びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PHYSICS (KANNADA

ENGLISH)

LIGHT-REFLECTION AND REFRACTION

Topic 1 Refiection Of Light Image Formed By Spherical Mirrors Multiple Choice Questions

1. The image formed by concave mirror
A. is always real
B. is always virtual
C. can be both real and virtual
D. none of these

Answer: C

D View Text Solution
2. The laws of reflection of light are valid for
A. plane mirrors only

B. concave mirrors only

C. convex mirrors only

D. all reflection surfaces

Answer: D

- View Text Solution

Topic 1 Reflection Of Light Image Formed By Spherical Mirrors Match The Column

$\|$1. For a convex lens, v so regative	(i) Convex lens	
2.	For both typer of lenses, u is	(ii) always negative

[^0]
D View Text Solution

Topic 1 Refiection Of Light Image Formed By Spherical Mirrors Very Short Answer Type Questions

1. What is virtual image?

D View Text Solution
2. Define the principal focus of a concave mirror.
3. What do you mean by lateral inversion of the image in mirrors?

D View Text Solution

4. What is the range of wavelengths of the visible light?

5. What makes things visible?

D View Text Solution

6. What are the two factors on which the lateral displacement of an emergent ray from a glass slab depends?

- View Text Solution

7. What is the magnification of the images formed by plane mirror and why?

D View Text Solution

8. What is the minimum distance between an object an its real image in case of a concave mirror?

- View Text Solution

9. When a light ray passes obliquely through
the atmosphere in an upward direction, how does its path generally change?

D View Text Solution

10. Expali why a ray of light passing through
the centre of curvature of a concave mirror, gets reflected along the same path.

D View Text Solution

11. Why are convex mirrors preferred over plane mirrors as rear view mirrors?

D View Text Solution

12. We prefer a convex as a rear view mirror in
vehicles. Why?

D View Text Solution
13. Why does the bottom of a tank or a pond containing water appear to be raised?

D View Text Solution
14. Name the mirror that can give an erect and enlarged image of an object.

D View Text Solution

15. What are the vaules of angle of incidence I and angle of reflection r for a normal incidence?

D View Text Solution

16. Does the speed of light increases or decreases in a medium in comparison to its
value in vacuum? Give an illustrative example.
17. Find the focal length of a convex mirror whose radius of curvature is 32 cm .

(D) View Text Solution

18. The radius of curvature of a spherical mirror is 20 cm . What is its focal length?

D View Text Solution

Topic 1 Reflection Of Light Image Formed By Spherical Mirrors Short Answer Type Questions I

1. List four characteristics of the image formed by plane mirrors.

D View Text Solution

2. List two properties of the images formed by convex mirrors. Draw ray diagram in support of your answer.

D Watch Video Solution

3. List four specific characteristic of the images

 of the objects formed by convex mirrors.
- Watch Video Solution

4. Differentiate is real image from a virtual image giving two points of difference.

D Watch Video Solution
5. You are given a concave mirror, plane mirror anda convex mirror. How can you distinguish between them by just looking your face in them. State the common nature of the image that you see in all of them.

- Watch Video Solution

6. A ray of light travelling in air enters obliquely into water. Does the light ray bend
towards the normal or away from the normal?

Why?

D View Text Solution

7. State two positions in which a concave mirror produces a magnified of a given object.

List two differences between the two images.

OR

List two possible ways in which a concave mirror can produce a magnified image of an
object placed in front of it. State the difference if any between these two images.

D Watch Video Solution

8. A ray of light is incident on a convex mirror as shown. Redraw the diagram and complete
the path of this ray after reflection from the mirror. Mark angle of incidence and angle of
reflection on it.

D Watch Video Solution

9. The linear magnification produced by a spherical mirror is +3 . Analyse this vale and state the (i) type of mirror and (ii) Position of the object with respect to the pole of the
mirror. Draw ray diagram to show the formation of image in this case.

D Watch Video Solution

10. $A B$ and $C D$ two spherical mirrors, forms parts of a hollow sherical ball with its centre at O as shown in the diagram. If $\operatorname{arc} A B=\frac{1}{2}$ arc CD, what is the ratio of their focal lengths?

State which of the two mirrors will always from virtual image of an object placed in front
of it and why?

D View Text Solution

11. Name the type of mirrors used in the design of solar furnaces. Explain how hgih temperature is achieved by this device.
12. The magnification produced by a spherical mirror is -3". List four informations you obtain from this statement about the mirror/image.

- View Text Solution

13. Draw a ray diagram to show the path of the reflected ray corresponding to an incident ray of light parallel to the principal axis of a
convex mirror and show the angle of incidence and angle of relection on it.

D View Text Solution

14. The imasge formed by a concave mirror is observed to be virtual, erect and larger than
the object where should be the position of the object relative to the mirror? Draw ray diagram to justify your answer.

D View Text Solution

15. Draw a ray diagram to show the path of the reflected ray corresponding to an incident ray which is directed parallel to the principal axis of a concave mirror. Mark on it the angle of incidence and the angle of reflection.

D View Text Solution

16. A concave mirror of focal length f can form
a magnified erect as well as an inverted image
of an object placed in front of it. Justify this
statement starting the position of the object
with respect to the mirror in each case for obtaining these images.

D View Text Solution

17. An object is placed at a distance of 20 cm
from a convex mirror of focal length 15 cm .

Find the position and nature of the image.

D View Text Solution
18. The radius of curvature of a concave mirror
is 50 cm . Where should an object be placed
from the mirror so as to form its image at ifinity? Justify your answer.

D View Text Solution

19. An object is placed at a distance of 20 cm in
front of convex mirror of radius of curvature

30 cm . Find the position and nature of the image.
20. An object is kept at a distance of 5 cm in
front of a convex mirror of focal length 10 cm .

Calculate the position and nature of the image
formed.

- View Text Solution

Topic 1 Reflection Of Light Image Formed By
Spherical Mirrors Short Answer Type Questions li

1. Mention the types of mirrors used as (i) rear view mirrors (ii) shaving mirrors. List two reasons to justify your answer in each case.

D View Text Solution

2. (i) Name the spherical mirror used as:
(a) Shaving mirror
(b) Rear view mirror in vehicles
(c) Reflector in search lights
(ii) Write any three differences between a real a virtual image.

D View Text Solution

3. If the image formed by mirror for all positions of the object placed in front of its always virtual and diminished, state the type of the mirror. Draw a ray diagram in support of your answer. Where are such mirrors commonly used and why?
4. Draw the following diagram in which a ray of light is incident on a coincave/convex mirror, on your answer sheet. Show the path of this ray, after reflection in each case.

D View Text Solution

5. The image of an object formed by a mirror is real, inverted and is of magnification -1. If the image is at a distance of 40 cm from the
mirror, where is the object placed? Where would the image be if the object is moved 20 cm towards the mirror? State reason and also draw ray diagram for the new position of the object to justify your answer.

D View Text Solution

6. A student wants of project the image of a candle flame on a screen 80 cm in front of a mirror by keeping the candle flame at a distance of 20 cm from its pole.
(i) Which type of mirror should the student use?
(ii) Find the magnification of the image produced.
(iii) Find the distance between the object and its image.
(iv) Draw a ray diagram to show the image formation in this case and mark the distance between the object and its image.

D View Text Solution

7. Draw a ray diagram to show the path of the reflected ray in each of the following cases. A ray of light incident on a convex mirror.
(i) Strikes at its pole making an angle θ from the principal axis.
(ii) Is directed towards its principal focus.
(iii) Is parallel to its priciple axis.

- View Text Solution

8. To construct ray diagrams, two rays of light are generally so chosen that it is easy to determine their directions after reflection
from a mirror. Choose two such rays and state
the path/direction of these ray other reflection from a concave mirror. Use these two rays to find the postion and nature of the image of an object placed at a distance of 8 cm from concave mirror of focal length 12 cm .

D View Text Solution

9. If the image formed by a mirror for all positions of the object placed in front of it is alwasys erect and diminished, what type of mirror is it? Draw a ray diagram to justify your answer. Where and why do we generaly usethis type of mirror?

D View Text Solution

10. A student wants to project the image of a candle flame on a screen 60 cm in front of a mirror by keeping the flame at a distance of 15
cm from its pole.
(i) Write the type of mirror he should use.
(ii) Find the linear magnification of the image produced.
(iii) What is the distance between the object and its image?
(iv) Draw a ray diagram to show the image formation in this case?

D View Text Solution
11. A student wants to project the image of a candle flame on a screen 48 cm in front of a mirror by keeping the flame at a distance of 12 cm from its pole.
(i) Suggest the type of mirror he should use.
(ii) Find the linear magnification of the image produced.
(iii) How far is the image from its object?
(iv) Draw ray diagram to show the image formation in this case.
12. A spherical mirror produces an image of manification -1 on a screen placed at distance of 50 cm from the mirror.
(i) Write the type of mirror.
(ii) Find the distance of the image from the object.
(iii) What is the focal length of the mirror?
(iv) Draw the ray diagram to show the image
formation in this case.
13. Rohit wants to have an erect image of an object, using a converging mirro of focal length 40 cm .
(i) Specify the range of distance where the object can be placed in front of mirror. Give reason for your answer.
(ii) Will the image be bigger or smaller than the object?
(iii) Draw a ray diagram to show the image formation in this case.

- View Text Solution

14. (i) A concave mirror produces three times enlarged image of an object placed at 10 cm in front iof it. Calculate the focal length of the mirror.
(ii) Show the formation of the image with the help of a ray diagram when object is placed 6 cm away from a pole of a convex mirror.

D View Text Solution

Topic 1 Refiection Of Light Image Formed By Spherical Mirrors Long Answer Type Questions li

1. a. Define the following terms in the context of spherical mirrors:
(i) Pole (ii) Centre of curvature.
(iii) Principal axis (iv) Principal focus
b. Draw ray diagrams to show the principle focus of a:
(i) Cocave mirror
(ii) convex mirror
(c) Consider the following diagramin which M
is a mirror and P is an object and Q is its
magnified image formed by the mirror.
R

State the type of the mirror M and one characteristic property of the image Q .

D View Text Solution

2. Suppose you have three concave mirrors A, B and C of focal lengths of $10 \mathrm{~cm}, 15 \mathrm{~cm}$ and 20
cm . For each concave mirror you perform the experiment of image formation for three values of object distance of $10 \mathrm{~cm}, 20 \mathrm{~cm}$ and 30 cm . Giving reason answer the following.
(i) For the three obuject distances, identify the
mirror mirrors which wil form form an image of magnification -1.
(ii) Out of the three mirrors identify the mirror which would be preferred to be used for shaving puposes/ makeup.
(iii) For the mirror B draw ray diagram for image formation for object distances 10 cm and 20 cm .

D View Text Solution

3. It is desired to obtain an erect image of an
object, using concave mirror of focal length of
12 cm .
(i) What should be the range of the distance of an object palced in front of the mirror?
(ii) will the image be smaller or larger than the object. Draw ray diagram to show the formation of image in this case.
(iii) Where will the image of this object be, if it is placed 24 cm in front of the mirror? Draw ray diagram for this situation also to justify your answer.

Show the position of pole, principle focus and the centre of curvature in the above ray diagrams.

D View Text Solution

4. A student has focused the image of a candle
flame on a white screen using a a concave mirror. The situation of as given below:

Length of the flame $=1.5 \mathrm{~cm}$
focal length of the mirror $=12 \mathrm{~cm}$

Distance of flame from the mirror=18 cm

If the flame is perpendicular to the principal axis of the mirror, then calculate the following:
(i) Distance of the image from the mirror
(ii) Length of the image

If the distance between the mirror and the
flame is reduced to 10 cm , then what would be observed on the screen? Draw ray diagram to justify your answer for this situation.

D View Text Solution

5. A student wants of project the image of a candle flame on the walls of the school laboratory by using a mirror.
(i) Which type of mirror should he use and why?
(ii) At what distance, in terms of focal length f of the mirror, should he place the candle flame to get the magnified image on the wall?
(iii) Draw a ray diagram to show the formation of the image in this case.
(iv) Can he use this mirror to project a diminished image of the candle flame on the
same wall? State how if your answer is yes why not if your answer is no.

D View Text Solution

6. (i) 4-5 needle is palced 12 cm away from a convex mirror of focal length 15 cm . Give the
location of the image and the magnification.

Describe what happens as the needle is moved farther from the mirror.
(ii) What kind of the mirror is used in a solar furnace? Give reason for using this mirror.
(iii) One half of a convex lens is covered with a black paper. Will this lens produce a complete image of the object? Justify your answer.

D View Text Solution

7. (i) An object is placed at a distance of 60 cm
from a convex mirror where the magnitication
produced is $\frac{1}{2}$. Where should the object be placed to get a magnification of $\frac{1}{3}$?
(ii) A small electric lamp is placed at the focus of a convex lens. State the nature of beam of
light produced by the lens. Draw a diagram to show this.

D View Text Solution

8. Draw a ray diagram in each of the following cases to show the position and nature of image formed when the object is placed:
(i) Between pole and focus of a concave mirror.
(ii) Between focus and centre of curvature of a concave mirror.
(iii) At the centre of curvature of a concave
mirror.
(iv) Between infinity and pole of a convex mirror.

D View Text Solution

Topic 2 Refraction Lenses Power Of Lens Multiple Choice Questions

1. Red coloured light is used in traffic signals
to indicate the vehicles to stop, beasuse compared to other colours red light
A. has high frequency
B. has less wavelength
C. scatters more
D. scatters less

Answer: D

D View Text Solution

Topic 2 Refraction Lenses Power Of Lens Very
 Short Answer Type Questions

1. The refractive index of diamond is 2.42. What
is the meaning of this statement?

D View Text Solution
2. What is meant by power of a lens?

D View Text Solution

3. Define angle of incidence and angle of refraction.

- Watch Video Solution

4. What is the unit of refractive index?

- View Text Solution

5. Define 1 dioptre of power of a lens.

- View Text Solution

6. State a condition for no refraction of light entering from one medium to another.

D View Text Solution

7. What is the change in image observed as
the object is moved from infinity towards the concave lens?

- Watch Video Solution

8. Why is refractive index of atmosphere different at different altitudes?

D View Text Solution

9. How does the size of the image change as
the object is brought closer from infinity towards the convex lens?

D View Text Solution
10. Do all cartesian sign conventions are applicable in each case of spherical lens as in mirrors?

D View Text Solution
11. Why does light change its path as the medium changes during the transit?

D View Text Solution
12. Arrange the following common substances
in the increasing order of refractive indices, ice, Kerosene, Glass, Diamond, Alcohol, Water.

D View Text Solution

13. The object distance of a lens is -30 cm and image distance is -10 cm . Find the magnification of the lens. With the help of this, decide whether the size of the image is smaller or bigger than the size of the object.

Topic 2 Refraction Lenses Power Of Lens Short Answer Type Questions I

1. What is meant by power of a lens? What does its sign (+ve or -ve) indicate? State its S.I.
unit. How is this unit related to focal lengths of a lens?

D View Text Solution

2. What is meant by power of a lens? Define its

SI unit.

- Watch Video Solution

3. State two laws of refraction.

D Watch Video Solution

4. State four characteristics of the image
formed by plane mirror.

- View Text Solution

5. Mention the kind of lens that can form:
(i) Real, inverted and magnified image
(ii) Virtual, erect and magnified image
(iii) Real, inverted and diminished image
(iv) Virutal, erect and diminished image.

- Watch Video Solution

6. Brielf describe an activity to find approximate focal length of a convex lens

D Watch Video Solution

7. What is meant by the power of a lens? Give its SI unit. When two or more lenses are placed in contact what will be their combined power?

D View Text Solution
8. The refractive indices of glass and water with respect to air are $3 / 2$ and $4 / 3$ respectively. If speed of light in glass is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the speed of light in water.

D View Text Solution

9. The absolute refractive indices of glass and
water are $4 / 3$ and $3 / 2$ respectively. If the speed of light in glass is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ calculate the speed of light in (i) vacuum(ii) water.
10. A ray of light incident on a rectangular glass slab immersed in any medium emerges parallel to itself. Draw diagram to justify the statement.

D View Text Solution

11. A ray of light falls normally on the surface of a transparent glass slab. Draw a ray
diagram to show its path and also mark angle of incidence and angle of emergence.

D View Text Solution

12. Light enters from air into glass plate which has refractive indeed 1.5. Calculate the speed of light in glass (velocity of light in air is $\left.3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
13. Draw the ray diagram for the formation of image by a concave lens when the object is placed in between infinity and optical centre of the lens. State the nature of the image formed.

D View Text Solution

14. For the same of incidence in media P, Q and R , the angle of refractive are $45^{\circ}, 35^{\circ}$ and 15° respectively. In which medium will the velocity
of light be minimum? Give reason for your answer.

D Watch Video Solution

15. The refractive index of a dense flint glass is
1.65 and for alcohol it is 1.36 with respect to air. Find the refractive index of dense flint glass with respect to alcohol.

D Watch Video Solution

16. Define absolute refractive index of a medium. Light enters from air to water having refractive index $\frac{4}{3}$. Find the absolute refractive index of a medium if the speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

17. A convex lens of focal length 10 cm is palced at a distance of 12 cm from a wall.

Calculate the distance from the lens where an
object can be placed so as to form its distinct real image on the wall.

- Watch Video Solution

Topic 2 Refraction Lenses Power Of Lens Short Answer Type Questions li

1. State the laws of refraction of light. If the speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, find
the absolute refractive index of a medium in
which light travels with a speed of 1.4×10^{8} ms?

- Watch Video Solution

2. State the laws of refraction of light. If the speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ find
the speed of light in a medium of absolue refractive index 1.5 .
3. (i) Define the term magnificatio. Write the
formula for magnification of mirror explanning
the symbols used in the formula.
(ii) The magnification produced by a convex
lens is -2 . What is meant by this statement and also write the information regarding image obtained from it.

- Watch Video Solution

4. Define the power of lens. The power of lens is +2.0 D .
(i) Find the focal of lens in m.
(ii) Name the kind of this lens. Explain with the
help of figure whether this lens would converge or divere a beam of lens.

D Watch Video Solution

5. Draw a ray diagram to show that path of the refracted ray ineach of the following cases:

A ray of light incident on a concave lens is
(i) passing through its optical centre.
(ii) parallel to its principal axis.
(iii) directed towards its principal focus.

D View Text Solution

6. (i) Draw a ray diagram to show the refraction of light through a glass slab and mark angle of refraction and the lateral shift suffered by the ray of light while passing through the slab.
(ii) If the refractive index of glass for light going grom air to glass is $3 / 2$, find the refractive index of air for light going from glass to air.

D Watch Video Solution

7. The image formed by a spherical mirror is
real inverted and is of magnification -2. If the image is at a distance of 30 cm from the mirror, where is the object placed? Find the focal length of the mirror. List two
characteristics of the image formed if the object is moved 10 cm towards the mirror.

D View Text Solution

8. If the image formed by a lens for all position of the object placed in front of it is always virtual, erect and diminished, state the type of
the lens. Draw a ray diagram in support of your answer. If the numerical value of focal length of such a lens is 20 cm find its power is new cartesian sign conventions.
9. The image of an object formed by a lens is of magnification -1 . If the distance between the object and its image is 60 cm , what is the focal length of the lens? If the object is moved 20 cm towards the lens, where would the image be formed? State reason and also draw a ray diagram in support of your answer.

- View Text Solution

10. An object of height 5 cm is placed perpendicular to the principal axis of a concave lens of length 10 cm . If the distance of the object from the optical centre of the lens
is 20 cm , determine the position, nature and
size of the image formed using the lens formula.
11. The image of candle flame placed at a distance of 40 cm from a spherical lens is
formed on a screen placed on the other side of the lens at a distance of 40 cm from the
lens. Identify the type of lens and write its
focal length. What will be the nature of the image formed if the candle flame nature of the
imge formed if the candle flame is shifted 25
cm towards the lens? Draw ray diagram to justify.
12. An object of height 6 cm is placed perpendicular to the principal axis of a concave lens of focal length 5 cm . Use lens
formula to determine the position, size and nature of the image if the distance of the object from the lens is 10 cm .

D View Text Solution

13. Calculate the distance at which an object
should be placed in front of a convex lens of
focal length 100 cm to obtain an erect image of double its size.

D Watch Video Solution

14. An image $\frac{2}{3}$ of the size of the object is formed by a convex lens at a distance of 12 cm from it. Find the focal length of the lens.

D View Text Solution
15. a. An object is kept at a distance of 18 cm ,
$20 \mathrm{~cm}, 22 \mathrm{~cm}$ and 30 cm , from a lens of power +

5D.
(i) In which case or cases would you get a magnified image?
(ii) Which of the magnified image can we get on a screen?
(b) List two widely used applications of a convex lens.

D View Text Solution
16. (i) Water has a refractive index 1.33 and alcohol has refractive index 1.36 . Which of the medium is optically denser? Give reason for your answer. Draw a ray diagram to show the path of a ray of light passing obliquely from water to alcohol.
(ii) The absolute refractive index of diamond is
2.42 and the absolute refractive index of glass
is 1.50 . Find the refractive index of diamond with respect to glass.

D View Text Solution

17. A glass sla made of a material of refractive index n_{1} is kept in a medium of refractive index n_{2}. A light ray is incident on the slab.

Complete the path of rays of light emerging from theglass slab, if :
(i) $n_{1}>n_{2}$, (ii) $n_{1}=n_{2}{ }^{\prime}$ (iii) $n_{1}<n_{2}$

D View Text Solution

18. a. Two lenses have power of (i) $+2 d$ (ii) -4D.

What is the nature and focal length of each
lens?
b. An object is kept at a distance of 100 cm from lens of power -4D. Calculate the image distance.

D View Text Solution

19. (i) A ray of light falls normally on a face of a
glass slab. What are the values of angle of incidence and angle of refraction of this ray?
(ii) Light enters from air to a medium X . Its speed in medium X becomes $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Find the refractive index of medium X .

D View Text Solution

20. Where should an object be placed from a converging lens of focal length 20 cm , so as to obtain a real magnified image.

D View Text Solution

21. A concave lens has a focal length of 15 cm .

At what distance should the object from the
lens be placed so that if forms an image at 10 cm from the lens? Also, find the magnification produced by the lens.

D View Text Solution

22. A concave lens made of a material of refractive index n_{1} is kept in a medium of refractive index n_{2}. A parallel beam of light is
incident on the lens. Trace the path of rays of
light parallel to the principal axis incident on
the concave lens after refraction when:
(i) $n_{1}>n_{2}$ (ii) $n_{1}=n_{2}$

Give reason for each.

D Watch Video Solution

23. A student focused the image of a candle
flame on a white screen by placing the flame at
various distances from a convex lens. He noted
his observation as:
a. From the above table, find the focal length of lens without using lens formula. c. In which case, the size of the object and image will be same? Give reason for your answer.

D View Text Solution

Topic 2 Refraction Lenses Power Of Lens Long Answer Type Questions li

1. (i) Define optical centre of spherical lens.
(ii) A divergent lens has a focal length of 20
cm. At what distance should an object of height 4 cm from the optical centre of the lens
be placed so that its image is formed 10 cm away from the lens. Find the size of the image also.
(iii) Draw a ray diagram to show the formation of image in above situation.

D View Text Solution

2. (i) Define focal length of a spherical lens.
(ii) A divergent lens has a focal length of 30
cm . At what distance should an object of height 5 cm from the optical centre of the lens be placed so that its image is formed 15 cm away from the lens? Find the size of the image also.
(iii) Draw a ray diagram to show the formation of image in the above situation.

- View Text Solution

3. a. Define ocal length of a divergent lens.
b. A divergetn lens of focal length 30 cm forms
the image of an object of size 6 cm on the same side as the object at a distance of 15 cm
from its optical centre. Use lens formula to determine the distance of the object the lens and the size of the image formed.
4. State the laws of refraction of light. Explain
the term absolute refractive index of a medium and write an expression to relate it with the speed of light in vacuum.
b. The absolute refractive indices of two media
A and B are 2.0 and 1.5 respectively. If the speed of light in medium B is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$, calculate the speed of light in
(i) vacuum
(ii) medium A

- View Text Solution

5. A convex lens can form a magnified erect as
well as magnified inverted image of an object
placed in fron of it. Draw ray diagram to justify
thisby statement stating the position of the object with respect to the lens in each case.

An object of height 4 cm is placed at a distance of 20 cm from a concave lens of focal length 10 cm . Use lens formula to determine the position of the image formed.
6. a. Explain the following terms related to spherical lenses:
(i) Optical centre (ii)Centre of curvature

Aperture
(iv) Principal focus
b. A converging lens so that it forms an image at 48 cm on the other side of the lens.

D View Text Solution

7. (i) Define power of a lens. Write its SI unit.
(ii) You are provided with two convex lenses of
focal length 15 cm and 25 cm , respectively. Which of the two is of larger power? Give reason for you answer.
(iii) A 20 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 10 cm . The distance of the object the lens is 15 cm . Find the nature, position and size of the image. Also find its magnification.

D View Text Solution

8. What is meant by the power of a lens? What is its S.I. unit? Name the type of lens whose power is positive.

The image of an object formed by a lens is
real, inverted and of the same size as the object. If the image is at a distance of 40 cm
from the lens, what is the nature and power of
the lens? Draw ray diagram to justify your answer.
9. (i) Draw a ray diagram to show the formation of image by a convex lens when an object is placed in fron of the lens between its optical centre and principal focus.
(ii) In the above ray diagram mark the object
distance (u) and the image distance (v) with
their proper signs (+ve or -ve as per the new

Cartesian sign convention) and state how these distances are related to the focal length
(f) of the convex lens in this case.
(iii) Find the power of a convex lens which
forms a real, and inverted image of
magnification -1 of an object placed at distance of 20 cm from its optical centre.

D View Text Solution

10. (i) Draw a ray diagram to show the formation of image by a concave lens when an object is placed in front of it.
(ii) In the above diagram mark the object distance (u) and the image distance (v) with
their proper signs (+ve-veas per the new

Cartesian sign convention) and state how
these distances are related to the focal length
(f) of the concave lens in this case.
(iii) Find the nature and power of a lens which forms a real and inverted image of magnification -1 at a distance of 40 cm from its optical centre.

D View Text Solution

11. At what distance from a concave lens of focal length 20 cm , a 6 cm tall object be placed so as to obtain its image at 15 cm from the
lens? Also calculate the size of the image formed.

Draw a ray diagram to justify your answer for the above situation and label it.

D View Text Solution

12. A student wants to project the image of a candle flame on the walls of school laboratory by using a lens:
(i) Which type of lens should he use and why?
(ii) At what distance in terms of focal length F
of the lens should he place the candle flame so
as to get (i) a magnified, and (ii) a diminished image respectively on the wall?
(iii) Draw ray diagram to show the formation of the image in each case.

D View Text Solution

13. (i) Redraw the diagram given below in your answer book and complete the path of the ray.
(ii) What is the difference between virtual
images produced by concave, plane and convex mirrors?
(iii) What does the negative sign in the value of magnification produced by a mirror indicates about a image?

D View Text Solution

14. (i) Two convex lenses A and B have powers
P_{1} and P_{2}, respectively and P_{2} is greater than
P_{1}. Draw a ray diagram for each lens to show which one will be more converging. Give
reason for your answer.
(ii) A 2.0 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 10 cm . The distance of the object from the lens is 15 cm . Find the nature, position and size of the image. Also find its magnification.

D View Text Solution

15. A very thin narrow beam of white light is made incident on three glass objects shown below. Comment on the nature and behavior
of the emergent beam in all the three cases.

There is a similarity between two of the emergent beams. Identify the two.

When light enters from air to glass, the angles
of incidence and refraction in air and glass are
45° and 30°, respectively. Find the refractive index of glass.
(Given that $\sin 45^{\circ}=\frac{1}{\sqrt{2}}, \sin 30^{\circ}=\frac{1}{2}$)

D View Text Solution

1. Define the principal focus of a convace mirror.

D View Text Solution
2. The radius of curvature of a spherical mirror is 20 cm . What is the focal length?
3. Name a mirror that ca give an erect and enlarged image of an object.

D View Text Solution

4. Why do we prefer a convex mirror as a rear view mirror in vehicles?
5. Find the focal length of a convex mirror whose radius of curvature is 32 cm .

D View Text Solution

6. A concave mirror produces three times magnified (enlarged) real image of an object placed at 10 cm in fron of it. Where is the image located?
7. A ray of light travelling in air enters obliquely into water. Does the light ray bend towards the normal or away from the normal? Why?

D View Text Solution

8. Light enters from air to glass having refractive index 1.50. What is the speed of light in the glass? The speed of the light in vacuum is $3 \times 10^{8} \mathrm{~ms}^{-1}$.
9. Find out, from Table 10.3, the medium having highest optical density. Also find the medium with lowest optical density.

D View Text Solution

10. You are given kerosene, turpentine and water. In which of these does the light travel
fastest? Use the information given in Table 10.3.

View Text Solution

11. The refractive index of diamond is 2.42 .

What is the meaning of this statement?

D View Text Solution

12. Define 1 dioptre of power of a lens.

D View Text Solution
13. A convex lens forms a real and inverted
image of a needle at a distance of 50 cm from
it. Where is the needle placed in fron of the
convex lens if the image is equal to the size of
the object? Also, find the power of the lens.

- View Text Solution

Ncert Corner Intext Questions

1. Find the power of a concave lens of focal length 2 m .

D View Text Solution

Ncert Corner Textbook Exercises

1. Which one of the following materials cannot be used ot make a lens?
A. water
B. glass
C. plastic
D. clay

Answer: D

D View Text Solution

2. The image formed by a concave mirror is observed to be virtual, erect andlarger thant the object. Where should be the position of the object?
A. Between the principal focus and the centre of curvature
B. At the centre of curvature
C. Beyond the centre of curvature
D. between thepole of the mirror and its principal focus.

Answer: D

D View Text Solution
3. Where should be an object be placed in
front of a convex lens to get a real image of the size of the object?
A. At the principal focus of the lens
B. At twice of focal length
C. At infinity
D. Between the optical centre of the lens
and its principal focus.

Answer: B
4. A spherical mirror and a thin spherical lens
have each of a focal length of -15 cm . The mirror and the lens are likely to be
A. both concave
B. both convex
C. the mirror is concave and the lens is
convex.

D. the mirror of the convex, but the lens is

concave.

Answer: A

D View Text Solution

5. No matter how far you stand from a mirror,
your image appears erect. The mirror is likely to be
A. plane

B. only concave

C. convex

D. either plane or convex

Answer: D

D View Text Solution

6. Which of the following lenses would you prefer to use while reading small letters found in a dictionary?
A. A convex lens of focal length 50 cm
B. A concave lens of focal length 50 cm
C. A convex lens of focal length 5 cm
D. A concave lens of focal length 5 cm .

Answer: C

D View Text Solution

7. We wish to obtain an erect image of an object, using a concave mirror of focal length

15 cm . What should be the rante of distance of
the object from the mirror? What is the of the image? Is the image larger or smaller than the object? Draw a ra diagram to show the image formtion in this case.

D View Text Solution

8. An object 5 cm in length is held 25 cm away
from a converging lens of focal length 10 cm .

Draw the ray diagram and find the position, size and nature of the image formed.

D View Text Solution

9. A concave lens of focal length 15 cm forms
an image 10 cm forms the lens. How far is the object placed from the lens? Draw the ray diagram.

D View Text Solution

10. An object is placed at a distance of 10 cm
from a convex mirror of focal length 15 cm .

Find the position and nature of image.
11. The magnification produced by a plane mirror is +1 . What does this mean?

D View Text Solution

12. An object 5.0 cm in length is placed at a distance of 20 cm in front of a convex mirror of radius of curgature 30 cm . Find the position of the image, its nature and size.
13. An object of size 7.0 cm is placed at 27 cm in front of a concave mirror of focal length 18 cm . At what distance from the mirror should a screen be placed, so that a sharp focussed image can be obtained? Find the size and the nature of the image.

D View Text Solution

14. Find the focal leght of a lens of power -2.0D. What type of lens of this?
15. A doctor has prescribed a corrective lens of power +1.5 D. Find the focal length of the lens. Is the prescribed lens diverging or converging?

- View Text Solution

[^0]: 3. Power is positive for (iii) power
 4. Dhoptre is the unit of (iv) for virtual image
