

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

PRINCIPLE OF MATHEMATICAL INDUCTION

Wb Jee Workout

1. The statement P(n):

- A. true for all n>1
 - B. not true for any n
 - C. true for all $n \in N$
 - D. None of these

Answer: C

View Text Solution

- **2.** Let P(n) : n^2+n is an odd integer and $P(K) \Rightarrow P(k+1)$ is true, then P(n) is true for all
 - A. n>2
 - B. n > 1
 - $\mathsf{C}.\,n$
 - D. None of these

Answer: D

3. The greatest positive integer which divides $n(\,+\,1)(n+2)...(n+1-)[n\in N]$ is

A. r!

B. (r + 1)!

 $\mathsf{C}.\,n+r$

 $\mathsf{D}.\, n-r+1$

Answer: A

 $P(n + 1)[n \in N, \text{then } P(n) \text{ is true}]$

4. Let P(n) be a statement such that truth of $P(n) \Rightarrow$ the truth of

A. $\forall n>1$

B. $\forall n$

C. Nothing can be said

D. $\forall n > k$ (k is some fixed positive integer)

Answer: C

View Text Solution

5. LetP(n) = n(n+1) is an even number , then which of the following is true?

A. p(3)

B. p(100)

C. p(50)

D. All of these

Answer: D

6. Let P(n) be the statement n^3+n is 3m such that m is a positive integer, then which of the following is true?

- A. P(1)
- $\operatorname{B.}p(2)$
- $\mathsf{C}.P(3)$
- D.P(4)

Answer: C

View Text Solution

7. Let the statement $r^2>100, \ \ {
m the\ statement\ P(k+1)}$ will he true if

A. P(1) is true

B. P(2) is true

C. P(K) is true

D. None of these

Answer: C

View Text Solution

8. If P (n) be the statement n(n+1)+1 is odd , then which of the following is even ?

A. P(2)

B. P(3)

C. P(4)

D. None of these

Answer: D

9. The statement $P(n)=9^{th}-8^n$, when divided by 8, always leaves the remainder

10. Let P(k): 2 + 4 + 6 + ... + 2k = kk + 1) + 2, then the statement P(m + 1)

B. 3

C. 1

D. 7

Answer: C

View Text Solution

1) will be true if

A. P(1) is true

B. P(2) is true

C. P(m) is true

D. None of these

11. Let $P(n)=2^{3n}-7n-1$ then P(n) is divisible by

Answer: C

View Text Solution

A. 63

B. 36

C. 49

D. 25

Answer: C

12. If
$$n \in N$$
, then $11^{n+2} + 12^{2n+1}$ is divisible by

A. 113

B. 123

C. 133

D. None of these

Answer: C

View Text Solution

are odd positive integers then the least value of n and λ will be

13. Let P (n) $= 5^n - 2^n, P(n)$ is divisible by 3λ where λ and n both

A. 13

B. 11

C. 1

D. 5

Answer: C

View Text Solution

14. Let P(n) : $a^n + b^n$ such that a, b are even , then P(n) will be divisible by a+b if

A. n > 1

B. n is odd

C. n is even

D. None of these

Answer: B

15. If a,b are any two odd positive integers such that a>b. Then the largest positive integer which divides all the numbers of the numbers of the form a^1-b^2 Is

- **A.** 6
- B. 5
- C. 8
- D. 9

Answer: C

16. For all positive integers n > 1,

 $\left\{xig(x^{n-1}-na^{n-1}ig)+a^n(n-1)
ight\}$ is divisible by

A. (x-a)

B. x-a

C. 2(x-a)

D. x+a

Answer: B

View Text Solution

17. For each $n \in N, 2^{3n}-1$ is divisible by

A. 7

B. 8

C. 6

D. 16

Answer: A

View Text Solution

18. Let $P(n): 2^n < (1 \times 2 \times 3 \times \ldots \times n)$. Then the smallest positive integers for which P(n) is true , is

A. 1

B. 2

C. 3

D. 4

Answer: D

19. If
$$P(n)$$
 is the statement ,

$$"" \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

'then P(n) is true for

A.
$$n>2$$

B. $n \in Z$

 $\mathsf{C}.\,n\in N$

D. No value of n

Answer: C

20. each natural number For the statement

P(n) = n(n+1)(2n+1) is divisible by

- A. 6
- B. 8
- C. 10
- D. 4

Answer: A

View Text Solution

the following is not true?

21. Let P(n) be the statement n^2-n-41 is prime , then which of

- A. P(2)
- B. P(3)
- C. P(41)
- D. None of these

Answer: C

View Text Solution

22. Let P(n) : $2^{n+2} < 3^n$, is true for

A. $n \in N$

B. $n > n, \ \forall n \in N$

C. $n>2,\ \forall n\in N$

D. None of these

Answer: B

View Text Solution

23. Let P(n) : $1+rac{1}{4}+rac{1}{9}+\ldots +rac{1}{n^2} < 2-rac{1}{n}$, is true

A.
$$\forall n$$

B. for n=1

C. For $n>I,\ \forall n\in N$

D. None of these

Answer: C

View Text Solution

24. Let P(n) : $s^n > n \, orall \, n \in N$ and $2^k > k, \, orall \, n = K$ then which of the following is true $\, orall \, k \geq 2 \, ?$

A.
$$2^k > 5K > 1$$

$$\mathtt{B.}\, 2^{k+1} > 2k > k+1$$

$$\mathsf{C.}\, 2^k > 2(k+1) > k$$

D. None of these

Answer: B

View Text Solution

25. If n is a positive integer , then $5^{2n+2}-24n-25$ is divisible by

A. 574

B. 575

C. 674

D. 576

Answer: D

View Text Solution

26. Let P(n) be the statement represent the sum of three successive natural numbers $\forall n \in N,$ then the smallest value of n

for which P(n) is divisible by 9 , is A. 1 B. 3! C. 3 D. 9! Answer: A **View Text Solution 27.** The inequality $n!>2^n$ is true for A. $n \geq 4$

B. n > 1

 $\mathsf{C}.\,n>2$

D. $\forall n, n \in N$

Answer: A

View Text Solution

28. The sum $S_n=n^3+3n^2+5n+3$ is divisible by

A.
$$3\,orall n\in N$$

B. $4\,orall\,n\in N$

C. $5\,orall n\in N$

D. can't be determined

Answer: A

View Text Solution

29. IF a and b are natural numbers such that a^2-b^2 is prime number then a^2-b^2 equals

A.
$$a+b$$

B.
$$a-b$$

$$\mathsf{C}.\,ab$$

Answer: A

View Text Solution

30. Let $P(n)=\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}$ is natural number , is true statement

A. Only for
$$n>1$$

B. only for n is an odd positive integer

C. Only for n is an even positive integer

D. $\forall n \in N$

Answer: D

View Text Solution

Wb Jee Previous Years Questions

1. The remainder obtained when $1!+2!+3!+\ldots +11!$ is divided by 12 is

A. 9

B. 8

C. 7

D. 6

Answer: A

2. Let a,b,c,d be any four real numbers , then $a^n+b^n=c^n+d^n$

holds for any natural number n, if

A.
$$a + b = c + d$$

$$B. a - b = c - d$$

C.
$$a + b = C + d$$
, $a^2 + b^2 = c^2 + d^2$

D.
$$a - b - c - d$$
, $a^2 - b^2 = c^2 - d^2$

Answer: D

3. For +ve integer $n,\,n^3+2n$ is always divisible by

A. 3

B. 7

C. 5

D. 6

Answer: A

View Text Solution

4. $7^{2n}+16-1(n\in N)$ is divisible by

A. 65

B. 63

C. 61

D. 64

Answer: D

