d'doubtnut

MATHS

BOOKS - KUMAR PRAKASHAN KENDRA

 MATHS (GUJRATI ENGLISH)

 MATHS (GUJRATI ENGLISH)}

THREE DIMENSIONAL GEOMETRY

Exercise 111

1. If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x, y and
z - axes respectively, find its direction cosines.

- Watch Video Solution

2. Find the direction cosines of a line which makes equal angles with the coordinate axes.

- Watch Video Solution

3. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?

- Watch Video Solution

4. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.
5. Find the direction cosines of the sides of the triangle whose vertices are $(3,5,-4),(1,1,2)$ and $(-5,-5,-2)$.

- Watch Video Solution

Exercise 112

1. Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13} \quad$ are mutually perpendicular.
2. Show that the line passing through $(1,-1,2)$ and $(3,4$,
-2) is perpendicular to the line passing through the points ($0,3,2$) and ($3,5,6$).

- Watch Video Solution

3. Show that the line passing through the points (4, 7, 8)
and $(2,3,4)$ is parallel to the line passing through the points ($-1,-2,1$) and ($1,2,5$).

- Watch Video Solution

4. Find the equation of the line which passes through
the point $(1,2,3)$ and is parallel to the vector
$3 \hat{i}+2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

5. Find the equation of the line in vector and in cartesian form that passes through the point with position vector
$2 \hat{i}-\hat{j}+4 \hat{k}$ and is in the direction $\hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

6. Find the cartesian equation of the line which passes
through the point $(-2,4,-5)$ and parallel to the line given
by
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$
7. The cartesian equation of a line is
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

- Watch Video Solution

8. Find the vector and the cartesian equations of the lines that passes through the origin and (5, -2, 3).

- Watch Video Solution

9. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.
10. Find the angle between the following pairs of lines:
(i) $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \quad$ and
$\vec{k}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})$
(ii) $\vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \quad$ and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

- Watch Video Solution

11. Find the angle between the following pair of lines:
(i)

$$
\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}
$$

$\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$
12. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

- Watch Video Solution

13. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

- Watch Video Solution

14. Find the shortest distance between the lines
$\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
$\vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})$.
and

- Watch Video Solution

15. Find the shortest distance between the lines
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
and
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$.

- Watch Video Solution

16. Find the shortest distance between the lines whose vector equations are

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \\
& \vec{r}=4 \hat{i}+5 \hat{j}+6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

and

(D) Watch Video Solution

17. Find the shortest distance between the lines whose vector equations are

$$
\begin{aligned}
& \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $z=2$
(b) $x+y+z=1$
(c) $2 x+3 y-z=5$
(b) $5 y+8=0$

- Watch Video Solution

2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the
vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

- Watch Video Solution

3. Find the Cartesian equation of the following planes :
(a) $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
(b) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
(c) $\vec{r} \cdot((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k})=15$

- Watch Video Solution

4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin :
(a) $2 x+3 y+4 z-12=0$
(b) $3 y+4 z-6=0$ (c) $x+y+z=1$ (d) $5 y+8=0$

D Watch Video Solution

5. Find the vector and cartesian equations of the planes:
(a) that passes through the point (1, 0, -2) and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.
(b) that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$.
6. Find the equations of the planes that passes through three points.
(a) $(1,1,-1),(6,4,-5),(-4,-2,3)$
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

D Watch Video Solution

7. Find the intercepts cut off by the plane $2 x+y-z=5$

- Watch Video Solution

8. Find the equation of the plane with intercept 3 on the

Y-axis and parallel to ZOX plane.
9. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+$ $z-2=0$ and the point $(2,2,1)$.

- Watch Video Solution

10. Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point $(2,1,3)$.

D Watch Video Solution

11. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=$ 5 which is perpendicular to the plane $x-y+z=0$.

- Watch Video Solution

12. Find the angle between the planes whose vector equations are $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5 \quad$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$.

D Watch Video Solution

13. In the following cases, determine whether the given
planes are parallel or perpendicular, and in case they are
neither, find the angles between them :
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+32-2=0$ and $x-2 y+5=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

- Watch Video Solution

14. In the following cases, find the distance of each of the given points from the corresponding given plane. Point Plane
(a) $(0,0,0) \quad 3 \mathrm{x}-4 \mathrm{y}+12 \mathrm{z}=3$
(b) $(3,-2,1) \quad 2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$
(C) $(2,3,-5) \quad \mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=9$
(d) $(6,0,0) \quad 2 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-2=0$

Miscellaneous Exercise 11

1. Show that the line joining the origin to the point (2,1 ,
1) is perpendicular to the line determined by the points
$(3,5,-1),(4,3,-1)$.

- Watch Video Solution

2. If l_{1}, m_{1}, n_{1}, and l_{2}, m_{2}, n_{2} are the direction cosines
of two mutually perpendicular lines, show that the
direction cosines of the line perpendicular to both of
these are
$m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$

D Watch Video Solution

3. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{b}-\mathrm{C}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$.

- Watch Video Solution

4. Find the equation of a line parallel to X - axis and passing through the origin.
5. If the coordinates of the points A, B, C, D be $(1,2,3),(4$, $5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.

- Watch Video Solution

6. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k.

- Watch Video Solution

7. Find the vector equation of the line passing through
$(1,2,3)$ and perpendicular to the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$

- Watch Video Solution

8. Find the equation of the plane passing through (a, b,
c) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.

D Watch Video Solution

9. Find the shortest distance between lines

$$
\begin{aligned}
& \vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}) .
\end{aligned}
$$

- Watch Video Solution

10. Find the coordinates of the point where the line through ($5,1,6$) and ($3,4,1$) crosses the $Y Z$ - plane.

- Watch Video Solution

11. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZX - plane.

- Watch Video Solution

12. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z$ $=7$.
13. Find the equation of the plane passing through the point ($-1,3,2$) and perpendicular to each of the planes x $+2 y+3 z=5$ and $3 x+3 y+z=0$.

- Watch Video Solution

14. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ then find the value of p.
15. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to X -axis.

- Watch Video Solution

16. If O be the origin and the coordinates of P be (1, 2, -

3), then find the equation of the plane passing through
P and perpendicular to OP. The required plane is perpendicular to OP.

- Watch Video Solution

17. Find the equation of the plane which contains the line of intersection of the planes
$\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0, \vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane
$\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

18. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$
19. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$

- Watch Video Solution

20. Find the vector equation of the line passing through
the point ($1,2,-4$) and perpendicular to the two lines:

$$
\begin{aligned}
& \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \\
& \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} .
\end{aligned}
$$

and

- Watch Video Solution

21. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

22. Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
A. 2 units
B. 4 units
C. 8 units
D. $\frac{2}{\sqrt{29}}$ units

- Watch Video Solution

23. The planes : $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
A. Perpendicular
B. Parallel
C. intersect y - axis
D. passes through $\left(0,0, \frac{5}{4}\right)$

Answer: B

Practice Work

1. A vector \vec{r} has length 21 and directi9on ratio
$2,-3,6$. Find the direction cosines and components of
\vec{r} given that \vec{r} makes an acute angle with X -axis.

- Watch Video Solution

2. If a vector \vec{r} is in the direction of X - axis then find its direction cosines.

- Watch Video Solution

3. If a line makes angles α, β and γ with the positive direction of axes then show that, $\sin ^{2} \alpha+\sin ^{2} \beta \sin ^{2} \gamma=2$

D Watch Video Solution

4. If a line has direction cosines $\frac{2}{3},-\frac{1}{3},-\frac{2}{3}$, then find its direction.

D Watch Video Solution

5. Find the direction cosines of the line joining the two points $P(-2,4,-5)$ and $Q(1,2,3)$. 6. Prove that the points (1, $2,3),(3,1,7)$ and $(7,-1,15)$ are collinear.

D Watch Video Solution

6. Prove that the points $P(1,2,3),(3,1,7)$ and $(7,-1,15)$ are collinear.

- Watch Video Solution

7. Find the vector equation of the line through the point whose position vector is $2 \hat{i}-\hat{j}+\hat{k}$ and parallel to the line joining the points whose position vectors are $\hat{i}+4 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}+2 \hat{k}$. Also find the cartesian equation of the line.
8. The cartesian equation of a line are $6 x-2=3 y+1=2 z-$
9. Find its vector equation.

- Watch Video Solution

9. Find the direction cosines of the line $\frac{x-2}{2}=\frac{2 y-5}{-3}, z=-1$. Also find the vector equation of the line.

- Watch Video Solution

10. If the points $A(-1,3,2), B(-4,2,-2)$ and $C(5,5, \lambda)$ are collinear then find the value of λ.
11. The cartesian equations of a line are $3 x+1=6 y-2=1-$
z. Find the fixed point through which it passes, its direction ratios and also its vector equation.

D Watch Video Solution

12. Find the vector equation of a line passing| through
($2,-1,1$) and parallel to the line whose equations are $\frac{x-3}{2}=\frac{y+1}{7}=\frac{z-2}{-3}$
13. $\square \mathrm{ABCD}$ is a parallelogram. The position vectors of the points A, B and Care respectively
$4 \hat{i}+5 \hat{j}-10 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-\hat{i}+2 \hat{j}+\hat{k}$. Find the vector equation of the line BD.

D Watch Video Solution

14. Find the coordinates of the point where the line through ($5,1,6$) and ($3,4,1$) crosses the YZ- plane.

- Watch Video Solution

15. Find the angle between the lines

$$
\vec{r}=(3+\lambda) \hat{i}+2(1+\lambda) \hat{j}+2(1-2 \lambda) \hat{k} \quad \text { and }
$$

$\vec{r}=5 \hat{j}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}-6 \hat{k})$.

- Watch Video Solution

16. Find the angle between the lines whose direction cosines are given by the equation $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$.

- Watch Video Solution

17. Show that the lines $\frac{x-2}{3}=\frac{y+1}{-2}=2$ and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$ are perpendiclar to each other.
18. Prove that if the lines $x=a y+b, z=c y+d$ and $x=a ' y+$ $b^{\prime}, \mathrm{z}=\mathrm{c}^{\prime} \mathrm{y}+\mathrm{d}^{\prime}$ are perpendiclar to each other $a a^{\prime}+\mathrm{cc}$ ' $+1=$ 0.

D Watch Video Solution

19. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
20. Find the shortest distance between the lines
$\vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k}$
$\vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k})$.

- Watch Video Solution

21. Find the shortest distance between the lines

$$
\begin{aligned}
\vec{r} & =(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k}) \\
\vec{r} & =(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k}) .
\end{aligned}
$$

- Watch Video Solution

22. Find the shortest distance between the lines
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$
$\frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$

- Watch Video Solution

23. Find the shortest distance between the lines
$\vec{r}=(\lambda-1) \hat{i}+(\lambda+1) \hat{j}-(1+\lambda) \hat{k}$
$(\vec{r}=(1-\mu) \hat{i}+(2 \mu-1) \hat{j}+(\mu+2) \hat{k}$.

- Watch Video Solution

24. Find the direction cosines of perpendicular from the origin to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$.

- Watch Video Solution

25. Find the vector equation of a plane which is at a distance 11 units from the origin and which is normal to the $2 \hat{i}-2 \hat{j}+k$.

- Watch Video Solution

26. Find the vector equation of the plane

$$
\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-2 \hat{j}+3 \hat{k})
$$

scalar product form. Reduce it to normal form.
27. Find the cartesian equation of the plane through the point (2,-1, 1) and perpendicular to the vector $4 \hat{i}+2 \hat{j}-3 \hat{k}$.

- Watch Video Solution

28. Find the vector equation of the plane passing through the points $(1,-2,5)(0,-5,-1)$ and $(-3,5,0)$.

Transform the vector equation into cartesian equation.
29. Find the value of a so that the four points with position vectors $-\hat{j}+\hat{k}, 2 \hat{i}-\hat{j}-\hat{k}, \hat{i}+\lambda \hat{j}+\hat{k}$ and $3 \hat{j}+3 \hat{k}$ are co-plannar.

D Watch Video Solution

30. A plane meets the co-ordinate axes at A, B and C such that the centroid of the $\operatorname{tr} a \in g \leq \mathrm{ABC}$ is (3, 4, -6). Find the equation of the plane.

- Watch Video Solution

31. Show that the plane through $(1,1,1),(1,-1,1)$ and $(-7,3$,
$-5)$ is perpendicular to XZ-plane.

D Watch Video Solution

32. The foot of perpendicular from the origin to the plane is (4, -2, -5) find the cartesian equation of the plane.

- Watch Video Solution

33. Find the equation of the plane passing through the point $(-1,2,1)$ and perpendicular to the line joining the points ($-3,1,2$) and ($2,3,4$). Find also the perpendicular distance of the origin from this plane.
34. Find the equation of the plane containing the line of intersection of the plane $x+y+z-6=0$ and $2 x+3 y+4 z$
$+5=0$ and passing through the point $(1,1,1)$.

- Watch Video Solution

35. Find the equation of the plane through the line of intersection of $\quad \vec{r} \cdot(2 \hat{i}-3 \hat{j}+4 \hat{k})=1 \quad$ and
$\vec{r} \cdot(\hat{i}-\hat{j})+4=0 \quad$ and \quad perpendicular to
$\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+8=0$

D Watch Video Solution

36. Find the equation of the plane passing through the intersection of the planes $x+2 y+3 z-4=0$ and $2 x+y-Z+$ $5=0$ and perpendicular to the plane $5 x+3 y+6 z+8=0$.

D Watch Video Solution

37. Find the cartesian equation of the plane| through the intersection of the planes $\vec{r} \cdot(2 \hat{i}+6 \hat{j})+12=0$ and $\vec{r} \cdot(3 \hat{i}-\hat{j}+4 \hat{k})=0$ which are at a unit distance from the origin.

D Watch Video Solution

38. Find the equation of the plane passing through the intersection of the planes $2 x-3 y+z-4=0$ and $x-y+2+1$
$=0$ and perpendicular to the plane $x+2 y-3 z+6=0$.

- Watch Video Solution

39. In the following cases, determine whether the given
planes are parallel or perpendicular and in case they are neither, find the angle between them.
(i) $2 x-y+z=6$ and $x+y+2 z=7$
(ii) $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})$ and $\vec{r} \cdot(3 \hat{i}+2 \hat{j}-\hat{k})-11=0$
(iii) $x+y-2 z=3$ and $2 x-2 y+z=5$
(iv) $2 x-3 y+4 z=1$ and $-x+y=4$
(v) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-6 \hat{k})=5$ and $\vec{r} \cdot(\hat{i}-2 \hat{j}+2 \hat{k})=9$
40. If the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}-3 \hat{k})=7$ and
$\vec{r} \cdot(\lambda \hat{i}+2 \hat{j}-7 \hat{k})=26$ are perpendicular tol each other then find the value of λ.

- Watch Video Solution

41. Find the distance of the point $(2,1,0)$ from the plane
$2 x+y+2 z+5=0$.
42. If the points $(1,1, \lambda)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ find the value of λ.

- Watch Video Solution

43. Find the distance between the parallel planes
$x+y-z+4=0$ and $x+y-z+5=0$.

- Watch Video Solution

44. Find the distance between the parallel planes

$$
\begin{aligned}
& \vec{r} \cdot(2 \hat{i}-3 \hat{j}+6 \hat{k})=5 \\
& \vec{r} \cdot(6 \hat{i}-9 \hat{j}+18 \hat{k})+20=0
\end{aligned}
$$

- Watch Video Solution

45. If the distance of the plane $x-y+z+\lambda=0$ from the point $(1,1,1)$ is d_{1} and the distance of this point from the origin is d_{2} and $d_{2} d_{2}=5$ then find the value of λ.

- Watch Video Solution

46. The direction cosines of two lines are $1,-2,-2$ and 0,2 ,
47. Find the direction cosines of the line which is perpendicular to both the lines,
48. The direction cosines of two lines are given by the following equations. $31+m+5 n=0,6 m n-2 n l+51 m=0$.

Find the angle between them.

- Watch Video Solution

48. Show that the line passing through the points (4, 7,
8) and $(2,3,4)$ is parallel to the line passing through the points ($-1,-2,1$) and ($1,2,5$).

- Watch Video Solution

49. Show that the line passing through ($1,-1,2$) and (3,4 ,
-2) is perpendicular to the line passing through the
points $(0,3,2)$ and $(3,5,6)$.

- Watch Video Solution

50. Find the angle between the lines
$\frac{5-x}{-2}=\frac{y+3}{1}=\frac{1-z}{3}$ and $\frac{x}{3}=\frac{1-y}{-2}=\frac{z+5}{-1}$.

- Watch Video Solution

51. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

- Watch Video Solution

52. Find the co-ordinates of the point where the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ cross the planel $\mathrm{x}+\mathrm{y}+4 \mathrm{z}=$ 6.

- Watch Video Solution

53. Find the co-ordinates of the point where the line through $A(3,4,1)$ and $B(5,1,6)$ cross the $X Y$ - plane.

D Watch Video Solution

54. Find the coordinates of the foot of perpendicular drawn from the point $A(1,8,4)$ on the line joining the
points $B(0,-1,3)$ and $C(2,-3,-1)$.

- Watch Video Solution

55. Find the foot of perpendicular from the point ($0,2,3$)
on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$ Also find the length of perpendicular.

- Watch Video Solution

56. Find the image of the point $(3,5,3)$ with respect to
the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$

- Watch Video Solution

57. Find the equation of the plane passing through the points $(1,2,3)$ and $(0,-1,0)$ and parallel to the line $\frac{x-1}{2}=\frac{y+2}{3}=\frac{z}{-3}$

- Watch Video Solution

58. Find the equation of the plane passing through the line of intersection of the planes $2 x+3 y-2+1=0$ and x $+y-22+3=0$ and perpendicular to the plane $3 x-y-2 z$ $-4=0$.
59. Find the equation of the plane passing through the point $(3,4,-1)$ and parallel to the plane $\vec{r} \cdot(2 \hat{i}-3 \hat{j}+5 \hat{k})+2=0$

D Watch Video Solution

60. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+3 \hat{j}-\hat{k})=0$ and $\vec{r} \cdot(\hat{j}+2 \hat{k})=0$ and also passing through the point $2 \hat{i}+\hat{j}-\hat{k}$.

D Watch Video Solution

61. If the points $(1,1, \lambda)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$ find the value of λ.

- Watch Video Solution

62. Find the vector equation of the plane containing the
lines

$$
\vec{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j}) \quad \text { and }
$$

$\vec{r}=(4 \hat{i}-\hat{k})+\mu(2 \hat{i}+3 \hat{k})$.

- Watch Video Solution

63. Find the equation of the plane containing two
parallel lines $\quad \frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5} \quad$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z}{5}$

- Watch Video Solution

64. Show that the line $\vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}+\hat{j}+4 \hat{k})$
lies in the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-\hat{k})=3$

- Watch Video Solution

65. Find the image of the point $(1,3,4)$ in the plane
$\vec{r} \cdot(2 \hat{i}-\hat{j}+\hat{k})+3=0$
66. Find the foot of perpendicular from the point (0,2 ,
$-2)$ to the plane $2 x-3 y+4 z-44=0$. Find the equation of perpendicular line passing through this point and find the length of perpendicular.

- Watch Video Solution

67. Find the point of intersection of the line $\frac{x-1}{2}=\frac{2-y}{3}=\frac{z+3}{4}$ and the plane $2 \mathrm{x}+4 \mathrm{y}-\mathrm{z}=1$.

Also find the angle between them.
68. Find the equation of perpendicular bisector of the plane of the line segment joining ($1,2,-3$) and $(-3,6,4)$.

D Watch Video Solution

69. Find the direction cosines of the two lines which are

$$
\begin{array}{lcc}
\text { connected } & \text { by } & \text { the } \\
l+m+n=0, m n-2 n l-2 l m=0
\end{array}
$$

- Watch Video Solution

Textbook Illustrations For Parctice Work

1. If a line makes angle $90^{\circ}, 60^{\circ}$ and 30° with the positive direction of x, y and z-axis respectively, find its direction cosines.

- Watch Video Solution

2. If a line has direction ratios $2,-1,-2$, determine its direction cosines.

- Watch Video Solution

3. Find the direction cosines of the line passing through the two points ($-2,4,-5$) and ($1,2,3$).
4. Find the direction cosines of x, y and z - axis.

D Watch Video Solution

5. Show that the points $A(2,3,-4), B(1,-2,3)$ and $C(3,8,-$
11) are collinear.

D Watch Video Solution

6. Find the vector and the Cartesian equations of the
line through the point $(5,2,-4)$ and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.
$\vec{r}=(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k} \quad$ and
certesian equations $\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}$

- Watch Video Solution

7. Find the vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$.

- Watch Video Solution

8. The Cartesian equation of a line is
$\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$
Find the vector equation for the line.
9. Find the angle between the lines
$\begin{array}{ll}\vec{r} & =(3+\lambda) \hat{i}+2(1+\lambda) \hat{j}+2(1-2 \lambda) \hat{k} \quad \text { and } \\ \vec{r} & =5 \hat{j}-2 \hat{k}+\mu(3 \hat{i}+2 \hat{j}-6 \hat{k}) .\end{array}$

- Watch Video Solution

10. The angle bet ${ }^{n}$ two line
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{4-y}{-1}=\frac{z-5}{2}$ is

D Watch Video Solution
11. Find the shortest distance between the lines l_{1} and l_{2}
whose vector equations are

$$
\begin{aligned}
& \vec{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+\hat{k}) \\
& \vec{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu(3 \hat{i}-5 \hat{j}+2 \hat{k}) .
\end{aligned}
$$

D Watch Video Solution

12. Find the distance between the lines l_{1} and l_{2} given by

$$
\begin{aligned}
& \vec{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
& \vec{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k}) .
\end{aligned}
$$

and

D Watch Video Solution

13. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ the from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also find its cartesian form.

- Watch Video Solution

14. Find the direction cosines of the unit vector perpendicular to the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}-2 \hat{k})+1=0$ passing through the origin.

- Watch Video Solution

15. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.

(D) Watch Video Solution

16. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.

(D) Watch Video Solution

17. Find the vector and cartesian equations of the plane which passes through the point (5, 2, - 4) and perpendicular to the line with direction ratios $2,3,-1$.
18. Find the vector equations of the plane passing through the points $\mathrm{R}(2,5,-3), \mathrm{S}(-2,-3,5)$ and $\mathrm{T}(5,3,-3)$.

- Watch Video Solution

19. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z -axis respectively.

- Watch Video Solution

20. Find the vector equation of the plane passing through the intersection of the planes
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and the points ($1,1,1$).

D Watch Video Solution

21. Show that the lines $\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

- Watch Video Solution

22. Find the angle between the two planes $2 x+y-2 z=5$ and $3 \mathrm{x}-6 \mathrm{y}-2 \mathrm{z}=7$ using vector method.

- Watch Video Solution

23. Find the angle between the two planes $3 x-6 y+2 z=$ 7 and $2 x+2 y-2 z=5$.

- Watch Video Solution

24. Find the distance of a point $(2,5,-3)$ from the plane
$\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$

- Watch Video Solution

25. Find the angle between the line
$\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 \mathrm{x}+2 \mathrm{y}-11 \mathrm{z}=3$.
26. A line makes the angle α, β, γ and δ with the diagonals of a \quad cube.
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\ldots \ldots \ldots \ldots$.

D Watch Video Solution

27. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to each of the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$.

- Watch Video Solution

28. Find the distance between the point $P(6,5,9)$ and the
plane determined by the points $A(3,-1,2), B(5,2,4)$ and
$C(-1,-1,6)$.

- Watch Video Solution

29.

Show
that
the
lines
$\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$
and
$\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

30. Find the coordinates of the point where the line through the points $\mathrm{A}(3,4,1)$ and $\mathrm{B}(5,1,6)$ crosses the XY-plane.

Solution Of Ncert Examplar Problems Short Answer Type

 Question1. Find the position vector of a point A in space such that
$\overrightarrow{O A}$ is inclined at 60° to OX and at 45° to OY and $|\overrightarrow{O A}|$ $=10$ units.

- Watch Video Solution

2. Find the vector equation of the line which is parallel
to the vector $3 \hat{i}-2 \hat{j}+6 \hat{k}$ and which passes through
the point $(1,-2,3)$.

Hint for solution : Vector equation of line passes from point \bar{a} and parallel to vector \bar{b} is $\bar{r}=\bar{a}+\lambda \bar{b}$.

D Watch Video Solution

3. Show that the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ intersect. Also, find their point of intersection,

Hint for solution : If shortest distance between two lines is zero then they are intersecting lines.
4. Find the angle between the lines
$\bar{r}=3 \bar{i}-2 \bar{j}+6 \bar{k}+\lambda(2 \bar{i}+\bar{j}+2 \bar{k}) \quad$ and
$\bar{r}=(2 \bar{j}-5 \bar{k})+\mu(6 \bar{i}+3 \bar{j}+2 \bar{k})$.
Hint for solution : Angle between line $\bar{r}=a_{1}+\lambda \bar{b}_{1}$ and
$r=\bar{a}_{2}+\mu \bar{b}_{2}$ then angle between them is obtained
from $\cos \theta=\frac{\left|b_{1} \cdot b_{2}\right|}{\left|b_{1}\right| \cdot\left|b_{2}\right|}$.

- Watch Video Solution

5. Prove that the line through $\mathrm{A}(0,-1,-1)$ and $\mathrm{B}(4,5,1)$ intersects the line through $C(3,9,4)$ and $D(-4,4,4)$.

- Watch Video Solution

6. Prove that the lines $x=p y+q, z=r y+s$ and $x=p^{\prime} y+q^{\prime}$,
$z=r^{\prime} y+s^{\prime}$ are perpendicular if $p p^{\prime}+r r^{\prime}+1=0$.

D Watch Video Solution

7. Find the equation of a plane which bisects perpendicularly the line joining the points $A(2,3,4)$ and $B(4,5,8)$ at right angles.

D Watch Video Solution

8. Find the equation of a plane which is at a distance $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axis.

- Watch Video Solution

9. If the line drawn from the point $(-2,-1,-3)$ meets a plane at right angle at the point ($1,-3,3$), then find the equation of the plane.

D Watch Video Solution

10. Find the equation of the plane through the points (2 ,

$$
1,0),(3,-2,-2) \text { and }(3,1,7) \text {. }
$$

D Watch Video Solution

11. Find the equations of the two lines through the origin which intersect the line $\frac{x-3}{2}=\frac{y-3}{1}=\frac{z}{1}$ at angle of $\frac{\pi}{3}$ each.

- Watch Video Solution

12. Find the angle between the lines whose direction cosines are given by the equation $l+m+n=0$ and $l^{2}+m^{2}-n^{2}=0$.

D Watch Video Solution

13. If a variable line in two adjacent positions has direction cosines $\mathrm{I}, \mathrm{m}, \mathrm{n}$ and $\mathrm{I}+\delta \mathrm{I}, \mathrm{m}+\delta \mathrm{m}, \mathrm{n}+\delta \mathrm{n}$, then show that the small angle $\delta \theta$ between the two positions is given by $\delta \theta^{2}=\delta l^{2}+\delta m^{2}+\delta n^{2}$.

D Watch Video Solution

14. If O is the origin and A is (a, b, c), then find the direction cosines of the line $O A$ and the equation of plane through A at right angle to OA.

D Watch Video Solution

15. Two systems of rectangular axis have the same origin.

If a plane cuts them at distances a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$, respectively from the origin, then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{\left(a^{\prime}\right)^{2}}+\frac{1}{\left(b^{\prime}\right)^{2}}+\frac{1}{\left(c^{\prime}\right)^{2}}$.

D Watch Video Solution

16. Find the foot of perpendicular from the point $(2,3,-8)$
to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Also, find the perpendicular distance from the given point to the line.

D Watch Video Solution

17. Find the distance of a point (2, 4, -1) from the line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.

- Watch Video Solution

18. Find the length and the foot of perpendicular from the point $\left(1, \frac{3}{2}, 2\right)$ to the plane $2 x-2 y+4 z+5=0$.

- Watch Video Solution

19. Find the equation of the line passing through the point ($3,0,1$) and parallel to the planes $x+2 y=0$ and $3 y$ $-\mathrm{z}=0$.
20. Find the equation of the plane through the points (2 ,
$1,-1)$ and $(-1,3,4)$ and perpendicular to the plane $x-2 y+$ $4 z=10$.

- Watch Video Solution

21. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(8+3 \lambda) \hat{i}-(9+16 \lambda) \hat{j}+(10+7 \lambda) \hat{k} \\
& \vec{r}=(15 \hat{i}+29 \hat{j}+5 \hat{k})+\mu(3 \hat{i}+8 \hat{j}-5 \hat{k}) .
\end{aligned}
$$

- Watch Video Solution

22. Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which contains the line of intersection of the planes $x+2 y+3 z$
$-4=0$ and $2 x+y-z+5=0$.

(D) Watch Video Solution

23. If the plane $a x+b y=0$ is rotated about its line of intersection with the plane $z=0$ through an angle α, then prove that the equation of the plane in its new position is
$a x+b y \pm\left(\sqrt{a^{2}+b^{2}} \tan \alpha\right) z=0$
24. Find the equation of the plane through the intersection of the planes $\vec{r} \cdot(\bar{i}+3 \bar{j})-6=0$ and
$\bar{r} .(3 \bar{i}-\bar{j}-4 \bar{k})=0$, whose perpendicular distance from origin is unity.

D Watch Video Solution

25. Show that the points $\bar{i}-\bar{j}+3 \bar{k}$ and $3(\bar{i}+\bar{j}+\bar{k})$ are equidistant from the plane
$\bar{r} .(5 \bar{i}+2 \bar{j}-7 \bar{k})+9=0$ and lies on opposite side of
it.
26. $\overrightarrow{A B}=3 \bar{i}-\bar{j}+\bar{k}$ and $\overrightarrow{C D}=-3 \bar{i}+2 \bar{j}+4 \bar{k}$ are two vectors. The position vectors of the points A and C are $6 \bar{i}+7 \bar{j}+4 \bar{k}$ and $-9 \bar{i}+2 \bar{k}$ respectively. Find the position vector of a point P on the line $A B$ and a point Q on the line CD such that $\overrightarrow{P Q}$ is perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{C D}$ both.

- Watch Video Solution

27. Show that the straight lines whose direction cosines
are given by $2 l+2 m-n=0$ and $m n+n l+I m=0$ are at right angles.
28. If $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$ are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional
$\left(l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}, n_{1}+n_{2}+n_{3}\right) \quad$ makes equal angles with them,

D Watch Video Solution

29. Distance of the point (α, β, γ) from Y - axis is
A. β
B. $|\beta|$
C. $|\beta|+|\gamma|$
D. $\sqrt{\alpha^{2}+\gamma^{2}}$

Answer: D

D Watch Video Solution

30. If the directions cosines of a line are k, k and k then
A. $k>0$
B. $0<k<1$
C. $\mathrm{k}=1$
D. $k= \pm \frac{1}{\sqrt{3}}$

Answer: D
31. The distance of the plane $\bar{r} .\left(\frac{2}{7} i+\frac{3}{7} j-\frac{6}{7} k\right)=1$ from the origin is
A. 1
B. 7
C. $\frac{1}{7}$
D. None of these

Answer: A

- Watch Video Solution

32. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
A. $\frac{10}{6 \sqrt{5}}$
B. $\frac{4}{5 \sqrt{2}}$
C. $\frac{2 \sqrt{3}}{5}$
D. $\frac{\sqrt{2}}{10}$

Answer: D

D Watch Video Solution

33. The reflection of the point (α, β, γ) in the xy - plane
A. $(\alpha, \beta, 0)$
B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$

Answer: D

- Watch Video Solution

34. The area of the quadrilateral $A B C D$, where $A(0,4,1)$, $B(2,3,-1), C(4,5,0)$ and $D(2,6,2)$, is equal to
A. 9 seq. unit
B. 18 seq. unit
C. 27 seq. unit
D. 81 seq. unit

Answer: A

(D) Watch Video Solution

35. The locus represented by $x y+y z=0$ is
A. A pair of perpendicular lines
B. A pair of parallel lines
C. A pair of parallel planes
D. A pair of perpendicular planes

- Watch Video Solution

36. The plane $2 x-3 y+6 z-11=0$ makes an angle $\sin ^{-1} \alpha$
with X - axis. The value of α is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{7}$
D. $\frac{3}{7}$

Answer: C

37. A plane passes through the points $(2,0,0)(0,3,0)$ and $(0,0,4)$. The equation of plane is

- Watch Video Solution

38. The direction cosines of the vector $2 \bar{i}+2 \bar{j}-\bar{k}$ are

- Watch Video Solution

39. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
40. The vector equation of the line through the points
($3,4,-7$) and ($1,-1,6$) is

D Watch Video Solution

41. The cartesian equation of the plane
$\bar{r} \cdot(\bar{i}+\bar{j}-\bar{k})=2$ is

D Watch Video Solution

42. The unit vector normal to the plane $x+2 y+3 z-6=0$
is $\frac{1}{\sqrt{14}} \bar{i}+\frac{2}{\sqrt{14}} \bar{j}+\frac{3}{\sqrt{14}} \bar{k}$.

D Watch Video Solution

43. The intercepts made by the plane $2 x-3 y+5 z+4=0$
on the co-ordinate axis are $-2, \frac{4}{3}$ and $-\frac{4}{5}$

- Watch Video Solution

44. The angle between the line
$\vec{r}=(5 \hat{i}-\hat{j}-4 \hat{k})+\lambda(2 \hat{i}-\hat{j}+\hat{k})$ and the plane
$\bar{r} .(3 \hat{i}-4 \hat{j}-\hat{k})+5=0$ is $\sin ^{-1}\left(\frac{5}{2 \sqrt{91}}\right)$.

- Watch Video Solution

45. The angle between the planes $\bar{r} .(2 \bar{i}-3 \bar{j}+\bar{k})=1$ and $\bar{r} .(i-j)=4$ is $\cos ^{-1}\left(\frac{-5}{\sqrt{58}}\right)$

- Watch Video Solution

46. The line $\bar{r}=2 \bar{i}-3 \bar{j}-\bar{k}+\lambda(\bar{i}-\bar{j}+2 \bar{k})$ lies in the plane $\bar{r} .(3 \bar{i}+\bar{j}-\bar{k})+2=0$.

- Watch Video Solution

47. The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.
48. The equation of a line, which is parallel to
$2 \bar{i}+\bar{j}+3 \bar{k}$ and which passes through the point $(5,-2,4)$ is $\frac{x-5}{2}=\frac{y+2}{-1}=\frac{z-4}{3}$

D Watch Video Solution

49. If the foot of perpendicular drawn from the origin to
a plane is $(5,-3,-2)$, then the equation of plane is
$\bar{r} \cdot(5 \bar{i}-3 \bar{j}-2 \bar{k})=38$.

(D) Watch Video Solution

1. The equation of line passing through the origin and the direction cosines $\frac{2 \pi}{3}, \frac{\pi}{4}, \frac{\pi}{3}$ is

$$
\begin{aligned}
& \text { A. } x=\frac{y}{-\sqrt{2}}=z \\
& \text { B. } \frac{x}{-1}=\frac{y}{-\sqrt{2}}=z \\
& \text { C. } x=\frac{y}{-\sqrt{2}}=-z \\
& \text { D. } x=\frac{y}{\sqrt{2}}=z
\end{aligned}
$$

Answer: C

D Watch Video Solution

2. The direction cosines of the line passing through (3,4 ,
$5)$ and $(4,5,6)$ is
A. $(1,1,1)$
B. $(\sqrt{3}, \sqrt{3}, \sqrt{3})$
C. $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
D. $(7,9,11)$

Answer: C

- Watch Video Solution

$$
\begin{aligned}
& \text { 3. The lines } \quad \frac{x}{2}=\frac{y}{1}=\frac{z}{3} \quad \text { and } \\
& \frac{x-2}{2}=\frac{y+1}{1}=\frac{3-z}{-3} \text { are } \ldots .
\end{aligned}
$$

A. Parallel
B. perpendicular
C. coincident
D. Intersecting in acute angle

Answer: A

- Watch Video Solution

4. The equation of a line passing through origin and parallel to Y -axis is
A. $\frac{x}{1}=\frac{y}{0}=\frac{z}{0}$
B. $\frac{x}{0}=\frac{y}{1}=\frac{z}{0}$
c. $\frac{x}{1}=\frac{y}{0}=\frac{z}{1}$
D. $\frac{x}{1}=\frac{y}{1}=\frac{z}{0}$

- Watch Video Solution

5. The equation of the line L passing through $A(-2,2,3)$ and perpendicular to $\overleftrightarrow{A B}$ is where $\mathrm{B}=(13,-3,13)$.
A. $\frac{x-2}{3}=\frac{y+2}{13}=\frac{z+3}{2}$
B. $\frac{x+2}{3}=\frac{y-2}{13}=\frac{z-3}{2}$
C. $\frac{x+2}{15}=\frac{y-2}{-5}=\frac{z-3}{10}$
D. $\frac{x-2}{15}=\frac{y+2}{-5}=\frac{z+3}{10}$

Answer: B
6. If the lines $\bar{r}=(2,-3,7)+k(2, a, 5), \quad k \varepsilon R$ and $\bar{r}=(1,2,3)+k(3,-a, a), k \varepsilon R$ are perpendicular to each other then $\mathrm{a}=. . . .$.
A. 2
B. -6
C. 1
D. -1

Answer: D
7. The lines $\quad \frac{x-7}{k}=\frac{y-3}{1}=\frac{z-4}{1} \quad$ and $\frac{x-8}{1}=\frac{y-2}{1}=\frac{3-z}{k}$ are coplannar then $\mathrm{k}=\ldots . .$.
A. 0,4
B. 1,-1
C. -1
D. 1

Answer: C

- Watch Video Solution

8. The cartesian equation of the line passing through (4,
$9,8)$ and $(3,-2,1)$ is ..
A. $\frac{x-4}{3}=\frac{9-y}{2}=\frac{z-8}{1}$
B. $\frac{x-3}{4}=\frac{y+2}{9}=\frac{z-1}{8}$
C. $\frac{x-3}{1}=\frac{y+2}{-11}=\frac{z-1}{7}$
D. $\frac{x-3}{1}=\frac{y+2}{11}=\frac{z-1}{7}$

Answer: D

- Watch Video Solution

9. If the vector equation of the line is $\bar{r}=(1,-5,9)+k(2,2$,
$-1), k \varepsilon R$ then its cartesian equation is
A. $\frac{x+1}{2}=\frac{y-5}{2}=\frac{z+9}{-1}$
B. $\frac{x-2}{1}=\frac{y-2}{-5}=\frac{z+1}{9}$
C. $\frac{1-x}{-2}=\frac{y+5}{2}=\frac{9-z}{1}$
D. $\frac{x-1}{2}=\frac{y-5}{2}=\frac{z-9}{-1}$

Answer: C

- Watch Video Solution

10. If the cartesian equation of the line $\frac{2-x}{4}=\frac{y-3}{-2}, z+4=0$ then its vector equation is

$$
\begin{aligned}
& \text { A. } \bar{r}=(4,-2,0)+k(2,3,-4), k \varepsilon R \\
& \text { B. } \bar{r}=(2,3,-4)+k(4,2,0), k \varepsilon R \\
& \text { C. } \bar{r}=(-2,3,-4)+k(4,-2,0), k \varepsilon R
\end{aligned}
$$

D. $\bar{r}=(2,3,-4)+k(-4,-2,1), k \varepsilon R$

Answer: B

- Watch Video Solution

$$
\begin{array}{ll}
\text { 11. The angle between the lines } \\
\bar{r}=(4,-3,2)+k(2,1,2), k \varepsilon R & \text { and } \\
\bar{r}=(2,0,5)+k(6,3,2), k \varepsilon R \text { is } &
\end{array}
$$

A. $\sin ^{-1} \frac{4 \sqrt{5}}{21}$
B. $\cos ^{-1} \frac{4 \sqrt{5}}{21}$
C. $\cos ^{-1} \frac{4 \sqrt{5}}{19}$
D. $\sin ^{-1} \frac{19}{21}$

Answer: A

- Watch Video Solution

12. The equation of line perpendicular to $\bar{r} .(1,2,1)=4$ and passing through $(0,0,0)$ is

$$
\text { A. } \frac{x}{1}=\frac{y}{2}=\frac{z}{1}
$$

B. $x-1=y-2=z-1$
C. $\frac{x}{\frac{-1}{4}}=\frac{y}{\frac{2}{4}}=\frac{z}{\frac{-1}{4}}$
D. $\frac{x-1}{4}=\frac{y-2}{4}=\frac{z-1}{4}$

Answer: A
13. The symmetric equation of the line passing through
$(3,1,-1)$ and $(3,2,-6)$ is

$$
\begin{aligned}
& \text { A. } \frac{x-3}{1}=\frac{1-y}{1}=\frac{z+1}{5} \\
& \text { B. } x=3, \frac{y-1}{1}=\frac{z+1}{-5} \\
& \text { C. } x=3, \frac{y-1}{1}=\frac{z+1}{-5} \\
& \text { D. } x=3, \frac{1-y}{1}=\frac{z+1}{-5}
\end{aligned}
$$

Answer: B

14. The equation of the line passes through $(2,-3,5)$ and makes equal with axes in $(k \in R)$

$$
\begin{aligned}
& \text { A. } \bar{r}=(2,-3,5)+k(1,1,1), k \varepsilon R \\
& \text { B. } \bar{r}=(2,-3,5)+\left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right), k \in R \\
& \text { C. } \bar{r}=(-2,3,-4)+k\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right), k \varepsilon R \\
& \text { D. } \bar{r}=(2,3,-4)+k(-1,-1,1), k \varepsilon R
\end{aligned}
$$

Answer: A

- Watch Video Solution

15. If the lines $\frac{x-2}{k}=\frac{y-8}{-3}=\frac{z+5}{9}$ and $\frac{x-5}{1}=\frac{y+2}{1}=\frac{z+5}{k}$ have same direction then $\mathrm{k}=$
A. 3
B. -3
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

Answer: B

- Watch Video Solution

16. If the lines $\frac{x-1}{1}=\frac{y-4}{c}=\frac{z+3}{-3}$ and $\frac{x+1}{-c}=\frac{y-3}{2}=\frac{z-1}{1}$ are perpendicular then $\mathrm{c}=$
A. $\frac{3}{5}$
B. $\frac{-3}{5}$
C. -3
D. 3

Answer: D

- Watch Video Solution

17. The vector form of the line $3 x+1=62-2, y-1=0$ is
A. $\bar{r}=\left(\frac{-1}{3}, 1, \frac{1}{3}\right)+k(2,0,1), k \varepsilon R$
B. $\bar{r}=(2,0,1)+k\left(\frac{-1}{3}, 1, \frac{1}{3}\right), k \varepsilon R$
C. $\bar{r}=(-1,2,1)+k(1,1,1), k \varepsilon R$
D. $\bar{r}=(1,1,1)+k(-1,2,1), k \varepsilon R$

Answer: A

- View Text Solution

18. The lines $x=\frac{y-1}{1}=\frac{z+1}{3} \quad$ and
$\{(2,1+3 k, 2+k) / k \varepsilon R\}$ are
A. Parallel
B. Coincident
C. Intersecting perpendicular
D. Skew lines

- View Text Solution

19. The perpendicular distance of the point (3, -4, -5)
from the line $\frac{x-2}{4}=\frac{y+6}{5}=\frac{z-5}{-3}$ is
A. $\frac{1}{5} \sqrt{1657}$
B. $\frac{1}{\sqrt{5}} \sqrt{1675}$
C. $\frac{1}{5} \sqrt{1757}$
D. $\frac{1}{\sqrt{5}} \sqrt{1667}$

Answer: A
20. The image of the point $(1,2,3)$ in the line $\bar{r}=(6,7,7)+k(3,2,-2), k \varepsilon \operatorname{Ris}(5,8, a)$ then $\mathrm{a}=$
A. 8
B. 9
C. -15
D. 15

Answer: D
21. If the line $\bar{r}=(5,5,2)+\mathrm{k}(3,6,9) k \in R$ and ${ }^{-}=(0,3,-1)+$ $\mathrm{k}(1,2, \mathrm{~b}), k \in R$ are parallel then $\mathrm{b}=\ldots . . .$.
A. 3
B. 5
C. -5
D. 2

Answer: A

- Watch Video Solution

22. The angle between the lines
$\equiv(-3,5,-1)+k(1,2,1), k \in R$
and
$\bar{r}=(1,3,-2)+k(6,-3,0), k \in R$ is \ldots
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

23. The angle between the lines whose direction cosines are given by $\mathrm{l}+\mathrm{m}+\mathrm{n}=0$ and $l^{2}=m^{2}+n^{2}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

24. The cartesian equation of the line passing through

$$
(2,2,-3) \text { and }(1,3,5) \text { is....... }
$$

$$
\text { A. } \frac{x-2}{1}=\frac{y-2}{1}=\frac{z+3}{8}
$$

B. $\frac{x-1}{7}=\frac{y-3}{2}=\frac{z-5}{8}$
C. $\frac{x-1}{2}=\frac{y-3}{2}=\frac{z-5}{-3}$
D. $\frac{z-2}{-1}=\frac{y-2}{1}=\frac{z+3}{8}$

Answer: D

- Watch Video Solution

25. The equation of the line passes through $(2,-3,5)$ and makes equal with axes in $(k \in R)$

$$
\begin{aligned}
& \text { A. } \bar{r}=(2,-3,5)+k\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& \text { B. } \bar{r}=(2,-3,5)+k\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}}\right) \\
& \text { C. } \bar{r}=(2,-3,5)+k(-1,1,1) \\
& \text { D. } \bar{r}=(2,-3,5)+k(1,1,1)
\end{aligned}
$$

- Watch Video Solution

26. The angle between the lines whose direction cosines
are $\mathrm{I}, \mathrm{m}, \mathrm{n}$ and $\mathrm{m}-\mathrm{n}, \mathrm{n}-\mathrm{l}, \mathrm{l}-\mathrm{m}$ is......
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer: B
27. The vector equation of the line
$\frac{3-x}{3}=\frac{2 y-3}{5}=\frac{z}{2}$ is
A. $\bar{r}=(3,5,2)+k(3,3,0)$
B. $\bar{r}=\left(3, \frac{3}{2}, 0\right)+k(3,5,2)$
C. $\bar{r}=(3,3,0)+k(3,5,2)$
D. $\bar{r}=(-6,5,4)+k\left(3, \frac{3}{2}, 0\right)$

Answer: B

- Watch Video Solution

28. The lines $\bar{r}=(-1,2,5)+k(-1,2,5), k \in R$ and $\bar{r}=(-3,1,5)+k(-3,1,5), k \in R$
A. Perpendicular
B. skew
C. coplannar
D. Parallel

Answer: C

- Watch Video Solution

29. The vector equation of the line joining the pionts
$\hat{i}-2 \hat{j}+\hat{k}$ and $-2 \hat{j}+3 \hat{k} \ldots \ldots .$.
A. $\bar{r}=t(\hat{i}+\hat{j}+\hat{k})$
B. $\bar{r}=t_{1}(\hat{i}-2 \hat{j}+\hat{k})+t_{2}(3 \hat{k}-2 \hat{j})$
C. $\equiv(\hat{i}-2 \hat{j}+\hat{k})+t(2 \hat{k}-\hat{i})$
D. $\equiv t(2 \hat{k}-\hat{i})$

Answer: C

- Watch Video Solution

30. If $\equiv \hat{i}+\hat{j}$ and $\bar{b}=2 \hat{i}-\hat{k}$ then the intersection piont of the lines $\bar{r} \times \bar{a}=\bar{b} \times \bar{a}$ and $\bar{r} \times \bar{b}=\bar{a} \times \bar{b}$ is
A. $\hat{i}+\hat{j}-\hat{k}$
B. $\hat{i}-\hat{j}+\hat{k}$
C. $3 \hat{i} \hat{j}-\hat{k}$
D. $3 \hat{i}-\hat{j}+\hat{k}$

Answer: C

D Watch Video Solution

31. The co-ordinats of a point on the line passing through the pionts ($1,-1,2$) and $(3,1,1)$ at a distance $3 \sqrt{11}$ units from the piont $\hat{i}-\hat{j}+2 \hat{k}$ is \qquad
A. $(10,2,-5)$
B. $(-8,-4,-1)$
C. $(8,4,1)$
D. $(-10,-2,-5)$

Answer: B

- Watch Video Solution

32. The equation of the line passing through $\hat{i}+3 \hat{j}+2 \hat{k}$ and prependiccular to the lines $\bar{r}=(1,2,-1)+\lambda(2,1,1)$ and bar $r=(2,6,1)+m u$ $(1,2,3)^{\prime}$ is

$$
\begin{aligned}
& \text { A. } \bar{r}=(1,2,-1)+\lambda(-1,5,-3) \\
& \text { B. } \bar{r}=(1,3,-2)+\lambda(1,-5,3)
\end{aligned}
$$

C. $\bar{r}=(1,3,2)+\lambda(1,5,3)$
D. $\bar{r}=(1,2,3)+\lambda(1,-5,-3)$

Answer: B

- Watch Video Solution

33. The shortest distance of the lines

$$
\bar{r}_{1}=4 \hat{i}-3 \hat{j}-\hat{k}+\lambda(2 \hat{i}-3 \hat{j}+8 \hat{k}) \text { is....... }
$$

A. 3
B. 1
C. 2
D. 0

- View Text Solution

34. The direction cosines of the line drawn from $P(-5,3,1)$
and $Q(1,5,-2)$ is......
A. $(6,2,-3)$
B. $(2,-4,1)$
C. (-4,8,-1)
D. $\left(\frac{6}{7}, \frac{2}{7},-\frac{3}{7}\right)$

Answer: D
35. The angle between the two diagonals of a cube is
A. Parallel lines
B. Intersecting lines
C. Perpendicular lines
D. None of these

Answer: C

- View Text Solution

36. The angle between the two diagonals of a cube is
A. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{1}{\sqrt{6}}\right)$

Answer: C

- Watch Video Solution

37. A line makes the angle α, β, γ and δ with the diagonals of a cube.

The
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\ldots \ldots \ldots \ldots$.
A. $\frac{4}{3}$
B. $\frac{2}{3}$
C. 3
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

38. The edge of a cube is of length of a. The shortest
distance between the diagonals of a cube an edge skew
to it is
A. $a \sqrt{2}$
B. a
C. $\frac{\sqrt{2}}{a}$
D. $\frac{a}{\sqrt{2}}$

Answer: D

- Watch Video Solution

39. The projection of a line on the axes are 9,12 , and 8 .

The length of the line is \qquad
A. 7
B. 17
C. 21
D. 25

- Watch Video Solution

40. The straight lines whose direciton cosines are given
by $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0, \mathrm{fmn}+\mathrm{gnl}+\mathrm{hlm}=0$ if.
A. $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$
B. $\frac{a^{2}}{f}+\frac{b^{2}}{g}+\frac{c^{2}}{h}=0$
C. $a^{2}(g+h)+b^{2}(h+g)+c^{2}(f+g)=0$
D. None of these

Answer: A
41. The foot of perpendicular drawn from the point $\mathrm{P}(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is
A. $(1,2,-3)$
B. $\left(\frac{1}{2}, 1,-\frac{3}{2}\right)$
C. $(2,4,-6)$
D. $(2,3,6)$

Answer: B

- Watch Video Solution

42. The foot of perpendicular drawn from the point $\mathrm{P}(1,0,2)$ on the line $\frac{x+1}{3}=\frac{y-2}{-2}=\frac{z+1}{-1}$ is.......
A. $\frac{3 \sqrt{6}}{2}$
B. $\frac{\frac{6}{\sqrt{3}}}{2}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: A

- Watch Video Solution

43. Prove that if the lines $x=a y+b, z=c y+d$ and $x=a ' y$
$+b^{\prime}, \mathrm{z}=\mathrm{c}^{\prime} \mathrm{y}+\mathrm{d}^{\prime}$ are perpendiclar to each other aa' + cc' +
$1=0$.
A. $a c_{1}+a_{1} c=1$
B. $\mathrm{aa}_{1}+\mathrm{cc}_{1}+1=0$
C. $b c_{1}+b_{1} c+1=0$
D. None of these

Answer: B

- Watch Video Solution

44. The lines $\quad \frac{x-1}{3}=\frac{y-1}{-1}=\frac{z+1}{0} \quad$ and
$\frac{x-4}{2}=\frac{y+0}{0}=\frac{z+1}{3}$ are.....
A. do not intersect
B. Intersect
C. Intersect at a point (4, 0,-1)
D. Intersect at a point (4,0,-1)

Answer: C

D Watch Video Solution

45. The equation of motion of a point in space is $x=2 t, y$
$=-4 t, z=4 t(t$ second $)$. The path of the point is
A. Parabola
B. Circle
C. Plane

D. Straight line

Answer: D

D Watch Video Solution

46. The distance of the point $P(4,3,5)$ from Y-axis is λ
then $5 \lambda^{2}=\ldots \ldots$.
A. 205
B. 170
C. 125
D. 250
47. A line makes an angle of measure α with X-axis and Y axis $\cot \alpha \in$...................
A. $(0,1)$
B. $(-1,1)$
C. $[-1,1]$
D. $[0,1]$

Answer: D

- View Text Solution

48. The angle between the lines
$\frac{x+1}{2}+\frac{y+3}{2}=\frac{z-4}{-1}$ and $\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}$ is.
A. $\cos ^{-1}\left(\frac{1}{9}\right)$
B. $\cos ^{-1}\left(\frac{2}{9}\right)$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{4}{9}\right)$

Answer: D
49. If the foot of perpendicular drawn from the point (a, b, c) and the line $x=y=z$ then
A. $r=a+b+c$
B. $r=3(a+b+c)$
C. $3 \mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
D. $r=a b c$

Answer: C

D Watch Video Solution

50. The distance between the lines $x=1-4 t, y=2+t, z=3+$ $2 t$ and $x=1+S, 7 y=4-2 s, z=-1+S$ is
A. 8
B. $\frac{16}{\sqrt{90}}$
C. $\frac{8}{\sqrt{5}}$
D. $\frac{16}{\sqrt{110}}$

Answer: D

- View Text Solution

51. The distance ratio of two lines are $(5,-12,13)$ and $(-3,4,5)$. Then the angle betweend them is
A. $\cos ^{-1}\left(\frac{2}{65}\right)$
B. $\cos ^{-1}\left(\frac{3}{65}\right)$
C. $\cos ^{-1}\left(\frac{1}{65}\right)$
D. $\frac{\pi}{3}$

Answer: C

D Watch Video Solution

52. If $\cos \alpha, \cos \beta, \gamma$ are direciton cosines then
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=$ \qquad
A. -1
B. 0
C. 4
D. 3

- Watch Video Solution

53. A line makes an angle α, β and γ with axes repectively, The values of α, β and γ are respectively $\theta, 60^{\circ}$ and 30° then $\sin \theta=\ldots \ldots \ldots \ldots$
A. 1
B. -2
C. 0
D. $\frac{1}{2}$
54. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=$
$-4 x$ is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

55. Givne lines are $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{m}$ $=\frac{y-3}{n}=\frac{z-1}{l}$ where $l>m>n \mathrm{l}, \mathrm{m}, \mathrm{n}$ are roots
of the equation $x^{3}+x^{2}-4 x=4$ then the angle between them is
A. $\frac{\pi}{2}$
B. $\cos ^{-1}\left(\frac{1}{4}\right)$
C. $\cos ^{-1}\left(-\frac{4}{9}\right)$
D. $\cos ^{-1}\left(\frac{5}{9}\right)$

Answer: C

56. The distance of the point $\mathrm{P}(1,2,3)$ from the line

$$
\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2} \text { is...... }
$$

A. 7
B. 5
C. 0
D. None of these

Answer: A

- Watch Video Solution

57. The lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3} \quad$ and
$\frac{x-1}{-2}=\frac{y-2}{-4}=\frac{z-3}{-6}$ are
A. Coincident
B. skew
C. Intersecting
D. Parallel

Answer: A

- Watch Video Solution

58. The direction ratios of the line $x-y+z-5=0=x-3 y-6$ are
A. $3,1,-2$
B. $2,-4,1$
C. $\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$
D. $\frac{2}{\sqrt{41}}, \frac{-4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$

Answer: A

D Watch Video Solution

59. The shortest distance the lines

$$
\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}
$$

is
A. $\sqrt{30}$
B. $2 \sqrt{30}$
C. $5 \sqrt{30}$
D. $3 \sqrt{30}$

- Watch Video Solution

60. The direction cosines of line satisfy the relations
$\lambda(l+m)=n$ and $\mathrm{lm}+\mathrm{mn}+\mathrm{ln}=0$.
The value of λ for which the two lines are perpendicualr to each other is
A. 1
B. 2
C. $\frac{1}{2}$
D. 3

- Watch Video Solution

61. The coordinates of a point on the line $\frac{x-1}{2}=\frac{y+1}{-3}=z$ at a disntance $4 \sqrt{14}$ from the piont ($1,-1,0$) nearer the origin are
A. $(9,-13,4)$
B. $(8 \sqrt{14},-12,-1)$
C. $(-8 \sqrt{14}, 12,1)$
D. $(-7,-11,4)$

Answer: A
62. The symmetric from of the equation of the line $x+y-z=1$ and $2 x-3 y+z=2$ is
A. $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$
B. $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{5}$
C. $\frac{x-1}{2}=\frac{y}{3}=\frac{z}{5}$
D. $\frac{x}{3}=\frac{y}{3}=\frac{z}{5}$

Answer: C
63. The direction ratios of there lines are (1,1,2),

$$
(3 \sqrt{3}-1, \sqrt{3}-1,4) .
$$

The three lines form a triangle.
A. Equilateral
B. Isoscles
C. Right angle
D. Obtus angle triangle

Answer: A

- View Text Solution

64. If the lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{4-z}{\lambda}$ and $\frac{x-1}{\lambda}=\frac{y-4}{2}=\frac{z-5}{1}$ are intersect each other than $\lambda=\ldots$.
A. 0,-3
B. $-3,3$
C. $2,-2$
D. 0,2

Answer: A

- Watch Video Solution

65. The image of the point $(1,6,3)$ with respect to the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is......
A. $(1,0,7)$
B. $(7,0,1)$
C. $(-1,-6,-3)$
D. $(1,1,7)$

Answer: A

- Watch Video Solution

66. The distance of the point $P(-2,3,1)$ from the line
$\leftrightarrow(Q R)$ through $Q(-3,6,2)$ which makes equal angles
with the axes is
A. 1
B. 8
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: D

- Watch Video Solution

67. If the lines $2 x-y+3 z+4=0=a x+y-z+2$ and $x-3 y+z=0$
$=x+2 y+z+1$ are coplannar then the value of a is
A. -2
B. 4
C. 6
D. $\frac{6}{5}$

Answer: D

D Watch Video Solution

68. The distance of the plane $\bar{r}(12,-4,3)=65$ from the origin is
A. 65
B. 5
C. -5
D. $\frac{5}{13}$

Answer: B

D Watch Video Solution

69. The plane $2 x-3 y+6 z+9=0$ makes an angle with positive direciton of X -axis is
A. $\cos ^{-1} \frac{3 \sqrt{5}}{7}$
B. $\sin ^{-1} \frac{3}{7}$
C. $\sin ^{-1} \frac{2}{\sqrt{7}}$
D. $\tan ^{-1} \frac{2}{7}$
70. The perpendicular distance between the planes $2 x-y+$ $2 z=1$ and $4 x-2 y+4 z=1$ is.
A. $\frac{1}{3}$
B. 3
C. $\frac{1}{6}$
D. 6

Answer: C

- Watch Video Solution

71. If the plane passing through $(1,1,1),(1,-1,1)$ and $(-1,3,-5)$ is

 also passing through $(2, k, 4)$ then,$k=\ldots$.A. does not get
B. Two value exist
C. All real numbers
D. unique value exist

Answer: C

- Watch Video Solution

72. The foot of perpendicular from the origin to the plane is (a, b, c). So the equation of the plane is
A. $a x+b y+c z=a+b+c$
B. $a x+b y+c z=a b c$
C. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
D. $a x+b y+c z=a^{2}+b^{2}+c^{2}$

Answer: D

- Watch Video Solution

73. The distance of the point $(2,-3,6)$ from the plane $3 x-$ $6 y+2 z+10=0$ is
A. $\frac{13}{7}$
B. $\frac{46}{7}$
C. 7
D. $\frac{10}{7}$

Answer: B

- Watch Video Solution

74. The line passing through point $(2,-3,1)$ and $(3,-4,-5)$ intersect the ZX - plane in Point.
A. $(-1,0,13)$
B. $(-1,0,19)$
C. $\left(\frac{13}{6}, 0, \frac{-19}{6}\right)$
D. $(0,-1,13)$

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 75. The angle between the line } \\
& \frac{x-1}{1}=\frac{2-y}{1}=\frac{z+1}{1} \text { and the plane } 2 \mathrm{x}-\mathrm{y}+\mathrm{z}=4
\end{aligned}
$$ is......

A. $\sin ^{-1} \frac{1}{3}$
B. $\cos ^{-1} \frac{1}{3}$
C. $\cos ^{-1} \frac{2 \sqrt{2}}{3}$
D. $\sin ^{-1} \frac{1}{2 \sqrt{2}}$

Answer: B
76. The normal unit vector of the plane $x-3 y+2 z=6$ is
A. $(1,-3,2)$
B. $\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$
C. $\left(\frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right)$
D. $\left(\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right.$

Answer: C

77. The equation of the plane with normal $2 \hat{i}+\hat{j}-2 \hat{k}$ and at distance 5 units from the origin is.

$$
\begin{aligned}
& \text { A. } \bar{r} \cdot(2,1,-1)=5 \\
& \text { B. } \bar{r} \cdot(2,1,-2)=15 \\
& \text { C. } \bar{r} \cdot(2,1,-2)=-5 \\
& \text { D. } \bar{r} \cdot(2,1,-2)=-15
\end{aligned}
$$

Answer: B

D Watch Video Solution

78. The angle between the planes $\bar{r}(1,2,-1)=3$ and $2 x-y+2 z=2$ is
A. $\tan ^{-1} \frac{5}{\sqrt{2}}$
B. $\cos ^{-1} \frac{5 \sqrt{3}}{9}$
C. $\sin ^{-1} \frac{\sqrt{6}}{9}$
D. $\pi-\cos ^{-1} \frac{\sqrt{6}}{9}$

Answer: A

- Watch Video Solution

79. The equation of the plane passing through the points ($-1,1,0$) and ($2,3,2$) and parallel to the line $\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-1}{-2}$ is
A. $2 x+4 y+z=6$
B. $2 x-4 y+z+6=0$
C. $2 x+4 y-z=6$
D. $2 x+4 y+z+6=0$

Answer: B

D Watch Video Solution

80. The equation of the plane passing through the line of intersection of the planes $2 x+y-z=1$ and $2 x+2 y-z=\frac{1}{2}$ and also passing through the origin is

$$
\text { A. } x+2 y-z=0
$$

B. $3 x+3 z=0$
C. $2 x+y+z=0$
D. $2 x+3 y-z=0$

Answer: D

D Watch Video Solution

81. The equation of the plane passing through $A(3,1,2)$ and perpendicular to $\leftrightarrow(A B)$ is Where $\mathrm{B}(1,-2,-4)$.
A. $2 x+3 y+6 z=21$
B. $2 x+3 y+6 z+21=0$
C. $6 x+3 y+2 z=21$
D. $6 x+3 y+2 z+21=0$

Answer: A

D Watch Video Solution

82. The distance of the plane $\bar{r}(12,-4,3)=65$ from the origin is
A. 1
B. 5
C. 13
D. 65
83. The plane $2 x-3 y+6 z+9=0$ makes an angle with
positive direciton of X-axis is
A. $\sin ^{-1} \frac{1}{7}$
B. $\tan ^{-1} \frac{2}{3 \sqrt{5}}$
C. $\sin ^{-1} \frac{3 \sqrt{5}}{7}$
D. $\frac{\pi}{2}$

Answer: B

84. Expression of $x+y+z=1$ in the form of $x \cos \alpha+y \cos \beta+z \cos \gamma=p$ is
A. $x+y+z=1$
B. $\frac{x}{2 \sqrt{3}}+\frac{y}{2 \sqrt{3}}+\frac{x}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}$
C. $\frac{x}{\sqrt{3}}+\frac{y}{\sqrt{3}}+\frac{z}{\sqrt{3}}=1$
D. $\frac{x}{\sqrt{3}}+\frac{y}{\sqrt{3}}+\frac{z}{\sqrt{3}}=\frac{1}{\sqrt{3}}$

Answer: D

(Watch Video Solution

85. The perpendicular distance between the planes $x+$
$2 y-3 z=2$ and $2 x+4 y-6 z=-2$ is
A. $\frac{3}{\sqrt{14}}$
B. $\frac{1}{\sqrt{14}}$
C. $\frac{2}{\sqrt{14}}$
D. $\frac{4}{\sqrt{14}}$

Answer: A

- Watch Video Solution

86. A line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is in the plane
which passes through $(3,2,0)$. The normal to the plane is
A. $(1,1,1)$
B. $(-1,1,1)$
C. $(1,-1,1)$
D. $(-1,-1,1)$

Answer: C

- Watch Video Solution

87. The perpendicular distance of the point $(3,2,1)$ from
the plane $3 x+4 y-2 z-10=0$ is

$$
\begin{aligned}
& \text { A. } \frac{3}{\sqrt{14}} \\
& \text { B. } \frac{5}{\sqrt{14}} \\
& \text { C. } \frac{5}{\sqrt{29}}
\end{aligned}
$$

D. $\frac{7}{\sqrt{29}}$

Answer: C

- Watch Video Solution

88. The point of intersection of the line $\frac{x-4}{2}=\frac{y+3}{5}=\frac{z-3}{3}$ and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}+2=$ 0 is........
A. $\left(\frac{18}{5},-3, \frac{18}{5}\right)$
B. $\left(-\frac{18}{5},-2,-\frac{8}{5}\right)$
C. $\left(\frac{13}{5},-2, \frac{18}{5}\right)$
D. $\left(-\frac{18}{5},-2, \frac{18}{5}\right)$

Answer: D

- View Text Solution

89. The plane $2 x+3 y-2 \sqrt{3} z+25=0$ makes an angle.......with X -axis.

$$
\begin{aligned}
& \text { A. } \sin ^{-1} \frac{2}{\sqrt{21}} \\
& \text { B. } \tan ^{-1} \frac{2}{\sqrt{21}} \\
& \text { C. } \sin ^{-1} \frac{1}{\sqrt{21}} \\
& \text { D. } \cos ^{-1} \frac{1}{21}
\end{aligned}
$$

Answer: B
90. The plane passing the points (1,1,1),(1,-1,1) and (-1,3,-5)
contains the point $(K, 1,2)$ then value of $K=$
A. $\frac{-4}{3}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. $\frac{-3}{4}$

Answer: C

91. The direction of theline passing through the point $(-1,2,4)$ and parallel to the plane $3 x-4 y+7 z=2$ is.....
A. $(3,-4,1)$
B. $(1,-4,-3)$
C. $(1,-1,1)$
D. $(-3,-4,-1)$

Answer: D

- Watch Video Solution

92. The equation of the plane passing through (1,-4,5)
and having normal $(3,1,-10)$ is.
A. $3 x-y+z-6=0$
B. $3 x+y+z-6=0$
C. $3 x+y-z+6=0$
D. $x+y-z+6=0$

Answer: C

- Watch Video Solution

93. The plane $x-2 y+3 z=2$ makes an angle ... With Y-axis.

> A. $\cos ^{-1} \frac{2}{\sqrt{14}}$
> B. $\sin ^{-1} \frac{2}{14}$
> C. $\tan ^{-1} \frac{2}{\sqrt{14}}$
D. $\sin ^{-1} \frac{2}{\sqrt{10}}$

Answer: B

D Watch Video Solution

94. If the foot of perpendicular from origin to the plane is $(2,1,0)$ then the equation of the plane is
A. $2 x+y=25$
B. $2 x+y=5$
C. $2 x+y=10$
D. $2 x+y+5=0$
95. The direction of the line of instersection of the planes $3 x-z=5$ and $2 y+x+z=3$ is
A. $(2,-4,6)$
B. $(1,-2,3)$
C. $(-1,2,3)$
D. $(1,-2,-3)$

Answer: B

-

96. The perpendicular distance of the plane $y-2 x+5=z$ from the point $(0,0,0)$ is
A. $5(\sqrt{6})$
B. $\frac{5 \sqrt{6}}{6}$
C. $\frac{\sqrt{6}}{5}$
D. $2 \sqrt{6}$

Answer: B

- Watch Video Solution

97. The equation of the passing through the point (2,-1,3)
and perpendicular to the plane $2 x-y+2 \sqrt{5} z=3$ is
A. $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z-3}{2 \sqrt{5}}$
B. $\frac{x+2}{2}=\frac{y-1}{1}=\frac{z-3}{2}$
C. $\frac{x-2}{2}=\frac{y-1}{-1}=\frac{z-3}{2}$
D. $\frac{x-2}{2}=\frac{y+1}{2 \sqrt{5}}=\frac{z-3}{-1}$

Answer: A

- Watch Video Solution

98. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line
A. $\frac{x-3}{3}=\frac{y+5}{1}=\frac{z-2}{-5}$
B. $\frac{x-3}{-3}=\frac{y+5}{-1}+\frac{z-2}{5}$
C. $\frac{x+3}{3}=\frac{y-5}{1}=\frac{z-2}{-5}$
D. $\frac{x+3}{-3}=\frac{y-5}{-1}=\frac{z+2}{5}$

Answer: C

- Watch Video Solution

99. The equation of the plane whose X - intercept $4, Y$ intercept (-6), Z - intercept 3 is \qquad
A. $3 x-2 y+4 z=12$
B. $4 x-6 y+3 z=1$
C. $4 x-3 y+2 z=12$
D. $3 x-4 y+=6 z=12$

- Watch Video Solution

100. The vector equation of the plane $2 x-z+1=0$ is

$$
\begin{aligned}
& \text { A. } \bar{r} \cdot(2,-1,0)+1=0 \\
& \text { B. } \bar{r} \cdot(2,0-1)+1=0 \\
& \text { C. } \bar{r}(2,0,-1)=1 \\
& \text { D. } \bar{r} \cdot(2,-1,0)=1
\end{aligned}
$$

Answer: B

101. The angle between the planes - $r(1,2,-1)=3$ and $2 \mathrm{x}-\mathrm{y}$
$+2 z=2$ is
A. $\cos ^{-1} \frac{5 \sqrt{2}}{9}$
B. $\sin ^{-1} \frac{\sqrt{6}}{9}$
C. $\pi-\cos ^{-1} \frac{\sqrt{6}}{9}$
D. $\tan ^{-1} \frac{5}{\sqrt{2}}$

Answer: D

- Watch Video Solution

102. The equation of the plane passing through the intersection of the planes $2 x-5 y=z=3$ and $x+y+4 z=5$
and parallel to the plane $x+3 y+6 z=1$ is $x+3 y+6 z=k$ is
A. $2 x+6 y+12 z=13$
B. $x+3 y+6 z=-7$
C. $x+3 y+6 z=7$
D. $2 x+6 y+12 z=13$

Answer: C

(D) Watch Video Solution

103. The angle makes by the plane $2 x+3 y+6 z-15=0$
with Y-axis is
A. $\sin ^{-1}\left(\frac{3}{7}\right)$
B. $\sin ^{-1}\left(\frac{2}{7}\right)$
C. $\sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)$
D. $\cos ^{-1}\left(\frac{3}{7}\right)$

Answer: A

- Watch Video Solution

104. The equation of the plane passing through (4,5,-1) and with normal $3 \hat{i}-\hat{j}+\hat{k}$ is
A. $4 x-5 y+z=6$
B. $3 x-y+z=6$
C. $3 x+y+z=6$
D. $4 x+5 y-z=6$

Answer: B

- Watch Video Solution

105. The sum of the Y and Z intercepts made by the plane $3 x+4 y-6 z=12$ is
A. 10
B. 4
C. 1
D. 5

Answer: C

- Watch Video Solution

106. If the foot of perpendicular from the origin to the plane is ($a, b, 0$) thne the eqution of the plane is
A. $a x+b y=a+b$
B. $a x+b y=a^{2}+y^{2}$
C. $\frac{x}{a}+\frac{y}{b}=1$
D. $a x+b y=a b$

Answer: B
107. The distance of the point $(1,-5,9)$ from the plane $x-y+$
$z=5$ measured parallel to the line $x=y=z$ is
A. $3 \sqrt{10}$
B. $10 \sqrt{3}$
C. $\frac{10}{\sqrt{3}}$
D. $\frac{20}{3}$

Answer: B
108. If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ is in the plane $l \mathrm{x}+\mathrm{my} \mathrm{z}=9$ then $l^{2}+m^{2}=$
A. 26
B. 18
C. 5
D. 2

Answer: D

- Watch Video Solution

109. If the distance between the palens
$2 x-y+2 z=1$ and $4 x-2 y+4 z=k$ is $\frac{1}{6}$ then $k=$
A. -3
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

110. If the foot of perpendicular from origin to the plane is $(1,2,3)$ then the equation of the plane is
A. $\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1$
B. $x+2 y+3 z=1$
C. $x+2 y+3 z=6$
D. $x+2 y+3 z=14$

Answer: D

- Watch Video Solution

111. If the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z+k}{2}$ lies in the plane $2 \mathrm{x}-4 \mathrm{y}+\mathrm{z}=7$ then $\mathrm{k}=.$.
A. -7
B. 6
C. 7
D. -6

- Watch Video Solution

112. The direction of the line of intersection of the planes
$2 x+3 y+z-1=0$ and $x+y-z-7=0$ is
A. $(-4,-3,1)$
B. $(-4,3,1)$
C. $(4,3,1)$
D. $(4,-3,1)$

Answer: D
113. The pane $x+2 y-2 z=6$ makes the intercepts with the axes, The centroid of the triangel whose vettices are these intersection points with axes is
A. $(-2,-1,1)$
B. $\left(\frac{2}{3}, \frac{1}{3},-\frac{1}{3}\right)$
C. $\left(\frac{1}{3}, \frac{2}{3}-\frac{2}{3}\right)$
D. $(2,1,-1)$

Answer: D
114. The angle between the lines
$\frac{x-1}{2}=\frac{y+1}{1}=\frac{1-z}{2}$ and $\mathrm{x}=\mathrm{k}+1, \mathrm{y}=2 \mathrm{k}-1, \mathrm{z}=2 \mathrm{k}$
$+3, k \in R$ is
A. $\frac{\pi}{3}$
B. $\sec ^{-1} \frac{9}{4}$
C. $\left.\operatorname{cosec}-\frac{3}{4}\right)$
D. $\frac{\pi}{2}$

Answer: D
115. The plane passes through the point $(1,-1,-1)$ and its normal is perpendicular to both the lines
$\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$
and
$\frac{x-2}{2}+\frac{y+1}{-1}=\frac{z+7}{-1}$. The distance of the point
$(1,3,-7)$ from thise plane is
A. $\frac{10}{\sqrt{74}}$
B. $\frac{20}{\sqrt{74}}$
C. $\frac{10}{\sqrt{83}}$
D. $\frac{5}{\sqrt{83}}$

Answer: C
116. The plane $a x+b y+c z=1$ intersects the axes in A, B and C respetively. The centroid of
$\Delta A B C i s G\left(\frac{1}{6},-\frac{1}{3}, 1\right)$. Then $\mathrm{a}+\mathrm{b}+3 \mathrm{c}=\ldots . . .$.
A. 2
B. 4
C. $\frac{4}{3}$
D. $\frac{5}{6}$

Answer: A

- Watch Video Solution

117. The plane makes the angles $\frac{\pi}{4}, \frac{\pi}{4}$ and $\frac{\pi}{2}$ with the positive direction of X - axis, Y - axis and Z - axis respectively. The length of perpendicular drawn from origin to the plane is $\sqrt{2}$, then the equation of the plane is
A. $x+y=2$
B. $x+y+z=1$
C. $x+y+z=\sqrt{2}$
D. $x=\sqrt{2}$

Answer: A
118. The equation of the plane passing through the pionts (2,5,-3) and perpendicular to both the planes $\mathrm{x}+$ $2 y+2 z=1$ and $x-2 y+3 z=4$ is
A. $3 x-4 y+2 z-20=0$
B. $7 x-y+5 z=30$
C. $x-2 y+z=1$
D. $10 x-y-4 z=27$

Answer: D
119. The equation of the plane passing through the pionts ($0,-4,-6$) and $(-2,9,3)$ and perpendicular to $x-4 y-2 z=$ 8 is is
A. $3 x+3 y-2 z=0$
B. $x-2 y+z=2$
C. $2 x+y-z=2$
D. $5 x-3 y+2 z=0$

Answer: C

- Watch Video Solution

120. The line joining the pionts ($1,1,2$) and ($3,-2,1$) meets the plane $3 x+2 y+z=6$ in Point.
A. $(1,1,2)$
B. $(3,-2,1)$
C. $(2,-3,1)$
D. $(3,2,1)$

Answer: B

D Watch Video Solution

121. The plane passing through $(5,1,2)$ and perpendicular to the line $2(x-2) y-4=z-5$ meets the line in the

Point.
A. $(1,2,3)$
B. $(2,3,1)$
C. $(1,3,2)$
D. $(3,2,1)$

Answer: A

- Watch Video Solution

122. The intercepts on the axes cut off by the plane which is perpendicular bisector of the line segment joining the pionts ($1,2,3$) and ($-3,4,5$) are
A. $-\frac{9}{2}, 9,9$
B. $\frac{9}{2}, 99$
С. $9,-\frac{9}{2}, 9$
D. $9, \frac{9}{2}, 9$

Answer: A

- Watch Video Solution

123. The equation of the plane passing through the intersection of the planes $2 x-5 y=z=3$ and $x+y+4 z=5$ and parallel to the plane $x+3 y+6 z=1$ is $x+3 y+6 z=k$ is
A. 5
B. 3
C. 7
D. 2

Answer: C

- Watch Video Solution

124. If from the point (a, b, c) perpendiculars PL and PM be drawn to YOZ and ZOX then the equation of the plane OLM is

$$
\text { A. } \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0
$$

B. $\frac{x}{a}-\frac{y}{b}+\frac{z}{c}=0$
C. $\frac{x}{a}+\frac{y}{b}-\frac{z}{c}=0$
D. $\frac{x}{a}-\frac{y}{b}-\frac{z}{c}=0$

Answer: C

- Watch Video Solution

125. The line $\frac{x+1}{2}=\frac{y+1}{3}=\frac{z+1}{4}$ meets the plane $x+2 y+3 z=14$ in Point.
A. $(3,-2,5)$
B. $(3,2,-5)$
C. $(2,0,4)$
D. $(1,2,3)$

Answer: D

- Watch Video Solution

126. The plane containing the two lines $\frac{x-3}{1}=\frac{y-2}{4}=\frac{z-1}{5}$ and $\frac{x-2}{1}=\frac{y+3}{-4}=\frac{z+1}{5}$
is $11 \mathrm{x}+\mathrm{my}+\mathrm{nz}=28$ where
A. $m=-1, n=3$
B. $m=1, n=-3$
C. $m=-1, n=-3$
D. $m=1, n=3$

Answer: C

- Watch Video Solution

127. A variable plane passes through a fixed point (1,-2,3)
and meets the co-ordinate axes in A, B and C. The locus of the point of intersection of the plane through A, B and

C parallel to the co-ordinate planes is the surface.......

$$
\text { A. } x y-\frac{1}{2} y z+\frac{1}{3} z n=6
$$

B. $y z-2 z x+3 x y=x y z$
C. $x y-2 y z+3 z x=3 x y z$
D. None of these

- View Text Solution

128. The equation to the plane through the pionts
(2,-1,00) and ($3,-4,5$) parallel to a line with direction cosines proportional to $2,3,4$ is $9 x-2 y-3 z=k$, where k is
A. 20
B. -20
C. 10
D. -10

Answer: A

- Watch Video Solution

129. Through a point $P(f, g, h)$ a plane is drawn at right angles to $\overline{O P}$, to meet the axes in A, B and C . If $\mathrm{OP}=\mathrm{r}$, the centroid of the triangle $A B C$ is.
A. $\left(\frac{f}{3 r}, \frac{g}{3 r}, \frac{h}{3 r}\right)$
B. $\left(\frac{r^{2}}{3 f^{2}}, \frac{r^{2}}{3 g^{2}}, \frac{r^{2}}{3 h^{2}}\right)$
C. $\left(\frac{r^{2}}{3 f^{2}}, \frac{r^{2}}{3 g^{2}}, \frac{r^{2}}{3 h^{2}}\right)$
D. None to these

Answer: C

130. If p_{1}, P_{2}, P_{3} denot the distances of the plane $2 x$ -
$3 y+4 z+2=0$ from the planes $2 x-3 y+4 z+6=0,4 x-6 y+8 z$ $+3=0$ and $2 x-3 y+4 z-6=0$ repectively then , Is not true.
A. $P_{1}+8 P_{2}-P_{3}=0$
B. $P_{3}=16 P_{2}$
C. $8 P_{2} \neq P_{1}$
D. $P_{1}+2 P_{2}+3 P_{3}=\sqrt{29}$

Answer: C
131. The image of the piont $P(2,3,1)$ in the plane $x-y-z-2=$ 0 is
A. $\left(\frac{14}{3}, \frac{1}{3},-\frac{5}{3}\right)$
B. $\left(-\frac{14}{3},-\frac{1}{3}, \frac{5}{3}\right)$
C. $\left(\frac{14}{3}, \frac{1}{3}, \frac{5}{3}\right)$
D. None of these

Answer: A
132. If the plane $\lambda x-\mu y+v z=\phi$ contains line $\frac{x-\lambda}{\lambda}=\frac{y-2 \phi}{\mu}=\frac{z-v}{v}$ then the value of $\frac{\mu}{\phi}$ is
A. 2
B. 1
C. -1
D. 3

Answer: A
133. The difference between the distances of the points
$(2,3,4)$ and $(1,1,4)$ from the plane $3 x-6 y+2 x+11=0$ is
A. $\frac{9}{7}$
B. $\frac{1}{7}$
C. $\frac{8}{7}$
D. $\frac{5}{7}$

Answer: A

- Watch Video Solution

134. The vector equation of the plane which is at distance 8 units from origin and having normal $2 \hat{i}+\hat{j}+2 \hat{k}$ is

$$
\begin{aligned}
& \text { A. } \bar{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})=24 \\
& \text { B. } \bar{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=24 \\
& \text { C. } \bar{r} \cdot(2 \hat{i}+\hat{j}+2 \hat{k})=24 \\
& \text { D. } \bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})=24
\end{aligned}
$$

Answer: B

- Watch Video Solution

135. The modulus of the vector \bar{n} is 8 . makes an angle 45° with X -axis. 60° with Y - axis an acute angle with Z axis. The equation of the plane passing through $(\sqrt{2},-1,1)$ and having normal \bar{n} is
A. $\bar{r} \cdot(\sqrt{2} \hat{i}+\hat{j}+\hat{k})=4$
B. $\bar{r} \cdot(\sqrt{2} \hat{i}+\hat{j}+\hat{k})=2$
C. $\bar{r}(\hat{i}+\hat{j}+\hat{k})=4$
D. None of these

Answer: B
136. The position vectors of the points P and Q are $(3,1,2)$ and $(1,-2,-4)$ repectively. The equation of the plane passing through the point Q and perpendicular to $\bar{P} Q$ is
A. $\bar{r} \cdot(2 \hat{i}+3 \hat{j}+6 \hat{k})=28$
B. $\bar{r} \cdot(2 \hat{i}+3 \hat{j}+6 \hat{k})=32$
C. $\bar{r} \cdot(2 \hat{i}+3 \hat{j}+6 \hat{k})+28=0$
D. None of these

Answer: C
137. The position vectors of the points A and B are respectively $\hat{i}-\hat{j}+3 \hat{k}$ and $3 \hat{i}+3 \hat{j}+3 \hat{k}$. The equation of the plane $\bar{r} .(5 \hat{i}+2 \hat{j}-7 \hat{k})+9=0$

Then points A and B.
A. are one the plane
B. lie on the same side of the plane
C. lie on the opposite side of the plane
D. None of these

Answer: C

D Watch Video Solution

138. The equation of the plane passing through the point $\hat{i}+2 \hat{j}+-\hat{k}$ and perpendicular to the intersection line of the planes $\bar{r} .(3 \hat{i}-\hat{j}+\hat{k})=1$ and $\overline{\hat{i}+4 \hat{j}-2^{\wedge}}=2$ is.
A. $\bar{r} \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1$
B. $\bar{r} \cdot(2 \hat{i}-7 \hat{j}-13 \hat{k})=1$
C. $\bar{r} .\left(2 \hat{i}-7 \hat{j}-13^{\wedge}\right)=1$
D. None of these

Answer: B
139. The cartessian form of the plane

$$
\bar{r}=(1+\lambda-\mu) \hat{i}(2-\lambda) \hat{j}+(3-2 \lambda+2 \mu) \hat{k} \text { is........ }
$$

A. $2 x+y=5$
B. $2 x-y=5$
C. $2 x+z=5$
D. $2 x-z=5$

Answer: C

- Watch Video Solution

140. The plane is passing through the point $A(\bar{a})$ and contais the line $\bar{r}=\bar{b}+\lambda \bar{c}$. The length of perpendicular
drawn from the origin to this plane is
A. $\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{a} \times \bar{b} \times \bar{b} \times \bar{c}+\bar{c} \times \bar{a}]}$
B. $\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{a} \times \bar{b}+\bar{b} \times \bar{c}]}$
C. $\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{b} \times \bar{c} \times \bar{c} \times \bar{a}]}$
D. $\frac{[\bar{a} \bar{b} \bar{c}]}{[\bar{c} \times \bar{a}+\bar{a} \times \bar{b}]}$

Answer: C

(View Text Solution

141.

The
angle
between
the
line
$\bar{r}=(2 \hat{i}-\hat{j}+\hat{k})+\lambda(-\hat{i}+\hat{j}+\hat{k})$ and the plane $\cdot(3 \hat{i}+2 \hat{j}-\hat{k})=4$ is
A. $\cos ^{-1}\left(\frac{2}{\sqrt{42}}\right)$
B. $\cos ^{-1}\left(\frac{-2}{\sqrt{42}}\right)$
C. $\sin ^{-1}\left(\frac{2}{\sqrt{42}}\right)$
D. $\sin ^{-1}\left(\frac{-2}{\sqrt{42}}\right)$

Answer: D

- Watch Video Solution

142. The distance between the line $\bar{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\bar{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is
A. $\frac{3}{10}$
B. $\frac{10}{3}$
C. $\frac{10}{9}$
D. $\frac{10}{3(\sqrt{3})}$

Answer: D

- Watch Video Solution

143. The plane is passing through $A(2,-1,3)$ and it is parallel to $\bar{a}=(3,0,-1)$ and $\bar{b}=(-3,2,2)$. The equation of this plane is
A. $2 x-3 y+6 z-25=0$
B. $2 x-3 y+6 z+25=0$
C. $3 x-2 y+6 z-25=0$
D. $3 x-2 y+6 z-25=0$

Answer: A

- Watch Video Solution

144. One plane is parallel to the vectors $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}$ Other plane is parallel to the vectros $\hat{i}+\hat{j}$ and $\hat{i}-\hat{k}$
. The angle between the line of intersection of both the planes and the vector $2 \hat{i}-\hat{j}$ is
A. $\cos ^{-1}\left(\frac{3}{\sqrt{50}}\right)$
B. $\cos ^{-1}\left(\frac{2}{\sqrt{30}}\right)$
C. $\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)$
D. $\cos ^{-1}\left(\frac{19}{\sqrt{30}}\right)$

Answer: C

D Watch Video Solution

145. The line segment joining the points $(2,4,5)$ and $(3,5,-4)$ divides the $Y Z$ - plane in the Ratio.
A. $2: 3$
B. 3: 2
C. $-2: 3$
D. $1: 2$

Answer: C

- Watch Video Solution

146. The equation of the plane passing through $(1,-3,-2)$ and perpendicular to the planes $x+2 y+3 z=5$ and $3 x+$ $3 y+2 z=8$ is
A. $5 x-7 y+3 z-20=0$
B. $2 x-4 y-3 z+8=0$
C. $2 x+4 y+3 z+8=0$
D. $5 x+7 y-3 z-20=0$

Answer: A
147. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line

$$
\begin{aligned}
& \vec{r}=2 \hat{i}-\hat{j}+2 \hat{k}+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \text { and the plane } \\
& \vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5
\end{aligned}
$$

A. 10
B. 11
C. 12
D. 13

Answer: D
148. The distance of the point $(1,-2,3)$ from the plane x $\mathrm{y}+\mathrm{z}=5$, measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is
A. 1
B. $\frac{6}{7}$
C. $\frac{7}{6}$
D. None of these

Answer: A
149. The plane contains the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}+\hat{j}+2 \hat{k}$. The acute angle made by this plane with the vector $2 \hat{i}+3 \hat{j}-\hat{k}$ is
A. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
C. $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
D. $\cot ^{-1}(\sqrt{2})$

Answer: D

150. A plane meets the axes in the points, A, B and C. If the centroid of $\triangle A B C$ is (α, β, γ) then the plane is
A. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
B. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$
C. $\frac{3 x}{\alpha}+\frac{3 y}{\beta}+\frac{3 z}{\gamma}=1$
D. $\alpha x+\beta y+\gamma z=1$

Answer: A

D Watch Video Solution
151. Out of the following planes, which plane is passing through theline of intersection of the palnes $x-y+2 z=3$ and $4 x-3 y-z=1$.
A. $11 x+10 y-5 z=0$
B. $7 x+7 y+4 z=0$
C. $5 x+2 y-z=2$
D. None to these

Answer: A

- Watch Video Solution

152. A plane is passing through $(1,0,0)$ and $(0,1,0)$ and it makes and angle $\frac{\pi}{4}$ with $x+y=3$. The direction rations of this plane are
A. $(1, \sqrt{2}, 1)$
B. $(1,1, \sqrt{2})$
C. $(1,1,2)$
D. $(\sqrt{2}, 1,1)$

Answer: B
153. The equation of the plane passing through origin and the line of intersection of the planes $\vec{r} \cdot \vec{a}=\lambda$ and $\vec{r} \cdot \vec{b}=\mu i s$.

$$
\begin{aligned}
& \text { А. } \vec{r} \cdot(\lambda \vec{a}-\mu \vec{b})=0 \\
& \text { в. } \vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0 \\
& \text { С. } \vec{r} \cdot(\lambda \vec{a}+\mu \vec{b})=0 \\
& \text { D. } \vec{r} \cdot(\lambda \vec{b}-\mu \vec{a})=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

154. The equation of the plane containing the lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \vec{b}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \vec{b}$ is

$$
\begin{aligned}
& \text { A. } \vec{r} \cdot\left(\vec{a}_{1}-\vec{a}_{1}\right) \times \vec{b}=\left[\vec{a}_{1} \vec{a}_{2} \vec{a}_{3}\right] \\
& \text { В. } \vec{r} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right) \times \vec{b}=\left[\vec{a}_{1} \vec{a}_{2} \vec{b}\right] \\
& \text { С. } \vec{r} \cdot\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right) \times \vec{b}=\left[\vec{a}_{2} \vec{a}_{1} \vec{b}\right]
\end{aligned}
$$

D. None of these

Answer: B

D Watch Video Solution

155. If the lines $\vec{r}=\vec{a}+\lambda(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ are intersect then
A. $\vec{a} \times \vec{c}=\vec{b} \times \vec{c}$
В. $\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}$
C. $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$
D. None of these

Answer: B

- Watch Video Solution

156. The distance between the planes
$2 x+2 y-z+2=0$ and $4 x+4 y-2 x+5=0$ is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{6}$
D. None of these

Answer: C

- Watch Video Solution

157. The plane $2 x-(1-\lambda) y+3 \lambda z=0$ is passing through the line of intersectoin of Planes.
A. $2 x-y=0, y-3 z=0$
B. $2 x-y+3 z=0, y=0$
C. $2 x-y+3 z=0, y-3 z=0$

D. None of these

Answer: A

- Watch Video Solution

158. A plane passes through ($1,1,1$). It is perpendicular to
the line $\frac{x-1}{3}=\frac{y-1}{0}-\frac{z-1}{4}$
Then the distance of this plane from the origin is.
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{7}{5}$
D. 1

Answer: C

D Watch Video Solution

159. The equation of the plane passing through the line of intersection of the planes $a x+b y+c z+d=0$ and $l x+$ $m y+n z+p=0$ and it is parallel to the line $y=0 z=0$ is.
A. $(b l-a m) y+(c l-a n) z+d l-a p=0$
B. $(a m-b l) x(m c-b n) z+m d-b p=0$
C. $(n a-c l) x+(b n-c m) y+n d-c p=0$
D. None of these

- Watch Video Solution

160. The vector equation of the plane containing the line
$\vec{r}(-2 \hat{i}-3 \hat{+} 4 \hat{k})+\lambda(3 \hat{i}-2 \hat{j}-\hat{k})$ and the point $\hat{i}+2 \hat{j}+3 \hat{k}$ is
A. $\vec{r} \cdot(\vec{i}+3 \hat{k})=10$
B. $\vec{r} \cdot(\hat{i}-3 \hat{k})=10$
C. $\vec{r} \cdot(3 \hat{i}+\hat{k})=10$
D. None of these

Answer: A
161. The plane passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to Y axis is also passing through Point.
A. $(-3,0,1)$
B. $(3,2,2)$
C. $(-3,1,1)$
D. $(3,3,-1)$

Answer: B
162. The equation of line passing through the point $(-4,3,1)$ parallel to the plane $x+2 y-z-5=0$ and intersect the lien $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{-1}$ is.
A. $\frac{x+4}{-1} \frac{y-3}{1}=\frac{z-1}{1}$
B. $\frac{x+4}{3}=\frac{y-3}{1}=\frac{z-1}{1}$
C. $\frac{x-4}{2}+\frac{y+3}{1}=\frac{z+1}{4}$
D. $\frac{x+4}{1}=\frac{y-3}{1}=\frac{z-1}{3}$

Answer: B
163. The equation of plane containing the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular the plane which is containing the lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is.....
A. $x+2 y-2 z=0$
B. $x-2 y+z=0$
C. $3 x+2 y-3 z=0$
D. $5 x+2 y-4 z=0$

Answer: B
164. If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+$ d" are perpendicular then

$$
\text { A. } \mathrm{cc}^{\prime}+a+a^{\prime}=0
$$

B. $\mathrm{aa}^{\prime}+c+c^{\prime}=0$
C. $a b^{\prime}+b c^{\prime}+1=0$
D. $\mathrm{bb}^{\prime}+^{\prime}+1=0$

Answer: B

- Watch Video Solution

165. The plane parallel to the lines

$$
\frac{x+2}{3}=\frac{y-2}{-1}=\frac{z+1}{2}
$$

$\frac{x-2}{1}=\frac{y-3}{1}=\frac{y-3}{2}=\frac{z-4}{3} \quad$ and \quad passing
through the point $(4,-1,2)$ is point also through...........
A. $(1,1,1)$
B. $(-1,-1,-1)$
C. $(1,1,-1)$
D. $(-1,-1,1)$

Answer: A

D View Text Solution

166. A point A is on the line
$\vec{r}=(1-3 \mu) \hat{i}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k} . B(3,2,6)$ is
a point of the plane. If the vector $\overline{A B}$ is parallel to the plane $x-4 y+3 z=1$ then the value of μ is
A. $\frac{1}{4}$
B. $\frac{1}{8}$
C. $\frac{1}{2}$
D. $-\frac{1}{4}$

Answer: A

- Watch Video Solution

167. The distance of the point (2,-1,-2) from the line $\frac{x-1}{2}=\frac{y+3}{2}=\frac{z-3}{3}$, measured parallel to the plane $x+2 y+z=4$ is
A. $\sqrt{10}$
B. $\sqrt{20}$
C. $\sqrt{5}$
D. $\sqrt{30}$

Answer: D

- Watch Video Solution

168. Three planes $4 y+6 z=5,2 x+3 y+5 z=5$ and $6 x+5 y+$
$9 z=10$
A. meet in a piont
B. meet in a line
C. makes a triangular prism
D. do not say anythings

Answer: B

- Watch Video Solution

169. A variable plane makes with the co-ordinates plane, tetrahedron of contant volume $64 k^{3}$ Then the locus of the centroid of tetrahedron is the surface.
A. $x y z=6 k^{3}$
B. $x y+y z+z x=6 k^{2}$
C. $x^{2}+y^{2}+z^{2}=8 k^{2}$

D. None of these

Answer: A

D Watch Video Solution

170. If the lines $\frac{2 x-5}{k}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other, then value of k is.
A. -7
B. 14
C. 7
D. 26

- Watch Video Solution

171. If the plane $2 x+3 y+4 z=1$ intersects X-axis, Y-axis
and Z-axis at the points A, B and C repectively, then the centroid of a $\triangle A B C$ is.
A. $\left(\frac{2}{3}, 1, \frac{4}{3}\right)$
B. $(6,9,12)$
C. $\left(\frac{1}{6}, \frac{1}{9}, \frac{1}{12}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$

Answer: C

172. Distance between the two planes $2 x-2 y+z=5$ and $6 x-$ $6 y+3 z=25$ is Units.
A. $\frac{20}{9}$
B. $\frac{10}{9}$
C. $\frac{20}{3}$
D. 10

Answer: B
173. Let P be a plane passing through the points ($2,1,0$), $(4,1,1)$ and ($5,0,1$) and R be any point ($2,1,6$). Then the image of R is the plan P is :
A. $(6,5,2)$
B. $(6,5,-2)$
C. $(4,3,2)$
D. $(3,4,-2)$

Answer: B

- Watch Video Solution

1. Find the direction cosines of a line which makes equal angles with the coordinate axes.
A. $(\pm 1, \pm 1, \pm 1)$
B. $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$
C. $\left(+m \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)$
D. $\left(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}\right)$

Answer:

- Watch Video Solution

2. Find the direction cosines of the line passing through the two points $(-2,4,-5)$ and $(1,2,3)$.
A. $\left(\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{8}{\sqrt{77}}\right)$
в. $\left(\frac{-3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{-8}{\sqrt{77}}\right)$
c. $\left(\frac{3}{\sqrt{77}}, \frac{2}{\sqrt{77}}, \frac{8}{\sqrt{77}}\right)$
D. None to these

Answer:

- Watch Video Solution

3. The foot of perpendicular drawn from the origin to the plane $2 x+3 y+4 z-12=0$ is.
A. $\left(\frac{2}{29}, \frac{3}{29}, \frac{-4}{29}\right)$
B. $\left(\frac{24}{29}, \frac{36}{29}, \frac{48}{29}\right)$
C. $\left(\frac{36}{29}, \frac{24}{29}, \frac{48}{29}\right)$
D. $\left(\frac{24}{29}, \frac{48}{29}, \frac{36}{29}\right)$

Answer:

- Watch Video Solution

4. The plane $2 x+3 y+6 z=15$ makes an angle of measurewith Y -axis.
A. $\sin ^{-1}\left(\frac{3}{7}\right)$
B. $\sin ^{-1}\left(\frac{2}{7}\right)$
C. $\sin ^{-1}\left(-\frac{2}{7}\right)$
D. $\cos ^{-1}\left(\frac{3}{7}\right)$

(D) Watch Video Solution

5. The symmetric from of the equation of the line $x+y-z=1$ and $2 x-3 y+z=2$ is
A. $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$
B. $\frac{x}{2}=\frac{y}{3}=\frac{z-1}{5}$
C. $\frac{x-1}{2}=\frac{y}{3}=\frac{z}{5}$
D. $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$

Answer:

6. A variable plane makes with the co-ordinates plane, tetrahedron of contant volume $64 k^{3}$ Then the locus of the centroid of tetrahedron is the surface.
A. $x y z=6 k^{3}$
B. $x y+y z+z x=6 k^{2}$
C. $x^{2}+y^{2}+z^{2}=8 k^{2}$
D. None to these

Answer:

D Watch Video Solution

7. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 \mathrm{x}+2 \mathrm{y}-11 \mathrm{z}=3$.

- Watch Video Solution

8. Find the distance of the point $(3,-2,1)$ from the plane $2 x-y+2 z+3=0$.

- Watch Video Solution

9. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$
and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.
10. Find the vector and the cartesian equations of the line that passes through the points $(3,-2,-5),(3,-2,6)$.

D Watch Video Solution

11. Find the shortest distance between the lines
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$.

- Watch Video Solution

12. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=$ 5 which is perpendicular to the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=0$.

- Watch Video Solution

13. Find the coordinates of the point where the line
through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z$
$=7$.

- Watch Video Solution

14. Prove that the lines $\mathrm{x}=2 \frac{y-1}{3}=\frac{z-2}{1}$ and $x=\frac{y-1}{1}=\frac{z+1}{3}$ are skew lines.

D Watch Video Solution

15. A line makes the angle α, β, γ and δ with the diagonals of a cube. The $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\ldots$

D Watch Video Solution

16. Find the image of the point $(1,3,4)$ in the plane $2 x-y+z$
$=-3$.
