©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY (HINGLISH)

MODEL TEST PAPTER

Mcqs

1. 10 g atoms of an α-active radioactive isotope are disintegrating in a sealed container. In one hour, helium gas collected at STP is $11.2 \mathrm{~cm}^{3}$. The half-life of the radioactive isotope is
A. 138.6 hr
B. 1386 hr
C. 13860 hr
D. 138600 hr

Answer: C

- View Text Solution

2. In a fcc lattice, atom A occupies the corner positions and atom B occupies the face centred position. If one atom of B is missing from one of the face centred points, the formula of the compound is
A. $A_{2} B$
B. $A B_{2}$
C. $A_{2} B_{3}$
D. $A_{2} B_{5}$

D View Text Solution

3. Which of the following equations depicts reducing nature of

$\mathrm{H}_{2} \mathrm{O}_{2}$?

A.

$$
2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+2 \mathrm{H}_{2} \mathrm{O}
$$

B. $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Mn}^{4+}+2 \mathrm{OH}^{-}$
D. $\mathrm{PbS}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: B

4. Which of the following statements are not correctly associated with $S_{N} 1$ reaction?
I. Rearrangement is possible.
II. Rate is affected by solvent polarity.
III. The strength of the nucleophile is important in rate determining step.
IV. The reactivity order is : tertiary $>$ secondary $>$ primary
V. Proceeds with complete inversion of configuration.
A. III, V only
B. II,III, V only
C. IV and V only
D. III only

Answer: A
5. In a compound $A_{x} B_{y}$,
A. number of moles of $A=$ number of moles of $B=$ number of moles of $A_{x} B_{y}$
B. eq. of $\mathrm{A}=$ eq. of $\mathrm{B}=$ eq. of $A_{x} B_{y}$
C. $y x$ number of moles of $A=y x$ number of moles of $B=(x+y) x$ number of moles of $A_{x} B_{y}$
D. $\mathrm{y} x$ number of moles of $A=y \mathrm{x}$ number of moles of B

Answer: B

6. E° values of some redox couples are given below. On the basis of these values choose the correct option.
E° values : $B r_{2}\left|B r^{-}=+1.90, A g^{+}\right| A g_{(s)}=+0.80$
$C u^{2+}\left|C u_{(s)}=+0.34, I_{2(s)}\right| I^{-}=+0.54$
A. Cu will reduce $B r^{-}$
B. Cu will reduce Ag.
C. Cu will reduce l^{-}.
D. Cu will reduce $B r_{2}$.

Answer: D

D View Text Solution

7. The order of reactivity of following alkyl halides towards $S_{N} 1$ reaction is
(i) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$, (ii) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHBr}$, (iii) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$, (iv) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr},(\mathrm{v}) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
A. $(v)>(i v)>(i)>(i i)>(i i i)$
B. $(i i)>(i)>(i i i)>(v)>(i v)$
C. $(i)>(i i i)>(v)>(i i)>(i v)$
D. $(i i i)>(i i)>(i)>(i v)>(v)$

Answer: D

- View Text Solution

8. Aldol condensation will not be observed in
A. chloral
B. phenylacetaldehyde
C. hexanal

Answer: A

- View Text Solution

9. The ionisation energy of hydrogen atom (in the ground state) is xkJ . The energy required for an electron to jump from $2^{\text {nd }}$ orbit to the $3^{\text {rd }}$ orbit will be
A. $x / 6$
B. $5 x$
C. $7.2 x$
D. $5 x / 36$

Answer: D

10. Which of the following halogens does not exhibit positive oxidation state in its compounds?
A. Cl
B. Br
C. I
D. F

Answer: D

D View Text Solution

11. Major product of the following reaction will be

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}+\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\mid}{\mathrm{C}}} \underset{\mathrm{CH}}{\mathrm{CH}}-\mathrm{Cl} \rightarrow
$$

CH_{3}
A. $\mathrm{CH}_{3}-\underset{C \mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{OC}_{2} \mathrm{H}_{5}$
B. $\mathrm{CH}_{3}-\underset{C \mathrm{CH}_{3}}{\mathrm{C}}=C \mathrm{H}_{2}$
C. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$

Answer: B

- View Text Solution

12. Aniline is treated with bromine water to give an organic compound 'X' which when treated with NaNO_{2} and HCl at $0^{\circ} \mathrm{C}$
gives a water soluble compound ' Y '. Compound ' Y ' on treatment with $\mathrm{CuCl} l_{2}$ and HCl gives compound ' Z '. Compound ' Z ' is
A. o-bromochlorobenzene
B. p-bromochlorobenzene
C. 2, 4, 6-tribromophenol
D. 2, 4, 6-tribromochlorobenzene.

Answer: D

D View Text Solution

13. Increasing order of electronegativity is
A. $B i<P<S<C l$
B. $P<B i<S<C l$
C. $S<B i<P<C l$
D. $C l<S<B i<P$
14. Consider the following reactions,
$A+B \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} C, C+B \xrightarrow{k_{2}} D$
The rate in terms of $-\frac{d[B]}{d t}$ will be
A. $k_{1}[A][B]-k_{-1}[C]$
B. $k_{1}[A][B]-k_{1}[C]-k_{2}[C][B]$
C. $k_{1}[A][B]-k_{2}[C][B]$
D. $k_{1}[A][B]-k_{-1}[C]+k_{2}[C][B]$

Answer: D

D View Text Solution
15. Which of the following reactions taking place in the blast furnace during extraction of iron is endothermic?
A. $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$
B. $\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}$
C. $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$
D. $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

Answer: B

16.

A. cyclohexanone
B. cyclohexanone
C. oxycyclohexene
D. cyclohex-2-en-1-one

Answer: D

D View Text Solution

17. In which of the following bond angle is maximum?
A. NH_{3}
B. NH_{4}^{+}
C. PCl_{3}
D. $S C l l_{2}$

Answer: B

- View Text Solution

18. At constant temperature, the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction,
$\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$
is expressed by $K_{p}=4 x^{2} P /\left(1-x^{2}\right)$, where $\mathrm{P}=$ pressure and x
= extent of decomposition. Which of the following statements is true?
A. K_{p} increases with increase in P.
B. K_{p} increases with increase in x .
C. K_{p} increases with decrease in x .
D. K_{p} remains constant with change in P and x .

Answer: D

- View Text Solution

19. Which of the following reactions is not associated with the

Solvay process of manufacture of sodium carbonate?
A. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
B. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}$
C. $\mathrm{NaCl}+\mathrm{NH}_{4} \mathrm{HCO}_{3} \rightarrow \mathrm{NaHCO}+\mathrm{NH}_{4} \mathrm{Cl}$
D. $2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$

Answer: D

- View Text Solution

20. The pair in which both species have the same magnetic moment (spin only value) is
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
21. Which gives black precipitate on reaction with $C S_{2}$ followed by addition of ` ${ }^{\prime} \mathrm{gCl} _$?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{NH}_{2}$
B. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
D. All of these

Answer: A

D View Text Solution

22. Which of the following is a non-narcotic analgesic?
A. Luminal
B. Salol
C. Codeine
D. Naproxen

Answer: D

D View Text Solution

23. For the reaction, $\mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$
B. $E_{._{(H-H)}}=x_{1}, B \cdot E \cdot{ }_{(O=O)}=x_{2}$ and B. $E \cdot{ }_{(O-H)}=x_{3}$.

If the latent heat of vaporisation of water liquid into water vapour $=x_{4}$, then $\Delta_{f} H$ (heat of formation of liquid water) is
A. $x_{1}+\frac{x_{2}}{2}-x_{3}+x_{4}$
B. $2 x_{3}-x_{1}-\frac{x_{2}}{2}-x_{4}$
C. $x_{1}+\frac{x_{2}}{2}-2 x_{3}-x_{4}$
D. $x_{1}+\frac{x_{2}}{2}-2 x_{3}+x_{4}$

Answer: C

D View Text Solution

24. Which one of the following sets forms the biodegradable polymer?
A. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}$ and $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$ and $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{COOH}$
C.

D.

Answer: B
25. Which of the following statements about DNA is not correct?
A. It has a double helix structure.
B. It undergoes replication
C. The two strands in a DNA molecule are exactly similar.
D. It contains the pentose sugar, 2-deoxyribose

Answer: C

D View Text Solution

26. Current is passed through two cells connected in series, the first cell contains $X\left(\mathrm{NO}_{3}\right)_{3(a q)}$ and the second cell contains $Y\left(\mathrm{NO}_{3}\right)_{2(a q)}$. The relative atomic masses of X and Y are in the ratio $1: 2$. What is the ratio of the liberated mass of X to that of
A. $3: 2$
B. 1: 2
C. 1: 3
D. 3:1

Answer: C

D View Text Solution

27. Which of the following statements is false?
A. The lower the concentration of D.O., the more polluted is the water sample.
B. The tolerable limit of lead in drinking water is 50 ppb .
C. Water is considered pure if it has BOD less than 5 ppm .
D. In COD determination, the pollutants resistant to microbial
oxidation are not oxidised by oxidising agents like

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}
$$

Answer: D

D View Text Solution

28. The correct descending order of the heat liberated (in kJ) during the neutralisation of the acids $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{W}), \mathrm{HF}(\mathrm{X})$, $\mathrm{HCOOH}(\mathrm{Y})$ and $\mathrm{HCN}(\mathrm{Z})$ under identical conditions is (Given K of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}, \mathrm{HCOOH}=1.8 \times 10^{-4}, \mathrm{HCN}=$ 4.9×10^{-10} and $H F=3.2 \times 10^{-4}$)
A. $Y>X>Z>W$
B. $X>Y>W>Z$
C. $W>X>Y>Z$
D. $Z>W>Y>X$

Answer: B

- View Text Solution

29. On addition of 1 ml solution of $10 \% \mathrm{NaCl}$ to 10 mL gold sol in the presence of 0.025 g of starch, the coagulation is just prevented. Starch has the gold number
A. 0.025
B. 0.25
C. 0.5
D. 25

Answer: D

D View Text Solution

30. The brown ring test for nitrates depends on
A. the reduction of nitrate to nitric oxide
B. oxidation of nitric oxide to nitrogen dioxide
C. reduction of ferrous sulphate to iron
D. oxidising action of sulphuric acid

Answer: A

D View Text Solution

31. Consider the following reactions,

Ethanol $\xrightarrow{\mathrm{PBr}_{3}} X \xrightarrow{\text { alc. } \mathrm{KOH}} Y \xrightarrow[(i i) H_{2} O \text {, heat }]{(i) \mathrm{H}_{2} \mathrm{SO}_{4} \text {, room temperature }} Z$, product Z is
A. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{SO}_{3} \mathrm{H}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Answer: D

D View Text Solution

32. Water and chlorobenzene are immiscible liquids. Their mixture boils at $90^{\circ} \mathrm{C}$ under a reduced pressure of $7.82 \times 10^{4} \mathrm{~Pa}$.

The vapour pressure of pure water at $90^{\circ} \mathrm{C}$ is $7.03 \times 10^{4} \mathrm{~Pa}$. On
weight per cent basis, chlorobenzene in the distillate is equal to (mol. wt. of chlorobenzene is $112.5 \mathrm{~g} \mathrm{~mol}^{-1}$)
A. 50
B. 60
C. 70
D. 80

Answer: C

D View Text Solution

33. In the following reaction sequence, which of the following
steps is wrong?

A. Step 3
B. Step 2
C. Step 1
D. None of these

Answer: A

D View Text Solution
34. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \xrightarrow{\Delta}$ gas (A)+ gas (B) + liquid (C) (Oxalic acid)

Gas (A) burns with a blue flame and is oxidised to gas (B).Gas
turns lime water milky.
Gas (A) $+\mathrm{Cl}_{2} \rightarrow(\mathrm{D}) \xrightarrow{\mathrm{NH}_{3}, \Delta}$
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ are respectively
A. $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCOONH}_{2}, \mathrm{COCl}_{2}$
B. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{COCl}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCOONH}_{2}$
C. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{COCl}_{2}, \mathrm{NH}_{2} \mathrm{CONH}_{2}$
D. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2} \mathrm{CONH}_{2}, \mathrm{COCl}_{2}$

Answer: C

- View Text Solution

35. Consider the following sequence of reactions:

(A)
$\xrightarrow[\text { (ii) } \mathrm{Mg} / \text { ether }]{\text { (i) } \mathrm{Br}_{2} / \mathrm{Fe}}(B) \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{2}=\mathrm{O}}(C) \xrightarrow{\mathrm{Cl}_{2} / \mathrm{Fe}}(D)$
$(E) \stackrel{\text { Jone's reagent }}{\longleftarrow}$

Identify E .

A.

C.

D.

Answer: C

- View Text Solution

36. In any group second period element exhibits anomalous properties. Correct statements about this is/are
A. generally maximum covalence of the first member of each group cannot exceed four
B. he first member of p-block element displays greater ability
to form $p \pi-p \pi$ multiple bonds to itself and to the other
second period elements, compared to subsequent members of the group
C. anomalous behaviour is due to small size, large charge/radius ratio and high electronegativity of the elements
D. Lithium exhibits diagonal relationship with aluminium.

Answer: A::C

- View Text Solution

37. Which set of reactants A and B should be used to get best yield of given product?

A. PhLi and neopentyl chloride
B. t-BuMgBr and benzyl bromide
C. PhMgBr and neopentyl bromide
D. Benzylchloride and t-butyl chloride

Answer: B

D View Text Solution

38. The rate constant of a reaction is given by
$k=2.1 \times 10^{10} \exp (-2700 / R T)$. It means that
A. log k versus $\frac{1}{T}$ will be a straight line with slope

$$
=\frac{-2700}{2.303 R}
$$

B. $\log \mathrm{k}$ versus $\frac{1}{T}$ will be a straight line with intercept on axis $=10.32$
C. When T becomes infinite,$k=2.1 \times 10^{10}$
D. k is independent of temperature

Answer: A::B::C

D View Text Solution

39. Which relation is/are correct for an aqueous dilute solution of $K_{3} \mathrm{PO}_{4}$ if its degree of dissociation is α ?
A. $\frac{\Delta P}{P^{\circ}}=\frac{\text { Molality } \times 18 \times(1+3 \alpha)}{1000}$
B. $\Delta T_{f(o b s)}=K_{f} \times$ molality $\times(1+\alpha)$
C. $\frac{\Delta P}{P^{\circ}}=\frac{\Delta T_{f(o b s)} \times 18}{K_{f} \times 1000}$
D. M_{w} of $K_{3} P O_{4}=M_{w_{o b s}} \times(1+3 \alpha)$

Answer: A::C::D

D View Text Solution

40. Consider the following steps :
$C u_{2} S \xrightarrow{\text { Roast in air }} A \xrightarrow{\text { Heating without air }} B$
Which of the following is/are the correct statement(s)?
A. It involves self-reduction.
B. A is only $\mathrm{Cu}_{2} \mathrm{O}$ and B is a mixture of Cu and SO_{3}
C. A is mixture of $C u_{2} O$ and $C u_{2} S$ and B is a mixture of Cu and SO_{2}.
D. The solidified copper obtained has blistered appearance.

- View Text Solution

41. Of the following molecules, the one which has permanent dipole moment is
A. $S i F_{4}$
B. $B F_{3}$
C. $P F_{3}$
D. $P F_{5}$

Answer: C

42. The degree of hardness of water is usually expressed in terms of
A. ppm by weight of MgSO_{4}
B. g/L of CaCO_{3} and MgCO_{3} present
C. ppm by weight of CaCO_{3} irrespective of whether it is actually present.
D. ppm of MgCO_{3} actually present in water.

Answer: C

- View Text Solution

43. For a certain process, $\Delta H=280 \mathrm{~kJ}$ and $\Delta S=140 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
. What is the minimum temperature at which the process will be
A. 2000 K
B. 1200 K
C. 1400 K
D. 1420 K

Answer: A

D View Text Solution

44. Which of the following reagents can separate nitric oxide from nitrous oxide?
A. Sodium nitroprusside solution
B. Ferrous sulphate solution
C. Nessler's solution
D. Tollens' reagent

- View Text Solution

45. The ionisation enthalpy of second period elements vary with atomic number as

The elements present at points B and E are respectively
A. Be,C
B. B, N
C. Be, O
D. Be, N

Answer: D

- View Text Solution

46. Novolac, the linear polymer used in paints is
A. a copolymer of 1,3-butadiene and styrene
B. obtained by the copolymerization of methyl methacrylate
C. an initial product obtained by the condensation of phenol and formaldehyde
D. a copolymer of melamine and formaldehyde.

Answer: C

47. A 400 mg iron capsule contains 100 mg of ferrous fumarate, $(\mathrm{CHCOO})_{2} \mathrm{Fe}$. The percentage of iron present in it is approximately
A. 33%
B. 25%
C. 14%
D. 8%

Answer: D

D View Text Solution

48. The major product obtained in the dehydrohalogenation of neo-pentyl bromide with alcoholic KOH is
A. 2-methylbut-1-ene
B. 2,2-dimethylbut-1-ene
C. 2-methylbut-2-ene
D. but-2-ene.

Answer: C

D View Text Solution

49. In the given reaction:
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH} \underset{\left(\text { ii) } \mathrm{Br}_{2}, \mathrm{CCl}_{4} / \Delta\right.}{\left(\text { i) } \mathrm{AgNO}_{3}\right.}[\mathrm{X}]$. [X] will be
A. ethyl bromide
B. propyl bromide
C. propyl propanoate
D. all of these.

D View Text Solution

50. The number of neutrons accompanying the formation of ${ }_{54}^{139} \mathrm{Xe}$ and ${ }_{38}^{94} \mathrm{Sr}$ from the absorption of slow neutrons by ${ }_{92}^{235} \mathrm{U}$ followed by nuclear fission is
A. 0
B. 2
C. 1
D. 3

Answer: D

51. 3.0 moles of $P C l_{5}$ kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . The composition of the mixture i.e., $P C l_{5}$ and $P C l_{3}$ respectively at equilibrium is ($K_{c}=$ 1.80)
A. 1.71,2.25
B. 1.59, 1.61
C. 1.41,1.59
D. 1.41, 1.41

Answer: C

D View Text Solution

52. Among the following compounds which can be dehydrated
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\text { | }}{\stackrel{\text { O }}{\mathrm{C}} \mathrm{CH}_{2} \mathrm{CH}_{3}}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \stackrel{\stackrel{\mathrm{OH}}{\mathrm{C}} \mathrm{HCH}_{3}}{ }$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \underset{\text { CH }}{\mathrm{C}} \underset{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Answer: A

D View Text Solution
53. In the reaction,
$\mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 4 \mathrm{HPO}_{3}+\mathrm{X}$, the product X is
A. $\mathrm{N}_{2} \mathrm{O}_{5}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. NO_{2}
D. $\mathrm{N}_{2} \mathrm{O}_{3}$

Answer: A

- View Text Solution

54. Sodium extract of Lassaigne's solution is treated with $\mathrm{FeSO}_{4}, \mathrm{FeCl}_{3}$ and dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to get a blood red colour. Which of the following is probable organic compound?

C.
D.

Answer: A

D View Text Solution

55. The order of increasing freezing point of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{KCl}$ and $\mathrm{Li}_{3} \mathrm{PO}_{4}$ is
A. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{Li}_{3} \mathrm{PO}_{4}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{KCl}$
B. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{Li}_{3} \mathrm{PO}_{4}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{KCl}$
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}<\mathrm{KCl}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}<L i_{3} \mathrm{PO}_{4}$
D. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}<\mathrm{Li}_{3} \mathrm{PO}_{4}<\mathrm{Na}_{2} \mathrm{SO}_{4}<\mathrm{KCl}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

D View Text Solution

56. The end product of the following reaction would be $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{HgSO}_{4} / \mathrm{H}^{+}}$
A.
$\stackrel{\mathrm{H}_{2} \mathrm{C}-\mathrm{CH}-\mathrm{CH}_{3}}{\mathrm{O}^{\prime}}$
B. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer: C

57. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
A. $3.7 \times 10^{-3} \mathrm{M}$
B. $1.11 \times 10^{-3} \mathrm{M}$
C. $1.11 \times 10^{-4} \mathrm{M}$
D. $3.7 \times 10^{-4} \mathrm{M}$

Answer: D

D View Text Solution

58. Which of the following structures for a nucleotide is not correct?
A. Cytosine-Ribose-Phosphate
B. Uracil-2-Deoxyribose-Phosphate
C. Uracil-Ribose-Phosphate
D. Thymine-2-Deoxyribose-Phosphate

Answer: B

D View Text Solution

59. If the total energy of an electron in a hydrogen atom in excited state is -3.4 eV , then the de Broglie wavelength of the electron is
A. $6.6 \times 10^{-12} \mathrm{~m}$
B. $3 \times 10^{-10} \mathrm{~m}$
C. $6.6 \times 10^{-10} \mathrm{~m}$
D. $9.3 \times 10^{-12} \mathrm{~m}$

Answer: C

D View Text Solution

60. Extraction of Al from bauxite is carried out by various stages
in Hall's process which involves
I removal of sand and heavier impurities by gravity separation method.
II. removal of magnetic impurities by magnetic separator.
III. fusing the concentrated finely divided ore with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and
CaCO_{3} and then extracting with $\mathrm{H}_{2} \mathrm{O}$.
IV. ignition at $1100^{\circ} \mathrm{C}$.
V. passing CO_{2}

Correct order of these steps are
A. I,II,III,V,IV
B. II,IIII,V,IV
C. V,IV,III,III
D. I,III,V,IV,II

Answer: B

- View Text Solution

61. Phenolic antibacterial used in body deodorants is
A. 2,4-dichlorophenol
B. p-chloro-m-xylenol
C. p-chlorophenol
D. p-nitro-m-xylenol

Answer: B

62. Two isomers X and Y with the formula $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{ClBr}_{2}$ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of Y gave depression corresponding to 3 moles of particles. The structural formulae of

X and Y respectively are
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{ClH}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{ClBr}_{2}\right] 2 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}\right] \mathrm{BrCl},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{ClBr}\right] \mathrm{BrH}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2}$

Answer: D

63. Identify the correct statement for the adsorption of a real gas on charcoal at $1 \mathrm{~atm}, 15^{\circ} \mathrm{C}$.
A. Decrease in pressure increases the extent of adsorption
B. Gases which are easily liquefiable, are adsorbed more in quantity
C. Gases which have a behaviour similar to an inert gas are adsorbed more
D. None of these

Answer: B

- View Text Solution

64. The reaction of $\mathrm{CH}_{2}=\mathrm{CHCHO}$ with LiAlH_{4} gives
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHOHCH} 3$

Answer: B

- View Text Solution

65. The unit cell in a body centred cubic lattice is given in the figure. Each sphere has a radius ' r ' and the cube has side 'a'. What
fraction of the total cube volume is empty?

A. $1-\frac{8}{3} \frac{\pi r^{3}}{a^{3}}$
B. $\frac{8}{3} \frac{\pi r^{3}}{a^{3}}$
C. $\frac{r}{a}$
D. $2-\frac{4}{3} \frac{\pi r^{3}}{a^{3}}$

Answer: A

D View Text Solution
66. Which of the following is not an example of green chemistry?
A. Catalytic dehydrogenation of the diethanol amine without using cyanide and formaldehyde.
B. Replacement of CFCs by CO_{2} as blowing agent in the manufacture of polystyrene foam sheets.
C. Reacting methylamine and phosgene to produce methyl isocyanate.
D. Replacement of organotins by 'sea-nine' and as fouling compound in sea marines

Answer: C

67. Which among the following compounds behaves both as an electrophile as well as a nucleophile?
(1) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$, (2) RCOCI , (3) $C \mathrm{H}_{3}-\stackrel{\stackrel{O}{\mathrm{C}}-\mathrm{CH}_{3} \text {, (4)R-O-R }}{ }$
A. Only 1
B. 1 and 2
C. 3 and 4
D. 2,3 and 4

Answer: B

D View Text Solution

68. For the reaction $, A \rightarrow B, k_{1}=10^{8} e^{-\frac{6000}{8.34 \mathrm{~T}}}$ and $P \rightarrow Q, k_{2}=10^{10} e^{-\frac{8000}{8.34 \mathrm{~T}}}$

The temperature at which $k_{1}=k_{2}$ is
A. 386 K
B. 221 K
C. 26 K
D. 52 K

Answer: D

- View Text Solution

69. The E° for the cell reaction,

$$
C u_{(s)}+2 A g_{(a q)}^{+} \rightarrow C u_{(a q)}^{2+}+2 A g_{(s)} \text { is } 0.46 \mathrm{~V} \text {, what is its }
$$

equilibrium constant?
A. 15.6
B. 4.6×10^{16}
C. 3.6×10^{15}
D. 1.56×10^{15}

Answer: C

D View Text Solution

70. In the reaction ,
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \xrightarrow[0-5^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2}+\text { dil. } \mathrm{HCl}} P+\mathrm{N}_{2}$
The product (P) formed is
A. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
C. both (a) and (b)
D. None of these

D View Text Solution

71. In the following sequence of reactions, the end product is
$\mathrm{CaC} 2 \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A \xrightarrow{\mathrm{Hg}^{2+} / \mathrm{H}_{2} \mathrm{SO}_{4}} B \xrightarrow{(\mathrm{O})} C \xrightarrow{\mathrm{Ca}(\mathrm{OH})_{2}} D \xrightarrow{\text { heat }} E$
A. acetaldehyde
B. formaldehyde
C. acetic acid
D. acetone

Answer: D

- View Text Solution

72. The freezing point of a solution containing 0.2 g of acetic acid in 20.0 g benzene is lowered by $0.45^{\circ} \mathrm{C}$. The degree of association of acetic acid in benzene is (Assume acetic acid dimerises in benzene and K_{f} for benzene $=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$) ?
A. 94.6%
B. 54.9%
C. 78.2%
D. 100%

Answer: A

- View Text Solution

73. Ammonium sulphide and ammonium selenide on heating dissociates as

$\left(\mathrm{NH}_{4}\right)_{2} S_{(s)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}+H_{2} S_{(g)}, K_{p_{1}}=9 \times 10^{-3} \mathrm{~atm}^{3}$
 $\left(\mathrm{NH}_{4}\right)_{2} S e_{(s)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}+H_{2} S e_{(g)}, K_{p_{2}}=4.5 \times 10^{-3} \mathrm{~atm}^{3}$

 The total pressure over the solid mixture at equilibrium isA. 0.15 atm
B. 0.3 atm
C. 0.45 atm
D. 0.6 atm

Answer: C

D View Text Solution

74. The pH of a solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 6.0. Some chlorine gas is bubbled into this solution. Which of the following is correct?
A. Hydrogen gas is liberated.
B. The pH of resultant solution becomes 8.0.
C. The pH of resultant solution becomes less than 6.0 and oxygen gas is liberated
D. $\mathrm{Cl}_{2} \mathrm{O}$ is formed in the resultant solution.

Answer: C

D View Text Solution

75. An aromatic compound 'X' with molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}$ gives the following chemical tests :
(i) forms 2, 4-DNP derivative
(ii) reduces Tollens' reagent
(iii) undergoes Cannizzaro reaction,
(iv) on vigorous oxidation, 1, 2-benzenedicarboxylic acid is

obtained

Identify the compound X .

A.

C.

D.

- View Text Solution

76. Choose the inappropriate statement(s) regarding the following reaction :

A. Syn addition of -H (from BH_{3}) and -OH (from solution)
occurs.
B. Syn addition of -H (from BH_{3}) and -OH (from $\mathrm{H}_{2} \mathrm{O}_{2}$)
occurs.
C. The product is optically active
D. Addition follows anti-Markownikoff's orientation.

D View Text Solution

$\mathrm{KMnO}_{4}+$ gas ' B '
$\mathrm{H}_{2} \mathrm{O}_{2}+$ gas ' B '
Br_{2}-water + gas ' B '
77.

Which of the following reagents can be used as ' P ' ?
A. O_{3}
B. Excess Cl_{2} water
C. Conc. HNO_{3}
D. HCl

Answer: A::B::C

78. Which of the following represents the correct order?
A. Stability

$$
\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}<\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}<\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{HCH}_{3}<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{C}}
$$

B. Stability

$$
\dot{C} H_{3}<C H_{3}-\dot{C} H_{2}<C H_{3}-\dot{C} H-C H_{3}<\left(C H_{3}\right)_{3} \dot{C}
$$

C. Hyperconjugation

$$
\mathrm{CH}_{3}-<\mathrm{CH}_{3}-\mathrm{CH}_{2}-<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-<\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-
$$

D. Basic nature: $\bar{C} H_{3}>\bar{N} H_{2}>\bar{O} H>\bar{F}$

Answer: A::B::C::D

D View Text Solution
79. For the equilibrium at 298 K:
$N_{2} O_{4(g)} \Leftrightarrow 2 N_{2(g)}, G_{N_{2} O_{4}}^{\circ}=100 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ and $G_{N O_{2}}^{\circ}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If 5 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 2 moles of NO_{2} are taken initially in one litre container then which statements are correct?
A. Reaction proceeds in forward direction
B. $K_{c}=1$
C. $\Delta G=-0.55 \mathrm{~kJ}, \Delta G^{\circ}=0$
D. At equilibrium $\left[N_{2} O_{4}\right]=4.894 \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=2.212 \mathrm{M}$

Answer: A::B::C::D

D View Text Solution
80. Which of the following statements) is/are correct for the reaction given below?

A. It is an example of aldol condensation
B. $X=\mathrm{HCHO}, \mathrm{Y}=$ Acetal
C. $\mathrm{X}=\mathrm{CH}_{3} \mathrm{CHO}$, $\mathrm{Y}=3$-Hydroxy-3-phenyl propanaldehyde
D. It is Claisen-Schmidt condensation.

Answer: A::C

