

India's Number 1 Education App

MATHS

BOOKS - MTG WBJEE MATHS (HINGLISH)

VECTOR ALGEBRA

Wb Jee Workout Single Option Correct Type 1 Mark

1. The non-zero vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are related by $\overrightarrow{a} = 8 \overrightarrow{b}$ and $\overrightarrow{c} = -7 \overrightarrow{b}$. The angle between is \overrightarrow{a} and \overrightarrow{c} is

 $A. \theta$

B. $\frac{\pi}{4}$

C. $\frac{\pi}{2}$

D. π

Answer: D

then (m,n) =

View Text Solution

2. If $\overrightarrow{a}=2\hat{i}+3\hat{j}-5\hat{k}, \overrightarrow{b}=m\hat{i}+n\hat{j}+12\hat{k}$ and $\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{0},$

A.
$$\left(\frac{-24}{5}, \frac{-36}{5}\right)$$

$$\mathsf{B.}\left(\frac{-24}{5},\,\frac{36}{5}\right)$$

$$\mathsf{C.}\left(\frac{24}{5},\frac{-36}{5}\right)$$

$$\mathsf{D.}\left(\frac{24}{5}, \frac{36}{5}\right)$$

Answer: A

3. If \overrightarrow{C} is the midpoint of \overrightarrow{AB} and \overrightarrow{P} is any point outside \overrightarrow{AB} and \overrightarrow{P} is any point outside

$$\overrightarrow{AB}$$
, then $\overrightarrow{PA} + \overrightarrow{PB} =$

A.
$$\overrightarrow{PC}$$

$$\operatorname{B.} \overrightarrow{2PC}$$

$$\mathsf{C}.\overrightarrow{-PC}$$

D.
$$2\overrightarrow{OP}$$

Answer: B

4. If
$$\overrightarrow{a}=2\hat{i}+2\hat{j}+3\hat{k}, \ \overrightarrow{b}=-\hat{i}+2\hat{j}+\hat{k} \ \text{and} \ \overrightarrow{c}=3\hat{i}+\hat{j}, \ \text{then}$$
 $\overrightarrow{a}+\overrightarrow{tb}$ is perpendicular to \overrightarrow{c} , if t is equal to

C. 6

D. 8

Answer: D

View Text Solution

5. If the origin and the points P(2, 3, 4), Q(1, 2, 3) and R(x, y, z) are coplanar, then

A.
$$x - 2y - z = 0$$

B.
$$x + 2y + z = 0$$

C.
$$x - 2y + z = 0$$

D.
$$2x - 2y + z = 0$$

Answer: C

6. If the position vectors of vertices of triangle ABC are $3\hat{i}+\hat{j}+2\hat{k},\,\hat{i}-2\hat{j}+7\hat{k}$ and $-2\hat{i}+3\hat{j}+5\hat{k},$ then the triangle ABC is

- A. right angled and isosceles
- B. right angled but not isosceles
- C. isosceles but not right angled
- D. equilateral

Answer: D

View Text Solution

7. A person goes 2 km east, then 3 km north, then 4km west and then 1 km north, starting from the origin. This point is taken as vector \overrightarrow{A} .

The vector $\overset{
ightarrow}{B}$ such that $3\overset{
ightarrow}{A}+5\overset{
ightarrow}{B}=(9,32),\,\,$ is

Answer: D

8. The value of
$$\frac{\left(\overrightarrow{a}\times\overrightarrow{b}\right)^2+\left(\overrightarrow{a}.\overrightarrow{b}\right)^2}{2\left|\overrightarrow{a}\right|^2\left|\overrightarrow{b}\right|^2} \quad \text{is}$$

A.
$$1/2$$

$$\mathsf{B.}\,3/2$$

$$\mathsf{C.}\,5/2$$

$$\mathsf{D.}\,4/3$$

Answer: A

View Text Solution

- **9.** For any vector $\overrightarrow{\alpha}$, what is $(\overrightarrow{\alpha}.\ \hat{i})\hat{i}+(\overrightarrow{\alpha}.\ \hat{j})\hat{j}+(\overrightarrow{\alpha}.\ \hat{k})\hat{k}$ equal to ?
 - A. 0
 - $\operatorname{B.} \overrightarrow{a}$
 - $\mathsf{C.}\,2\overrightarrow{a}$
 - D. $3\overrightarrow{a}$

Answer: B

Watch Video Solution

10. If the triangle with vertices at $2\hat{i}+\hat{j},2\hat{j}+\hat{k},m\hat{k}+\hat{i}$ has centroid

$$\hat{i}+\hat{j}+\hat{k}, ext{ then m}$$
 =

- A. 1
- B. -1
- C. 2
- D. 3

Answer: C

View Text Solution

11. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of points A, B, C respectively such that $5\overrightarrow{a}-3\overrightarrow{b}-2\overrightarrow{c}=\overrightarrow{0}$, then

A. C divides BA internally in ratio 5 : 3

B. C divides BA externally in ratio 5:3

C. C divides AB internally in ratio 5:3

D. C divides AB externally in ratio 5:3

Answer: B

View Text Solution

12. Let
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$$
 be such that $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = 0$. If

$$\left|\overrightarrow{u}
ight|=3,\left|\overrightarrow{v}
ight|=4,\left|\overrightarrow{w}
ight|=5, ext{ then }\overrightarrow{u}.\overrightarrow{v}+\overrightarrow{v}.\overrightarrow{w}+\overrightarrow{w}.\overrightarrow{u}=$$

A. 47

B. 25

C. -25

D. -47

Answer: C

13. If $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ are the diagonals of a parallelogram, then the area of the parallelogram is

- A. $10\sqrt{3}sq.\ units$
- B. $5\sqrt{3}sq.\ units$
- C. $5\sqrt{2}sq.\ units$
- D. $10\sqrt{2}sq.\ units$

Answer: B

View Text Solution

14. Let P, Q, R, S be points on the plane with position vectors $-2\hat{i}-\hat{j}, 4\hat{i}, 3\hat{i}+3\hat{j}, -3\hat{i}+2\hat{j}$ respectively. The quadrilateral PQRS must be a

A. parallelogram, which is neither a rhombus nor a rectangle

B. square

C. rectangle, but not a square

D. rhombus, but not a square

Answer: A

View Text Solution

15. \overrightarrow{OA} and \overrightarrow{BO} are two vectors of magnitudes 5 and 6 respectively. If

$$\angle BOA = 60^{\circ}\,, ext{then} \ \ \overrightarrow{OA}. \ \overrightarrow{OB} ext{ is equal to}$$

A. 0

B. 15

C. -15

D. $15\sqrt{3}$

Answer: B

16. The points
$$7\hat{i}-11\hat{j}+\hat{k}$$
, $5\hat{i}+3\hat{j}-2\hat{k}$ and $12\hat{i}-8\hat{j}-\hat{k}$ forms

A. equilateral
$$\,\Delta\,$$

B. isosceles
$$\Delta$$

C. right angled
$$\Delta$$

D. collinear

Answer: C

17. Find the area of triangle if position vector of vertices w.r.t. O is $-\hat{i} + 2\hat{j} + 3\hat{k}, 2\hat{i} - \hat{j} - \hat{k}, \hat{i} + \hat{j} - \hat{k}.$

A.
$$\frac{\sqrt{89}}{2}$$
 sq. units

B.
$$\frac{89}{2}$$
 sq. units

C.
$$\frac{2}{\sqrt{79}} sq.\ units$$

D. $\frac{79}{2} sq.\ units$

Answer: A

View Text Solution

18. Let the position vectors of the points A, B and C be \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} respectively. Let Q be the point of intersection of the medians of the triangle ABC. Then $\overrightarrow{QA} + \overrightarrow{QB} + \overrightarrow{QC} =$

A.
$$\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{2}$$

$$\texttt{B.}\ 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathsf{C.} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\overrightarrow{D}$$
. $\overrightarrow{0}$

Answer: D

19. Find
$$\left[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}\right]$$
, where $\overrightarrow{a}=\hat{i},\ \overrightarrow{b}=\hat{j},\ \overrightarrow{c}=\hat{k}.$

A. 1

B. 4

C. 2

D. 3

Answer: A

View Text Solution

20. Express the vector $\overrightarrow{r}=4\hat{i}+13\hat{j}-18\hat{k}$ as a linear combination of the vectors $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k} \ \ {
m and} \ \ \overrightarrow{b} = 2\hat{i} + 3\hat{j} - 4\hat{k}.$

A.
$$\overrightarrow{r}=2\overrightarrow{a}+5\overrightarrow{b}$$

B.
$$\overrightarrow{r}=7\overrightarrow{a}-3\overrightarrow{b}$$

C.
$$\overrightarrow{r} = -3\overrightarrow{a} - 4\overrightarrow{b}$$

D.
$$\overrightarrow{r} = -2\overrightarrow{a} + 3\overrightarrow{b}$$

Answer: D

View Text Solution

21.
$$\left(\overrightarrow{a}\,.\,\hat{i}
ight)^2+\left(\overrightarrow{a}\,.\,\hat{j}
ight)^2+\left(\overrightarrow{a}\,.\,\hat{k}
ight)^2=$$

A.
$$\left|\overrightarrow{a}\right|^2$$

$$\mathsf{B.}\,2{\left|\overrightarrow{a}\right|^2}$$

$$\mathsf{C.}\left.3\middle|\overrightarrow{a}\middle|^2\right.$$

D.
$$4 \left| \overrightarrow{a} \right|^2$$

Answer: A

22. The position vector of a point R which divides the line joining P(6,

3, -2) and Q(3, 1, -4) in the ratio 2: 1 externally is

A.
$$\hat{i} + 3\hat{j} - 2\hat{k}$$

B.
$$3\hat{i}-\hat{k}$$

C.
$$-\hat{j}-6\hat{k}$$

D.
$$2\hat{i}-\hat{j}$$

Answer: C

View Text Solution

23. If vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar, then

$$rac{\left[\overrightarrow{a}+2\overrightarrow{b}.\overrightarrow{b}.\overrightarrow{b}+2\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}
ight]}{\left[\overrightarrow{a}.\overrightarrow{b}.\overrightarrow{c}
ight]}=$$

A. 3

Answer: B

View Text Solution

24. If
$$\overrightarrow{a} = 3\hat{i} - 5\hat{j}$$
, $\overrightarrow{b} = 6\hat{i} + 3\hat{j}$ and $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$, then

$$\left|\overrightarrow{a}\right|:\left|\overrightarrow{b}\right|:\left|\overrightarrow{c}\right|=$$

A.
$$\sqrt{34}$$
: $\sqrt{45}$: $\sqrt{39}$

B.
$$\sqrt{34}$$
: $\sqrt{45}$: $\sqrt{39}$

Answer: B

25. Suppose
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$, $|\overrightarrow{c}| = 7$, then the angle between \overrightarrow{a} and \overrightarrow{b} is

B.
$$\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{\pi}{4}$$

Answer: C

26.
$$\frac{\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)}{\overrightarrow{b} \cdot \left(\overrightarrow{c} \times \overrightarrow{a}\right)} + \frac{\overrightarrow{b} \cdot \left(\overrightarrow{a} \times \overrightarrow{b}\right)}{\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)}$$
 is equal to

- A. 1
- B. 2
- C. 0
- $D. \infty$

Answer: A

- **27.** If three vectors $2\hat{i}-\hat{j}-\hat{k},\,\hat{i}+2\hat{j}-3\hat{k}$ and $3\hat{i}+\lambda\hat{j}+5\hat{k}$ are coplanar, then the value of λ is
 - A. -2
 - B. -3
 - C. -4
 - D. 2

Answer: C

Watch Video Solution

28. The volume of tetrahedron with vertices

$$-\,\hat{i}\,+\hat{k},2\hat{i}\,-\,\hat{j},\,\hat{i}\,+2\hat{j}+5\hat{k},\,\hat{i}\,+2\hat{j}+\hat{k}$$
 is

- A. 3/16
- $\mathsf{B.}\,16/3$
- C.15/2
- D. 2/15

Answer: B

29. If V is the volume of the parallelepiped having three coterminous edges, as \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , then the volume of the parallelepiped having three coterminous edges as

$$\alpha = (\overrightarrow{a}.\overrightarrow{a})\overrightarrow{a} + (\overrightarrow{a}.\overrightarrow{b})\overrightarrow{b} + (\overrightarrow{a}.\overrightarrow{c})\overrightarrow{c}$$

$$\beta = (\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} + (\overrightarrow{b}.\overrightarrow{b})\overrightarrow{b} + (\overrightarrow{b}.\overrightarrow{c})\overrightarrow{c}$$

$$(\rightarrow \rightarrow) \rightarrow (\rightarrow \rightarrow) \rightarrow$$

$$\gamma = \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{a} + \left(\overrightarrow{b}.\overrightarrow{c}
ight)\overrightarrow{b} + \left(\overrightarrow{c}.\overrightarrow{c}
ight)\overrightarrow{c}$$
 is

A.
$$V^3$$

C.
$$V^{\,2}$$

Answer: A

30. The points A, B and C with position vectors
$$3\hat{i}-y\hat{j}+2\hat{k},\,5\hat{i}-\hat{j}+\hat{k}$$
 and $3x\hat{i}+3\hat{j}-\hat{k}$ are collinear, then the values of x and y respectively are

- A. 2, 3
- B. 4, 5
- C. 3, 3
- D. -1, 4

Answer: C

Wb Jee Workout Single Option Correct Type 2 Mark

1. Let
$$\overrightarrow{a}=2\hat{i}-3\hat{j}+6\hat{k}$$
 and $\overrightarrow{b}=-2\hat{i}+2\hat{j}-\hat{k},$ then

$$\frac{\text{Projection of } \overrightarrow{a} \text{ on } \overrightarrow{b}}{\text{Projection of } \overrightarrow{b} \text{ on } \overrightarrow{a}} =$$

- A. $\frac{3}{7}$
- $\mathsf{B.}\,\frac{7}{3}$
- C. -4
- D. 3

Answer: B

View Text Solution

- **2.** The area of the parallelogram with \overrightarrow{a} and \overrightarrow{b} as adjacent sides is
- 20 sq. units. Then the area of the parallelogram having $7\overrightarrow{a}+5\overrightarrow{b}$ and $8\overrightarrow{a}+11\overrightarrow{b}$ as adjacent sides is

A. 2960 sq. units

B. 740 sq. units

C. 1340 sq. units

D. 3400 sq. units

Answer: B

View Text Solution

3. Let
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - \hat{j} - \hat{k}$. A vector in the plane of \overrightarrow{a} and \overrightarrow{b} whose projection on \overrightarrow{c} is $\frac{1}{\sqrt{3}}$, is

A.
$$4\hat{i}-\hat{j}+4\hat{k}$$

B.
$$3\hat{i}+\hat{j}-3\hat{k}$$

C.
$$2\hat{i}+\hat{j}-2\hat{k}$$

D.
$$4\hat{i}+\hat{j}-4\hat{k}$$

Answer: A

4. If the volume of the parallelepiped formed by three non-coplanar \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is 4 cubic vectors units,

vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} is 4 cubic units, then $\left[\overrightarrow{a} \times \overrightarrow{b} . \overrightarrow{b} \times \overrightarrow{c} . \overrightarrow{c} \times \overrightarrow{a}\right] =$

Answer: C

5.
$$A.$$
 $\left(\overrightarrow{B}+\overrightarrow{C}
ight) imes\left(\overrightarrow{A}+\overrightarrow{B}+\overrightarrow{C}
ight)=$

$$\mathsf{B}. \left[\overrightarrow{A} \cdot \overrightarrow{B} \cdot \overrightarrow{C} \right] + \left[\overrightarrow{B} \cdot \overrightarrow{C} \cdot \overrightarrow{A} \right]$$

$$\operatorname{C.}\left[\overrightarrow{A}\,.\,\overrightarrow{B}\,.\,\overrightarrow{C}\right]$$

D. None of these

Answer: A

View Text Solution

6. If θ is the angle between the lines AB and AC where A, B and C are the three points with coordinates (1, 2, -1), (2, 0, 3), (3, -1, 2) respectively, then $\sqrt{462}\cos\theta$ is equal to

- A. 20
- B. 10
- C. 30
- D. 40

Answer: A

View Text Solution

7. If the position vectors of the vertices A, B and C of ΔABC are respectively $\stackrel{\rightarrow}{0}$, $-20\hat{i}+15\hat{j}$ and $36\hat{i}+15\hat{j}$, then find the position vector of the incentre of the triangle.

A.
$$\hat{i}+8\hat{j}$$

B.
$$2\hat{i}+3\hat{j}$$

$$\mathsf{C.}\,4\hat{i}+3\hat{j}$$

D.
$$2\hat{i}-5\hat{j}$$

Answer: A

8. Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i}+a\hat{j}+c\hat{k},\,\hat{i}+\hat{k},c\hat{i}+c\hat{j}+b\hat{k}$ lie in a plane, then C is

A. A.M. of a, b

B. G.M. of a, b

C. H.M. of a, b

D. zero

Answer: B

9. If
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$$
 are the non-coplanar vectors, then $\left(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}\right) \cdot \left[\left(\overrightarrow{u} - \overrightarrow{v}\right) \times \left(\overrightarrow{v} - \overrightarrow{w}\right)\right] =$

A.
$$\overrightarrow{u}$$
 . $\left(\overrightarrow{v} imes\overrightarrow{w}
ight)$

B.
$$\overrightarrow{u}$$
 . $\left(\overrightarrow{w} imes \overrightarrow{v}\right)$

$$\mathsf{C.}\, 3 \overset{\longrightarrow}{u} \,.\, \left(\overset{\longrightarrow}{v} \times \overset{\longrightarrow}{w}\right)$$

D. 0

Answer: A

View Text Solution

10. If $\hat{i}+2\hat{j}+3\hat{k}$ and $2\hat{i}-\hat{j}+4\hat{k}$ are the position vectors of the points A and B, then the position vector of the points of trisection of

A.
$$\frac{4}{3}\hat{i}+\hat{j}+\frac{10}{3}\hat{k},\,\frac{5}{3}\hat{i}+\frac{11}{3}\hat{k}$$

B.
$$-\frac{4}{3}\hat{i} - \hat{j} - \frac{10}{3}\hat{k}, -\frac{5}{3}\hat{i} - \frac{11}{3}\hat{k}$$

$$\mathsf{C.}\,\frac{4}{3}\hat{i}-\hat{j}-\frac{10}{3}\hat{k},\frac{-5}{3}\hat{i}+\frac{11}{3}\hat{k}\\ \mathsf{D.}\,-\frac{4}{3}\hat{i}+\hat{j}-\frac{10}{3}\hat{k},\frac{5}{3}\hat{i}-\frac{11}{3}\hat{k}$$

Answer: A

11. If G is the centroid of the triangle PQR, where $\overrightarrow{GP}=2\hat{i}+\hat{j}+3\hat{k}, \overrightarrow{GQ}=\hat{i}-\hat{j}+2\hat{k},$ then the area of the triangle

PQR is

A.
$$\sqrt{35}sq.\ units$$

B.
$$\frac{3\sqrt{35}}{2}$$
 sq. units

C.
$$\frac{\sqrt{35}}{2}$$
 sq. units

D.
$$\frac{5\sqrt{35}}{2}$$
 sq. units

Answer: B

View Text Solution

12. The vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are such that the projection of \overrightarrow{c} on \overrightarrow{a} is equal to the projection of \overrightarrow{c} on \overrightarrow{b} . If

$$\left|\overrightarrow{a}\right|=2,\ \overrightarrow{b}\mid=1,\left|\overrightarrow{c}\mid\ =3\ ext{and}\ \overrightarrow{a}.\ \overrightarrow{b}=1,\ ext{then}\ \left|\overrightarrow{a}-2\overrightarrow{b}-\overrightarrow{c}
ight|$$
 is equal to

C.
$$\sqrt{12}$$

B. $\sqrt{10}$

D.
$$\sqrt{13}$$

Answer: D

View Text Solution

view lext solution

as concurrent edges, where the position vectors of A, B, C, D are $\hat{i}+\hat{j}+\hat{k},2\hat{i}-\hat{j}+3\hat{k},3\hat{i}-2\hat{j}-2\hat{k}$ and $3\hat{i}+3\hat{j}+4\hat{k}$

13. Find the volume of the parallelepiped with segments AB, AC and AD

respectively.

a. amics

B. 41 cu. units

C. 10 cu. units

D. 52 cu. units

Answer: B

View Text Solution

 $\left[2\overrightarrow{a} - \overrightarrow{b}.2\overrightarrow{b} - \overrightarrow{c}.2\overrightarrow{c} - \overrightarrow{a}
ight] =$

14. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit coplanar vectors, then

A. 0

.. 0

B. 1

 $\mathsf{C.}-\sqrt{3}$

D. $\sqrt{3}$

Answer: A

15. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are position vectors of the vertices of the triangle ABC,

then
$$\dfrac{\left|\left(\overrightarrow{a}-\overrightarrow{c}\right) imes\left(\overrightarrow{b}-\overrightarrow{a}\right)\right|}{\left(\overrightarrow{c}-\overrightarrow{a}\right).\left(\overrightarrow{b}-\overrightarrow{a}\right)}$$
 is equal to

$$\mathsf{C}.- an C$$

Answer: D

View Text Solution

Wb Jee Workout One Or More Than One Option Correct Type 2 Mark

1. Let

$$\overrightarrow{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}, \ \overrightarrow{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k} \ ext{and} \ \overrightarrow{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}$$
 be three non-zero vectors such that \overrightarrow{c} is a unit vector perpendicular

be three non-zero vectors such that \overrightarrow{c} is a unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$, then

$$\left| egin{array}{cccc} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \ \end{array}
ight|^2 ext{ is equal to}$$

A. 0

B. 1 C. $rac{1}{4}ig(a_1^2+a_2^2+a_3^2ig)ig(b_1^2+b_2^2+b_3^2ig)$

D.
$$rac{3}{4}ig(a_1^2+a_2^2+a_3^2ig)ig(b_1^2+b_2^2+b_3^2ig)ig(c_1^2+c_2^2+c_3^2ig)$$

Answer: C

2. The values of γ and μ for which the vectors $a=2\hat{i}+\lambda\hat{j}-\hat{k}$ is perpendicular to the vector $\overrightarrow{b}=3\hat{i}+\hat{j}+\mu\hat{k}$ with $\left|\overrightarrow{a}\right|=\left|\overrightarrow{b}\right|$ are

A.
$$\lambda=rac{41}{12},\mu=rac{31}{12}$$

B.
$$\lambda = \frac{41}{12}, \mu = -\frac{31}{12}$$

C. $\lambda = -\frac{41}{12}, \mu = \frac{31}{12}$

Answer: C

3. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, \overrightarrow{a} . $\overrightarrow{b} = 1$ and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} - \hat{k}$, then \overrightarrow{b} is

A.
$$\hat{i}-\hat{j}+\hat{k}$$

B.
$$2\hat{j}-\hat{k}$$

C.
$$\hat{i}$$

D.
$$2\hat{i}$$

Answer: C

View Text Solution

- **4.** \overrightarrow{a} is perpendicular to $\overrightarrow{b}+\overrightarrow{c},\overrightarrow{b}$ is perpendicular to $\overrightarrow{c}+\overrightarrow{a}$ and \overrightarrow{c} is perpendicular to $\overrightarrow{a}+\overrightarrow{b}$. If $\left|\overrightarrow{a}\right|=2,\left|\overrightarrow{b}\right|=3$ and $\left|\overrightarrow{c}\right|=6$, then $\left|\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\right|-2=$
 - A. 5
 - B. 8
 - C. 9
 - D. 10

Answer: A

5.
$$\left[\overrightarrow{a} - \overrightarrow{b}.\overrightarrow{b} - \overrightarrow{c}.\overrightarrow{a} + \overrightarrow{c}\right]$$
 equals

A.
$$2igg[\overrightarrow{a}\,.\,\,\overrightarrow{b}\,.\,\,\overrightarrow{c}\,igg]$$

$$\mathsf{B.}\,3\!\left[\overrightarrow{a}\,.\,\,\overrightarrow{b}\,.\,\,\overrightarrow{c}\right]$$

C.
$$\left[\overrightarrow{a}.\overrightarrow{b}.\overrightarrow{c}\right]$$

Answer: A

D. 0

6. Let
$$\overrightarrow{a} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$
, $\overrightarrow{b} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\overrightarrow{c} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$. If the numbers α , β and γ are such that $\alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \overrightarrow{c} = \begin{bmatrix} -2 \\ -5 \\ 6 \end{bmatrix}$, then

A.
$$\alpha = -1$$

B.
$$\beta=-2$$

$$\mathsf{C}.\,\gamma=3$$

D.
$$lpha + eta + \gamma = 0$$

Answer: A::B::C::D

View Text Solution

7. The value of a, for which the points A, B, C with position vectors

$$2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k},\,a\hat{i}-3\hat{j}+\hat{k}$$
 respectively are the vertices of a right angled triangle with $C=rac{\pi}{2}are$

B. 2

C. -1

D. -2

Answer: A::B

- View Text Solution

8. The volume of the parallelepiped whose coterminous edges are represented by the vectors $8\overrightarrow{b} \times \overrightarrow{c}, 3\overrightarrow{c} \times \overrightarrow{a}$ and $4\overrightarrow{a} \times \overrightarrow{b}$, where

$$\overrightarrow{a} = (1+\sin heta)\hat{i} + \cos heta\hat{j} + \sin2 heta\hat{k},$$

$$\stackrel{
ightarrow}{b} = \sinigg(heta + rac{2\pi}{3}igg)\hat{i} + \cosigg(heta + rac{2\pi}{3}igg)\hat{j} + \sinigg(2 heta + rac{4\pi}{3}igg)\hat{k},$$

$$\overrightarrow{c} = \sinigg(heta - rac{2\pi}{3}igg)\hat{i} + \cosigg(heta - rac{2\pi}{3}igg)\hat{j} + \sinigg(2 heta - rac{4\pi}{3}igg)\hat{k}$$

is 18 cubic units, then the values of θ , in the interval $\left(0, \frac{\pi}{2}\right)$, is/are

A.
$$\frac{\pi}{9}$$

B.
$$\frac{2\pi}{9}$$

C.
$$\frac{\pi}{3}$$

D.
$$\frac{4\pi}{\Omega}$$

Answer: A::B::D

9. The number of distinct real values of $\lambda,$ for which the vectors

$$-\lambda^2\hat{i}+\hat{j}+\hat{k},\,\hat{i}-\lambda^2\hat{j}+\hat{k}\, ext{ and }\,\hat{i}+\hat{j}-\lambda^2\hat{k}$$
 are coplanar, is

- A. zero
- B. one
- C. two
- D. three

Answer: C

View Text Solution

10. Three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are such that

$$\overrightarrow{a} imes \overrightarrow{b} = 4 \Big(\overrightarrow{a} imes \overrightarrow{c}\Big) \; ext{and} \; \Big|\overrightarrow{a}\Big| = \Big|\overrightarrow{b}\Big| = 1 \; ext{and} \; \Big|\overrightarrow{c}\Big| = rac{1}{4}. \; \; ext{If the}$$

angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$, then \overrightarrow{b} is

A.
$$\overrightarrow{a} + 4\overrightarrow{c}$$

B.
$$\overrightarrow{a} - 4\overrightarrow{c}$$

C.
$$4\overrightarrow{c}-\overrightarrow{a}$$

D.
$$2\overrightarrow{c}-\overrightarrow{a}$$

Answer: A::C

View Text Solution

11. Three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are of the same length and the angle between any two of them is the same. If

$$\overrightarrow{a} = \hat{i} + \hat{j} ext{ and } \overrightarrow{b} = \hat{j} + \hat{k}, ext{ then } \overrightarrow{c} ext{ is}$$

A.
$$-rac{1}{3}\Big(\hat{i}-4\hat{j}+\hat{k}\Big)$$

B.
$$\hat{i}+\hat{k}$$

C.
$$-rac{1}{3}\Big(-\hat{i}+4\hat{j}+\hat{k}\Big)$$

D.
$$rac{1}{7}ig(\hat{i}+2\hat{j}+3\hat{k}ig)$$

View Text Solution

12. Let $\overrightarrow{a}=2\hat{i}+\hat{j}+\hat{k}, \overrightarrow{b}=\hat{i}+2\hat{j}-\hat{k}$ and a unit vector \overrightarrow{c} be coplanar. If \overrightarrow{c} is perpendicular to \overrightarrow{a} , then $\overrightarrow{c}=$

A.
$$rac{-\hat{j}+\hat{k}}{\sqrt{2}}$$

B.
$$\frac{\sqrt{2}}{-\hat{i}-\hat{j}-\hat{k}}$$

C.
$$\frac{\hat{i}-2\hat{j}}{\sqrt{5}}$$

D.
$$\frac{\hat{i} - \hat{j} - \hat{k}}{\sqrt{3}}$$

Answer: A

(x, x + 1, x + 2), (x + 3, x + 4, x + 5) and (x + 6, x + 7, x + 8)

are coplanar for

A. all values of x

B. x < 0

C. x > 0

D. none of these

Answer: A::B::C

View Text Solution

14. If $\left|\overrightarrow{a}\right|=3,\left|\overrightarrow{b}\right|=4$ and $\left|\overrightarrow{c}\right|=5$, then

A. range of $\left| \overrightarrow{a} - \overrightarrow{b} \right|$ is [1, 7]

B. range of $\left| \overrightarrow{b} - \overrightarrow{c} \right|$ is [1, 9]

C. range of $\left|\overrightarrow{c}-\overrightarrow{a}\right|$ is [2,8]

D. none of these

Answer: A::B::C

View Text Solution

15. The volume of the parallelepiped whose edges are

$$\overrightarrow{OA}=2\hat{i}-3\hat{j},\overrightarrow{OB}=\hat{i}+\hat{j}-\hat{k},\overrightarrow{OC}=3\hat{i}-\hat{k}$$
 is

A. $\frac{4}{13}$ cu. units

B. 4 cu. Units

C. $\frac{2}{7}cu. \ units$

D. none of these

Answer: B

Wb Jee Previous Years Questions Single Option Correct Type 1 Mark

$$-2\hat{i}+\hat{j}+\hat{k},\,\hat{i}+\hat{j}+\hat{k},\hat{j}-\hat{k}\, ext{ and }\,\lambda\hat{j}+\hat{k}$$
 are coplanar, then $\lambda=$

- A. 1
- B. 2
- C. -1
- D. 0

Answer: A

View Text Solution

2. Which of the following is not always true?

A. $\left| \overrightarrow{a} + \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2$ if \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other.

$$|\overrightarrow{a} + \lambda \overrightarrow{b}| \ge |\overrightarrow{a}| \quad \text{for all} \quad \lambda \in R \quad \text{if} \quad \overrightarrow{a} \quad \text{and} \quad \overrightarrow{b}$$
 are perpendicular to each other.

$$\begin{array}{l} \mathsf{C.} \left| \overrightarrow{a} + \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} - \overrightarrow{b} \right|^2 = 2 \bigg(\left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2 \bigg). \\ \\ \mathsf{D.} \left| \overrightarrow{a} + \lambda \overrightarrow{b} \right| \geq \left| \overrightarrow{a} \right| \text{for all } \ \lambda \in R \ \text{if } \overrightarrow{a} \ \text{is parallel to } \overrightarrow{b}. \end{array}$$

Answer: B

3. For non-zero
$$\overrightarrow{a} \text{ and } \overrightarrow{b} \text{ if } \left| \overrightarrow{a} + \overrightarrow{b} \right| < \left| \overrightarrow{a} - \overrightarrow{b} \right|, \text{ then } \overrightarrow{a} \text{ and } \overrightarrow{b} \text{ are }$$

vectors

A. collinear

B. perpendicular to each other

C. inclined at an acute angle

D. inclined at an obtuse angle

Answer: D

View Text Solution

- **4.** For any vector \overrightarrow{x} , the value of $\left(\overrightarrow{x} \times \hat{i}\right)^2 + \left(\overrightarrow{x} \times \hat{j}\right)^2 + \left(\overrightarrow{x} \times \hat{k}\right)^2$ is equal to
 - A. $\left|\overrightarrow{x}\right|^2$
 - $\left| \mathsf{B.} \, 2 \right| \overrightarrow{x} \right|^2$
 - $\mathsf{C.}\,3{\left|\overrightarrow{x}\right|^2}$
 - D. $4\left|\overrightarrow{x}\right|^2$

Answer: B

5. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

- A. $\sqrt{2}units$
- B. 2 units
- C. $\sqrt{3}units$
- D. $\sqrt{5}units$

Answer: C

- **6.** Let $\overrightarrow{\alpha} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{\beta} = \hat{i} \hat{j} \hat{k}$ and $\overrightarrow{\gamma} = -\hat{i} + \hat{j} \hat{k}$ be three vectors. A vector $\overrightarrow{\delta}$, in the plane of $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$, whose projection on $\overrightarrow{\gamma}$ is $\frac{1}{\sqrt{3}}$, is given by
 - A. $-\hat{i}-3\hat{j}-3\hat{k}$

B.
$$\hat{i}-3\hat{j}-3\hat{k}$$

 $\mathbf{C}_{\cdot} - \hat{i} + 3\hat{i} + 3\hat{k}$

D.
$$\hat{i}+3\hat{j}-3\hat{k}$$

Answer: C

View Text Solution

7. Let
$$\overrightarrow{\alpha}$$
, $\overrightarrow{\beta}$, $\overrightarrow{\gamma}$ be three unit vectors such that $\overrightarrow{\alpha}$. $\overrightarrow{\beta} = \overrightarrow{\alpha}$. $\overrightarrow{\gamma} = 0$ and the angle between $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$ is 30° . Then $\overrightarrow{\alpha}$ is

A.
$$2 \left(\overrightarrow{\beta} \times \overrightarrow{\gamma} \right)$$

$$\mathsf{B.} - 2 \bigg(\overrightarrow{\beta} \, \times \overrightarrow{\gamma} \bigg)$$

$$\mathsf{C.}\pm2igg(\overrightarrow{eta}\, imes\overrightarrow{\gamma}igg)$$

D.
$$\left(\overrightarrow{eta} imes\overrightarrow{\gamma}
ight)$$

Answer: C

8. Let
$$\widehat{lpha},\widehat{eta},\widehat{\gamma}$$
 be three unit vectors such that $\widehat{lpha} imes\left(\widehat{eta} imes\widehat{\gamma}\right)$

$$=rac{1}{2}ig(\widehat{eta}+\widehat{\gamma}ig) \ \ ext{where} \ \ \widehat{lpha} imesig(\widehat{eta} imes\widehat{\gamma}ig)=(\widehat{lpha}.\ \widehat{\gamma})\widehat{eta}-ig(\widehat{lpha}.\ \widehat{eta}ig)\widehat{\gamma}.$$

If

$$\widehat{\beta}$$
 is not parallel to $\widehat{\gamma}$, then the angle between $\widehat{\alpha}$ and $\widehat{\beta}$ is

A.
$$\frac{5\pi}{6}$$

B.
$$\frac{\pi}{6}$$

$$\mathsf{C.}\,\frac{\pi}{3}$$

D.
$$\frac{2\pi}{3}$$

Answer: D

View Text Solution

9. The position vectors of the points A, B, C and D are

$$3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} - 3\hat{j} + 2\hat{k}, 5\hat{i} - \hat{j} + 2\hat{k} \; ext{and} \; 4\hat{i} - \hat{j} + \lambda\hat{k}$$

