Text Solution

30. A compound is formed of two element " A "
and "B". The atoms of element "A" forms face centred cubic close packing and atoms of "B"
occupies all the tetrahedral voids. The formula of compound is ...
A. $A B_{2}$
B. $A B_{8}$
C. $A_{4} B$
D. $A_{2} B$

Answer: A

D View Text Solution
31. An element posses cubic lose packing structure. Calculate the radius (μ) of the atom in the unit cell [Edge length $\mathrm{a}=252 \mathrm{~nm}$].
A. 152 nm
B. 89.36 nm
C. 12.6 nm
D. 109.1 nm

Answer: B

D View Text Solution
32. In which of the following solid substance dispersion forces exist ?
A. SiO_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. CO_{2}
D. SO_{2}

Answer: C

- View Text Solution

33. In a crystal of compound having molecular
formula $X_{2} Y_{3}, Y$ atoms are arranged in CCP,
then what fraction of tetrahedral voids will be
covered by X atoms ?
A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$

Answer: A

- View Text Solution

34. In which of the following defects, some of the cations are arranged in the interstitial sites?
A. Schottky
B. Frenkel defect
C. Metal excess defect
D. Interstitial defect

Answer: B

D View Text Solution
35. From the following which type of magnetic substance magnetite is known ?
A. Diamagnetic
B. Antiferromagnetic
C. Ferromagnetic
D. Ferrimagnetic

Answer: D

