

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

QUADRATIC EQUATIONS

Wb Jee Workout Single Option Correct Type

1. Maximum value of $6+4x-4x^2$ is

A. 6

B. 7

C. 2

D. 3

Answer: a

2. The roots of the equation

$$(a+c-b)x^2-2cx+(b+c-a)=0$$
 are

A. 1,
$$\frac{2c}{a+c-b}$$
B. 1,
$$\frac{b+c-a}{a+c-b}$$
C. 1,
$$\frac{b+c-a}{2c}$$
D. 1,
$$\frac{a+c-b}{b+c-a}$$

Answer: b

View Text Solution

3. If the roots of $(b-c)x^2 + (c-a)x + (a-b) = 0$ are equal, then

a + c =

 $\mathsf{B}.\,b^2$

C. 3b

D. b

Answer: a

View Text Solution

4. If the two equations a $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$

have a common root, then the value of $(a_1b_2-a_2b_1)(b_1c_2-b_2c_1)$ is

A. $-(a_1c_2-a_2c_1)^2$ B. $(a_1a_2-c_1c_2)^2$ C. $(a_1c_1-a_2c_2)^2$ D. $(a_1c_2-a_2c_1)^2$

Answer: d

5. If $f(x) = 2x^3 + mx^2 - 13x + n$ are 2, 3 roots of the equation f(x)=0,

then the value of m and n are

A. -5, -30

B. -5, 30

C. 5, 30

D. None of these

Answer: b

View Text Solution

6. If
$$7^{\log_7(x^2-4x+5)} = x-1$$
, then x may have values

A. 2, 3

B. 7

C.-2, -3

D. 2, -3

Answer: a

7. Roots of the equations $2x^2 - 5x + 1 = 0$ and $x^2 + 5x + 2 = 0$ are

A. Reciprocal and of the same sign

B. Reciprocal and of opposite sign

C. Equal in magnitude

D. None of these

Answer: b

8. If one root of $x^2 + px + q = 0$ is twice the other, then the value of q in

terms of p is

A.
$$\frac{p^2}{5}$$

B. $\frac{2p^2}{3}$
C. $\frac{2p^2}{9}$

D. None of these

Answer: c

View Text Solution

9. If the roots of
$$x^2 + px + 12 = 0$$
 are in the ratio 1: 3, then p =

A.
$$\pm 9$$

 $\mathsf{B}.\pm 3$

 $\mathsf{C}.\pm 6$

 $D.\pm 8$

Answer: d

10. If the roots of $x^2 - bx + c = 0$ are two consecutive integers then $b^2 - 4c =$ A. 0 B. 1 C. 2 D. None of these

Answer: b

11. For the equation $\left|x^2
ight|+\left|x
ight|-6=0$, the roots are

- A. One and only one real number
- B. Real with sum one
- C. Real with sum zero
- D. Real with product zero

Answer: c

View Text Solution

12. The number of solutions of
$$rac{\log 5 + \log \left(x^2 + 1
ight)}{\log (x-2)} = 2$$
 is

A. 2

B. 3

C. 1

D. None of these

Answer: d

13. If a, b, c, ..., k are roots of the equation f(x) = 0, then the value of $\frac{f(x)}{x-a} + \frac{f(x)}{x-b} + \ldots + \frac{f(x)}{x-k}$ is A. 2 B. 0 C. 1

D. None of these

Answer: d

View Text Solution

14. Let $f(x) = x^2 - 3x + 4$, the value of x which satisfies f(1) + f(x) = f(1)f(x) is

A. 1

B. 2

C. 1 and 2

D. 1 and 0

Answer: c

View Text Solution

15. If α , β are roots of the quadratic equation $x^2 - x - 1 = 0$, then the quadratic equation whose roots are $\frac{1+\alpha}{2-\alpha}$, $\frac{1+\beta}{2-\beta}$ is

A.
$$z^2 + z + 1 = 0$$

B. $z^2 - 7z + 1 = 0$
C. $z^2 + 7z + 1 = 0$
D. $z^2 + 7z - 1 = 0$

Answer: b

16. Let a, b and c bereal numbers such that 4a+2b+c=0 and ab $> \,$ 0. Then the quadratic equation $ax^2+bx+c=0$ has

A. real roots

B. complex roots

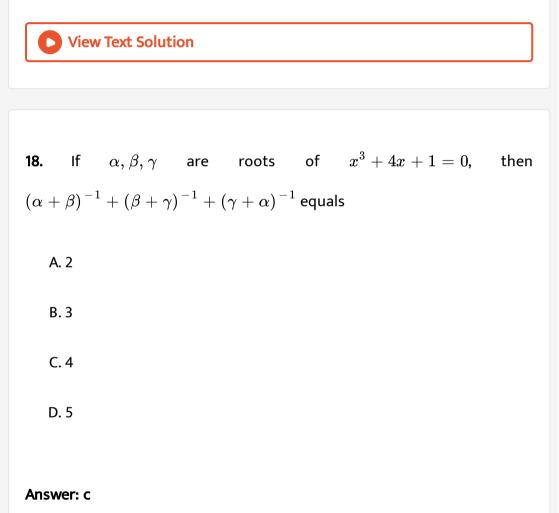
C. purely imaginary roots

D. only one root

Answer: a

View Text Solution

17. If a, b, c, d, x are distinct non zero real numbers such that $(a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)\leq 0$, then a, b, c, d are in


A. A.P.

B. H.P.

C. G.P.

D. None of these

Answer: c

19. If the sum of two roots of the equation $x^3 + ax^2 + bx + c = 0$ is zero, then the value of ab equals

B. 2c

A. c

 $\mathsf{C}.-2c$

 $\mathsf{D.}-c$

Answer: a

View Text Solution

20. If a, b, c are real numbers in A.P., then the roots of $ax^2 + bx + c = 0$ are real for

A. all a and c

B. no a and c

$$\mathsf{C}.\left|\frac{c}{a}-7\right| \geq 4\sqrt{7}$$

$$\mathsf{D}. \left|\frac{a}{c} + 7\right| \geq 2\sqrt{3}$$

Answer: c

21. Let lpha and eta be the roots of equation $x^2-6x-2=0$ if $a_n=lpha^n-eta^n$, for $n\ge 1$, then the value of $rac{a_{10}-2a_8}{2a_9}$ is equal to

- A. 3
- B.-3
- C. 6
- D.-6

Answer: a

22. The set of value of x for which the inequality $[x]^2 - 5[x] + 6 \le 0$ (where [.] denote the greatest integral function) hold good if

A. $2 \leq [x] < 3$

B. $2 \leq x < 4$

C. $2 \leq [x] \leq 3$

D. (b) and (c) both

Answer: c

View Text Solution

23. If roots of the equation $x^2 + \alpha^2 = 8x + 6\alpha$ are real, then which one

is correct?

A. $-2 \leq lpha \leq 8$

 $\texttt{B.}\, 2 \leq \alpha \leq 8$

 $\mathsf{C}.-2<\alpha\leq 8$

$$\mathsf{D}.-2 \leq lpha < 8$$

Answer: a

View Text Solution

24. If x and 'a' are real, then the value of 'a' for which $x^2 - rac{3ax}{2} + 1 - a^2$

is positive is

A.
$$-rac{4}{25}p$$

B. $rac{4}{25}$
C. $|a|>rac{4}{5}$
D. $|a|<rac{4}{5}$

Answer: d

25. The equation $x^2 - 3|x| + 2 = 0$ has

A. no real root

B. one real root

C. two real roots

D. four real roots

Answer: d

View Text Solution

26. The sum of all real roots of the equation $|x-2|^2+|x-2|-2=0$

is

A. 7

B.4

C. 1

D. 5

Answer: b

27. If a, b, c are real, then both the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are always

A. positive

B. negative

C. real

D. imaginary

Answer: c

28. The roots of the quadratic equation $x^2 - 2\sqrt{3}x - 22 = 0$ are

A. imaginary

- B. real, rational and equal
- C. real, irrational and unequal
- D. real, rational and unequal

Answer: c

View Text Solution

29. The equations $x^2 + x + a = 0$ and $x^2 + ax + 1 = 0$ have a common real root

A. for no value of a

B. for exactly one value of a

C. for exactly two values of a

D. for exactly three values of a

Answer: b

30. The quadratic equation $2x^2 - (a^3 + 8a - 1)x + a^2 - 4a = 0$ possesses roots of opposite sign. Then

A. $a \leq 0$

 ${\sf B.0} < a < 4$

 $\mathsf{C.4} \leq a < 8$

D. $a \geq 8$

Answer: b

View Text Solution

31. The condition that the roots of $px^2 - px + q = 0$ are in the ratio p: q

is [q
eq 0, p
eq 0]

A. p+q=0

B. 2p - q = 0

C.2p + q = 0

D. None of these

Answer: c

View Text Solution

32. If the roots of $ax^2 + ax + c = 0$ are in the ratio p : q, then

$$egin{aligned} &\sqrt{rac{p}{q}}+\sqrt{rac{q}{p}}=0 \ & ext{A.}\ \sqrt{rac{a^2}{c}} \ & ext{B.}\ \sqrt{rac{a}{2c}} \ & ext{C.}\ \sqrt{rac{a}{c}} \end{aligned}$$

1

D. None of these

Answer: c

33. If the equation $rac{x^2-bx}{ax-c}=rac{m-1}{m+1}$ has roots equal in magnitude but

opposite in sign, then m equals

A.
$$\frac{a+b}{a-b}$$

B. $\frac{a-b}{a+b}$
C. $\frac{b-a}{b+a}$

D. None of these

Answer: b

D View Text Solution

34. The set of value ofp for which the roots of the equation $3x^2 + 2x + p(p-1) = 0$ are of opposite signs is

A. $(\,-\infty,0)$

B. (0, 1)

 $\mathsf{C}.(1,\infty)$

 $\mathsf{D}.\left(0,\infty
ight)$

Answer: b

35. Let α, β be the roots of $ax^2 + bx + c = 0$ and γ, δ be the roots of $px^2 + qx + r = 0$ and D_1, D_2 be the discriminants respectively. If $\alpha, \beta, \gamma, \delta$ are in A.P., then $D_1: D_2$ is

A.
$$\frac{a^2}{b^2}$$

B. $\frac{a^2}{p^2}$
C. $\frac{b^2}{q^2}$
D. $\frac{c^2}{r^2}$

Answer: b

36. Given that, for all real x, the expression $\frac{x^2 - 2x + 4}{x^2 + 2x + 4}$ lies between $\frac{1}{3}$ and 3. The values which the expansion $\frac{9 \cdot 3^{2x} + 6 \cdot 3^x + 4}{9 \cdot 3^{2x} - 6 \cdot 3^x + 4}$ lies are

A.
$$\frac{1}{3}$$
 and 3

B.-2 and 0

C. -1 and 1

D. 0 and 2

Answer: a

View Text Solution

37. If every pair from among the equations $x^2 + px + qr = 0, x^2 + qx + rp = 0$ and $x^2 + rx + pq = 0$ has a common root, then the sum of the three common roots is

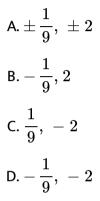
A.
$$2(p+q+r)$$

 $\mathsf{B}.\, p+q+r$

 $\mathsf{C}.-(p+q+r)$

D. pqr

Answer: b


View Text Solution

38. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $px^2 + qx + r = 0$, then

A.
$$p^2 - q^2 + 2pr = 0$$

B. $(p+r)^2 = q^2 - r^2$
C. $p^2 + q^2 - 2pr = 0$
D. $(p-r)^2 = q^2 + r^2$

Answer: a

39. The solution of the equation $(3|x|-3)^2 = |x|+7$ which belongs to the domain of definition of the function $y = \sqrt{x(x-3)}$ are given by

Answer: d

View Text Solution

40. Let α and β be the roots of the equation $x^2+x+1=0$. The equation whose roots are α^{19}, β^7 is

A. $x^2 - x - 1 = 0$

 $\mathsf{B}.\,x^2-x+1=0$

$$\mathsf{C}.\,x^2+x-1=0$$

D. $x^2 + x + 1 = 0$

Answer: d

41. If rational a, b, c, d are in G.P., then roots of equation $(a-c)^2x^2+(b-c)^2x+(b-d)^2=(a-d)^2$ are necessarily

A. Imaginary

B. Irrational

C. rational

D. real and distinct

Answer: c

42. If a, b, c be the p^{th} , q^{th} and r^{th} terms respectively of an A.P. and G.P. then the product of the roots of both, equation $ig(a^bb^cc^aig)x^2-(abc)x+ig(a^cb^ac^big)=0$ equals A. - 1B. 2 C. abc D. 1 Answer: d View Text Solution

43. If α , β are roots of the equation $x^2 - p(x+1) - q = 0$, the value of $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + q} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + q}$ is A. O

B. 2

C. 1

 $\mathsf{D}.-1$

Answer: c

44. The value of 'a' for which one root of the quadratic equation $(a^2-5a+3)x^2+(3a-1)x+2=0$ is twice the other is A. 2/3

B. 1/3

- C. 2/3
- D. 1/3

Answer: a

45. If m is chosen in the quadratic equation $(m^2 + 1)x^2 - 3x + (m^2 + 1)^2 = 0$ such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is

A. $4\sqrt{3}$ B. $10\sqrt{5}$ C. $8\sqrt{5}$ D. $8\sqrt{3}$

Answer: c

View Text Solution

Wb Jee Workout One Or More Than One Option Correct Type

1. The ratio of the roots of the equation $ax^2 + bx + c = 0$ is same as the ratio of the roots of the equation $px^2 + qx + r = 0$. If D_1 and D_2 are

discriminants of $ax^2+bx+c=0$ and $px^2+qx+r=0$ respectively, then $D_1\colon D_2=$

A.
$$\frac{a^2}{p^2}$$

B. $\frac{b^2}{q^2}$
C. $\frac{c^2}{r^2}$

D. None of these

Answer: b

- **2.** The set of values of x which satisfy 5x+2 < 3x+8 and $\displaystyle rac{x+2}{x-1} < 4$ is
 - A. (2, 3)
 - $\mathsf{B.}\,(\,-\infty,1)\cup(2,3)$
 - $\mathsf{C}.\,(\,-\infty,1)$
 - D.(1,3)

Answer: b

3. Let
$$f(x) = x^2 + 4x + 1$$
. Then

- A. f(x) > 0 for all x
- B. f(x) > 1 when $x \ge 0$
- C. $f(x) \geq 1$ when $x \leq -4$

D.
$$f(x) = f(-x)$$
 for all x.

Answer: c

View Text Solution

4. The roots of the equation $ax^3 + bx^2 + cx + d = 0$, are $\alpha_1, \alpha_2, \alpha_3$ and roots of $g(z) = az^3 + \frac{f''(y)z^2}{2!} + \frac{f'(y)}{1!}z + f(y) = 0$ are $\beta_1, \beta_2, \beta_3$, then $\alpha_1 - \beta_1$ equals A. $lpha_2-eta_2$ B. $lpha_3-eta_3$

С. у

D. All of these

Answer: d

View Text Solution

5. The value of P for which both the roots of the equation $4x^2-20Px+\left(25P^2+15P-66
ight)=0$ are less than 2, lies in

A. $\left(\frac{4}{5}, 2\right)$ B. $(2, \infty)$ C. $\left(-1, \frac{4}{5}\right)$ D. $\left(-\infty, -1\right)$

Answer: d

6. If b be the p^{th} term of G.P. where $(p+q)^{th}$ and $(p-)^{th}$ terms are a and c respectively and if $f(x)=ax^2+2bx+c$, then for all $x\in R$

A. af(x) = 0

 $\mathsf{B}.\,D=0$

 $\mathsf{C.}\,af(x)\leq 0$

D. None of these

Answer: b

View Text Solution

7. Let a, b, c be real number $(a \neq 0)$. If α is a root of $a^2x^2 + bx + c = 0$, β is a root of $a^2x^2 - bx - c = 0$ and $0 < \alpha\beta$, then the root of the equation (say γ) $a^2x^2 + 2bx + 2c = 0$ always satisfies

A.
$$\gamma = rac{lpha + eta}{2}$$

B. $f(\gamma) = 0$
C. $\gamma = lpha$
D. $lpha < \gamma < eta$

Answer: b,d

View Text Solution

8. The equation x

A. Exactly three roots (real)

B. At least one real root

C. Exactly one irrational root

D. Exactly one rational root

Answer: a,b,c

9. The value of x satisfying the equation

$$|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-1)^7$$
 is
A. 27
B. 81
C. 9
D. $1/\sqrt{3}$

Answer: b

View Text Solution

10. Let $a = e^{i\frac{2\pi}{13}}$ then the quadratic equation whose roots are $\alpha = a + a^3 + a^4 + a^{-4} + a^{-3} + a^{-1}, \beta = a^2 + a^5 + a^6 + a^{-6} + a^{-5} + a^{-5}$ is given by

A.
$$x^2 - x - 3 = 0$$

B.
$$x^2 - x + 2 = 0$$

C. $x^2 + x + 2 = 0$
D. $x^2 + x - 3 = 0$

View Text Solution

Wb Jee Previous Years Questions Single Option Correct Type

1. If lpha and eta are the roots of $x^2-x+1=0$ then the value of $lpha^{2013}+eta^{2013}$ is equal to

A. 2

 $\mathsf{B.}-2$

C. -1

D. 1

Answer: b

2. If α, β are the roots of the quadratic equation $x^2 + ax + b = 0, (b \neq 0)$, then the quadratic equation whose roots are $\alpha - \frac{1}{\beta}, \beta - \frac{1}{\alpha}$ is A. $ax^2 + a(b-1)x + (a-1)^2 = 0$ B. $bx^2 + a(b-1)x + (b-1)^2 = 0$ C. $x^2 + ax + b = 0$ D. $abx^2 + bx + a = 0$

Answer: b

View Text Solution

3. If
$$\alpha, \beta$$
 are the roots of the quadratic equation
 $ax^2 + bx + c = 0$ and $3b^2 = 16ac$, then
A. $\alpha = 4\beta$ or $\beta = 4\alpha$
B. $\alpha = -4\beta$ or $\beta = -4\alpha$
C. $\alpha = 3\beta$ or $\beta = 3\alpha$
D. $\alpha = -3\beta$ or $\beta = -3\alpha$

Answer: c

View Text Solution

4. If α , β are the roots of the quadratic equation $x^2 + px + q = 0$, then the values of $\alpha^3 + \beta^3$ and $\alpha^4 + \alpha^2 \beta^2 + \beta^4$ are

A.
$$3pq-p^3 ext{ and } p^4-3p^2q+3q^2$$

B. $-pig(3q-p^2ig) ext{ and } ig(p^2-qig)ig(p^2+3qig)$
C. $pq-4 ext{ and } p^4-q^4$

D.
$$3pq-p^3 \,\, {
m and} \,\, \left(p^2-q
ight) \left(p^2-3q
ight)$$

View Text Solution

5. Let p, q be real numbers. If α is the root of $x^2 + 3p^2x + 5q^2 = 0$, β is a root of $x^2 + 9p^2x + 15q^2 = 0$ and $0 < \alpha < \beta$, then the equation $x^2 + 6p^2x + 10q^2 = 0$ has a root γ that always satisfies

A.
$$\gamma=lpha/4+eta$$

B.
$$eta < \gamma$$

C.
$$\gamma=lpha/2+eta$$

D.
$$\alpha < \gamma < \beta$$

Answer: d

View Text Solution

6. If α , β are the roots of $ax^2 + bx + c = 0 (a \neq 0)$ and $\alpha + h$, $\beta + h$ are the roots of $px^2 + qx + r = 0 (p \neq 0)$ then the ratio of the squares of their discriminants is

A. $a^2 : p^2$ B. $a : p^2$ C. $a^2 : p$

 $\mathsf{D}.\,a\!:\!2p$

Answer: None of the option is correct

7. The number of solution(s) of the equation
$$\sqrt{x+1} - \sqrt{x-1} = \sqrt{4x-1}$$
 is/are

A. 2

B. 0

C. 3

D. 1

Answer: b

8. If
$$\alpha$$
, β are the roots of $x^2 - px + 1 = 0$ and γ is a root of $x^2 + px + 1 = 0$, then $(\alpha + \gamma)(\beta + \gamma)$ is
A. 0
B. 1
C. -1
D. p

D View Text Solution

9. The quadratic expression $\left(2x+1
ight)^2-px+q
eq 0$ for any real x if

A.
$$p^2-16p-8q<0$$

B. $p^2-8p+16q<0$
C. $p^2-8p-16q<0$
D. $p^2-16p+8q<0$

Answer: c

View Text Solution

10. Given that x is a real number satisfying $rac{5x^2-26x+5}{3x^2-10x+3} < 0$, then

A.
$$x < rac{1}{5}$$

B. $rac{1}{5} < x < 3$
C. $x > 5$
D. $rac{1}{5} < x < rac{1}{3}$ or $3 < x < 5$

11. Let x_1, x_2, \ldots, x_{15} be 15 distinct numbers chosen from 1, 2, 3,, 15.

Then the value of $(x_1 - 1)(x_2 - 1)(x_3 - 1) \ldots (x_{15} - 1)$ is

A. always ≤ 0

B. 0

C. always even

D. always odd

Answer: b

D View Text Solution

12. Let P(x) be a polynomial, which when divided by x - 3 and x - 5leaves remainders 10 and 6 respectively. If the polynomial is divided by (x-3)(x-5) , then the remainder is

 $\mathsf{A.}-2x+16$

B. 16

 $\mathsf{C.}\,2x-16$

D. 60

Answer: a

View Text Solution

13. If p, q are the roots of the equation $x^2 + px + q = 0$, then

A. p = 1, q = -2

B. p = 0, q = 1

C. p = -2, q = 0

D. p = -2, q = 1

Answer: a

14. The number of values of k for which the equation $x^2 - 3x + k = 0$ has two distinct roots lying in the interval (0, 1) are interval (0, 1) are

A. three

B. two

C. infinitely many

D. no value of k satisfies the requirement

Answer: c

View Text Solution

15. If p, q are odd integers, then the roots of the equation $2px^2 + (2p+q)x + q = 0$ are

A. rational

B. irrational

C. non-real

D. equal

Answer: a

View Text Solution

16. If $b_1b_2=2(c_1+c_2)$ and b_1,b_2,c_1,c_2 are all real numbers, then at least one of the equations $x^2+b_1x+c_1=0$ and $x^2+b_2x+c_2=0$ has

A. real roots

B. purely imaginary roots

C. roots of the form $a+ib(a,b\in R,ab
eq 0)$

D. rational roots

Answer: a

17. Let a, b, c be real numbers such that a+b+c<0 and the quadratic equation $ax^2+bx+c=0$ has imaginary roots. Then

A. a > 0, c > 0B. a > 0, c < 0C. a < 0, c > 0D. a < 0, c < 0

Answer: d

View Text Solution

18. Let α , β be two distinct roots of $a\cos\theta + b\sin\theta = c$, where a, b and c are three real constants and $\theta \in [0, 2\pi]$. Then $\alpha + \beta$ is also a root of the same equation, if

A.
$$a + b = c$$

B. $b + c = a$
C. $c + a = b$
D. $c = a$

View Text Solution

19. If α and β are roots of $ax^2 + bx + c = 0$ then the equation whose roots are α^2 and β^2 is

A.
$$a^2x^2 - (b^2 - 2ac)x + c^2 = 0$$

B. $a^2x^2 + (b^2 - 2ac)x + c^2 = 0$
C. $a^2x^2 + (b^2 + ac)x + c^2 = 0$
D. $a^2x^2 + (b^2 + 2ac)x + c^2 = 0$

Answer: a

20. For real x, the greatest value of
$$rac{x^2+2x+4}{2x^2+4x+9}$$
 is

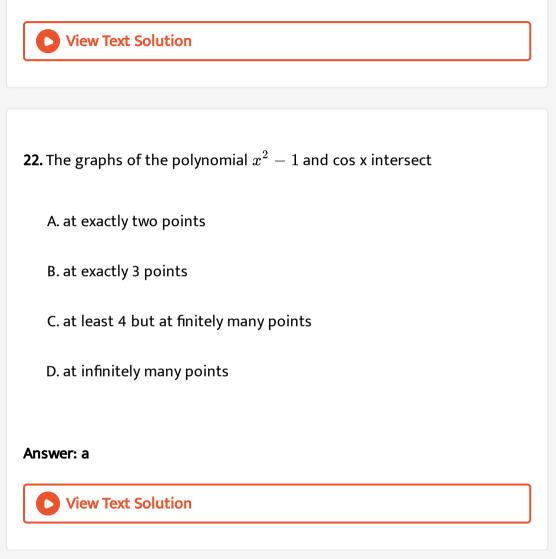
A. 1
B. -1
C.
$$\frac{1}{2}$$

D. $\frac{1}{4}$

Answer: c

View Text Solution

21. Let
$$f(x)=x^4-4x^3+4x^2+c, c\in R$$
. Then


A. f(x) has infinitely many zeros in (1, 2) for all c

B. f(x) has exactly one zero in (1, 2) if -1 < c < 0

C. f(x) has double zeros in (1, 2) if -1 < c < 0

D. whatever be the value of c, f(x) has no zero in (1,2)

Answer: b

Wb Jee Previous Years Questions One Or More Than One Option Correct Type 1. Let $\sin \alpha$, $\cos \alpha$ be the roots of the equation $x^2 - bx + c = 0$. Then which of the following statements is/are correct?

A.
$$c \leq rac{1}{2}$$

B. $b \leq \sqrt{2}$
C. $c > rac{1}{2}$
D. $b > \sqrt{2}$

Answer: a,b

View Text Solution

2. Which of the following is/are always false?

A. A quadratic equation with rational coefficients has zero or two

irrational roots.

B. A quadratic equation with real coefficients has zero or two non-real

roots.

C. A quadratic equation with irrational coefficients has zero or two

rational roots.

D.A quadratic equation with integer coefficients has zero or two

irrational roots.

Answer: c

View Text Solution

3. If the equation	$x^2 + y^2 - 10x + 21 = 0$	has	real	roots
$x=lpha \; ext{ and } \; y=eta$, then				
A. $3 \leq x \leq 7$				
D 9 / w / 7				
B. $3 \leq y \leq 7$				
$C2 \leq y \leq 2$				
D. $-2 \leq x \leq 2$				

Answer: a,c

4. If a, b \in {1, 2, 3} and the equation $ax^2 + bx + 1 = 0$ has real roots,

then

A. a > b

 $\texttt{B.}\, a \leq b$

C. number of possible ordered pairs of (a, b) are 3

 $\mathsf{D}.\, a < b$

Answer: c,d

View Text Solution

5. If the equation $x^2-cx+d=0$ has roots equal to the fourth powers of the roots of $x^2+ax+b=0$, where $a^2>4b$, then the roots of $x^2-4bx+2b^2-c=0$ will be A. both real

B. both negative

C. both positive

D. one positive and one negative

Answer: a,d

View Text Solution

6. Let
$$a = \min\{x^2 + 2x + 3 : x \in R\}$$
 and $b = \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta^2}$.
Then $\sum_{r=0}^n a^r b^{n-r}$ is
A. $\frac{2^{n+1} - 1}{3 \cdot 2^n}$
B. $\frac{2^{n+1} + 1}{3 \cdot 2^n}$
C. $\frac{4^{n+1} - 1}{3 \cdot 2^n}$
D. $\frac{1}{2}(2^n - 1)$

Answer: c

7. Let x_1, x_2 be the roots of $x^2 - 3x + a = 0$ and x_3, x_4 be the roots of $x^2 - 12x + b = 0$. If $x_1 < x_2 < x_3 < x_4$ and x_1, x_2, x_3, x_4 are in G.P., then ab equals

A. $\frac{24}{5}$ B. 64 C. 16

D. 8

Answer: b

View Text Solution