©゙" doubtnut

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

Sample Paper 4

Exercise

1. What is the electric field inside a conductor ?
2. How does the resistivity of a conductor vary with temperature?

D Watch Video Solution

3. State and explain Gauss's law in magnetism.

(D) Watch Video Solution

4. Mention any three application of eddy currents.

(D) Watch Video Solution

5. Which type of lens is used to correct myopia(short sightedness) ?

(D) Watch Video Solution

6. What is the rest mass of photon?

(D) Watch Video Solution

7. Write three postulates of Bohr. Mention two limitation of Bohr model.

(D) Watch Video Solution

8. Define mean life of a radioactive element.
9. write the symbol of NAND gate .

- Watch Video Solution

10. What is attenuation in communication system ?

- Watch Video Solution

11. Write Coulomb's law in vector form and explain the terms.

(D) Watch Video Solution

12. Mention two limitations of Ohm's law.
13. Write any two differences between diamagnetic and paramaganetic substances.

D Watch Video Solution

14. Current in a coil falls from 5 A to 0 A in 0.1 s , calculate the induced emf in a coil if its self inductance is 4 H .

- Watch Video Solution

15. Give two uses of UV rays.
(D) Watch Video Solution
16. Draw the ray diagram for the formation of image in case of a concave mirror when the object is placed at the centre of curvature of a mirror.

(D) Watch Video Solution

17. Distinguish between extrinsic and intrinsic semiconductors.

- Watch Video Solution

18. Write the block diagram of a transmitter.
19. Derive the relation between electric field and electric potential.

- Watch Video Solution

20. Arrive at the expression for velocity selector using Lorentz force.

- Watch Video Solution

21. Mention any three salient features of Hysteresis loop.
22. Derive the expression for motional emf induced in a conductor moving in a uniform magnetic field.

(D) Watch Video Solution

23. Mention one power loss in transformer.

(D) Watch Video Solution

24. Using Huygen's wave theory of light, show that the angle of incidence is equal to angle of reflection in case of reflection of a plane wavefront by a plane surface.

- Watch Video Solution

25. Write Einstein's photoelectric equation. State clearly how this equation is obtained using the photon picture of electromagnetic radiation.

Write the three salient features observed in photoelectric effect which can be explained using this equation.

- Watch Video Solution

26. Explain the working of a zener diode as a voltage regulator.

- Watch Video Solution

27. Derive an expression for electric field due to an electric dipole at a point on the axial line.
28. Obtain an expression for the equivalent emf and internal resistance of two cells connected in parallel.

D Watch Video Solution

29. Derive the expression for magnetic field at a point on the axis of a circular current loop.

D Watch Video Solution

30. what is interference ? Write the condition for path difference in case of constructive and destructive interference.
31. Obtain an expression for the total energy of an electron in the $n^{\text {th }}$ orbit of hydrogen atom in terms of absolute constants.

- Watch Video Solution

32. What is amplification? With a circuit diagram, explain the working of npn transistor as an amplifier in CE configuration.

- Watch Video Solution

33. Two point charges $5 \times 10^{-8} C$ and $3 \times 10^{-8} C$ are locate 16 m apart. At what points on the line joining the two charges is the electric potential zero?

D Watch Video Solution

34. Determine the current through the galvanometer in the circuit.
$: P=2 \Omega, Q=4 \Omega, R=8 \Omega S=4 \Omega G=10 \Omega, E=5$ and $r=0$.

- Watch Video Solution

35. Obtain the resonant frequency ω_{r} of a series LCR circuit with $\mathrm{L}=2.0 \mathrm{H} . C=32 \mu F$, and $R=10 \Omega$. What is the Q - value of this circuit?

(D) Watch Video Solution

36. An object of size 3.0 cm is placed 14 cm in front of a concave
lens of focal length 21 cm . Describe the image produced by the
lens. What happens if the object is moved further away from the lens?

- Watch Video Solution

37. Consider the fission of ${ }_{92}^{238} U$ by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are ${ }_{58}^{140} \mathrm{Ce}$ and ${ }_{44}^{99} R u$. Calculate Q for this fission process. The relevant atomic and particle masses are $m\left({ }_{92}^{238} U\right)=238.05079 u$
$m\left({ }_{58}^{140} C e\right)=139.90543 u$
$m\left({ }_{44}^{99} R u\right)=98.90594 u$
(D) Watch Video Solution
