©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - OSWAAL PUBLICATION PHYSICS (KANNADA ENGLISH)

SOLVED PAPER (II PUC MARCH-2016)

Part A

1. State Faraday's law of electromagnetic induction.
2. Whrite the expression for displacement current or Maxwell's displacement current.

- Watch Video Solution

3. What is an electric dipole ?
4. Draw DC bias condition for a PNP transistor.

D Watch Video Solution

5. How can the resolving power of a telescope be increased?

D Watch Video Solution

6. In the following nuclear reaction, identify
the particle X: $n \rightarrow p+e^{-}+X$.

- Watch Video Solution

7. Write the unit of intensity of magnetisation.

- Watch Video Solution

8. How is the power of lens related to its focal
length ?

- Watch Video Solution

9. What is a cyclotron?

D Watch Video Solution

10. What is the wavelength range of X-rays ?

- Watch Video Solution

Part B

1. The current in coil of self inductance 5 mH
changes from 2.5 A to 2.0 A is 0.01 second.

Calculate the value of self induced e.m.f.

D Watch Video Solution

2. Give the expression for magnetic field due to a toroid.

- Watch Video Solution

3. Write the difference between isotope and isobars.

D Watch Video Solution

4. Draw the variation of magnetic field(B) with magnetic intensity(H) when ferromagnetic material is subjected to a cycle of magnetisation.

5. Mention any three application of polaroids

D Watch Video Solution

6. Write the truth table of NAND gate.

D Watch Video Solution
7. Mention and five properties of electric field lines.
8. What is 'myopia' ? How to rectify it?

- Watch Video Solution

Part C

1. What is a transformer ? Mention two
sources of energy loss in a transformer
(Watch Video Solution
2. What are the characteristics of nuclear forces?

D Watch Video Solution
3. Derive the expression for energy stored in a charged capacitor.

D Watch Video Solution

4. Draw a neat labelled diagram of a transistor amplifier in a CE mode.

5. Mention the types of transmission media.

- Watch Video Solution

6. Arrive at an expression for drift velocity.

- Watch Video Solution

7. Describe expriments to demonstrate electromagnetic induction.

D Watch Video Solution
8. Write any five properites of ferromagnetic materials

- Watch Video Solution

1. Deduce the condition for balance of a wheatstone's bridge using Kirchoffs rules .

- Watch Video Solution

2. Obtain an expression for the force between
two straight parallel conductor carrying
current. Hence define ampere.

- Watch Video Solution

3. Write the expression for electric field at a point on the axis of a short electric dipole.

D Watch Video Solution

4. Write any three experimental observations of photoelectric effect
5. What is a rectifier ? With suitable circuit describe the action of a full wave rectifier by drawing input and output waveforms.

D Watch Video Solution

6. Derive the expression for effective focal
length of two thin lenses kept in contact.

D Watch Video Solution

7. In Young's double slit experiment, fringes of certain width are produced on the screen kept at a certain distance from the slits. When the screen is moved away from the slits by 0.1 m , fringe width increases by $6 \times 10^{-5} \mathrm{~m}$. The separation between the slits is 1 mm . calculate the wavelength of the light used.

- Watch Video Solution

8. When two capacitors are connected in series and connected across 4 kV line, the energy stored in the system is 8 J . the same capacitors, if connected in parallel across the same line, the energy stored in 36 J . find the individual capacitances.

D Watch Video Solution

9. calculate the longest wavelength in Balmer series and the series limit . (Given
$R=1.097 \times 10^{7} m^{-1}$)

- Watch Video Solution

10. Calculate the resonent frequency of Q^{-}
factor (Quality factor) of a series L-C-R circuit containing a pure inductor of inductance 4 H , capacitor of capacitance $27 \mu F$ and resister of resistance 8.4Ω.

D Watch Video Solution

11. (a) Three resistors of resistance
$2 \Omega, 3 \Omega$ and 4Ω are combined in series. What
is the total resistance of the combination?
(b) It this combination is connected to a battery of emf 10 V and negligible internal resistance, obtain the potential drop across each resistor.

- Watch Video Solution

